Tripod Data Systems, Inc.

Cirronet Radio Module installed in the Ranger X Series Handheld Computer

May 23, 2005

Report No. TRPO0007.2

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2005 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: May 23, 2005 Tripod Data Systems, Inc.

Cirronet Radio Module installed in the Ranger X Series Handheld Computer

Emis	sions		
Specification	Test Method	Pass	Fail
FCC 15.207 AC Powerline Conducted Emissions:2005-04	ANSI C63.4:2003	\boxtimes	
FCC 15.247(d) Spurious Radiated Emissions:2005-04	ANSI C63.4:2003	\boxtimes	

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc.

22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124

Phone: (503) 844-4066

Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:

Greg Kiemel, Director of Engineering

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

Revision 03/18/05

Accreditations and Authorizations

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

200629-0 200630-0 200676-0

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment, Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071 and R-1025, Irvine: C-2094 and R-1943, Newberg: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761).*

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

Explanation of Northwest EMC Performance Criteria

Revision 03/24/03

How important is it to understand performance criteria?

It is the responsibility of the test laboratory to observe the results of the tests that are performed and to accurately report those results. As the responsible party (manufacturer, importer, etc) it is your responsibility to take those results, compare them against the specifications and standards, then, if appropriate make a declaration of conformity. As the responsible party it makes sense that you are fully aware of the requirements, how your device performs when tested to those requirements, and what information is being used to declare conformity.

To better assist you in making those conformity decisions, Northwest EMC has adopted a very simple, yet very clear performance assessment procedure. The following criteria is used when performing immunity or susceptibility tests:

Performance Criteria 1:

- □ The EUT exhibited no change in performance when operating as specified by the manufacturer. In this case no changes were observed during the test.
- In most cases this would be equivalent to Performance Criteria A. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, no changes were observed. Basically nothing happened.

Performance Criteria 2:

- ☐ The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment recovered without any operator intervention, once the test signal was removed. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria B. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT was able to recover from those changes without any operator intervention, once the test signal was removed.

Performance Criteria 3:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment required some operator intervention in order to recover. This intervention may be in the form of changing EUT settings, or even resetting the system. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria C. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT required some sort of operator intervention to recover. There was no permanent damage and the EUT appeared to function normally after completion of test.

Performance Criteria 4:

- □ The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment was damaged and would not recover. The data sheets will detail the exact phenomena observed.
- ☐ In most cases there is no specific criterion to compare this to; it typically ends the test. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. There was no recovery; the equipment would no longer function as intended.

Each of the standards and specifications have unique performance criteria. In order to make an accurate assessment, one must compare the test results provided with the specific performance criteria. To ensure that a responsible party is compliant with the specifications, one must read and understand those specifications. Provided below is a sample performance criteria, taken from EN 61000-6-1.

EN 61000-6-1 Performance Criteria

Performance Criteria A: The apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

Performance Criteria B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test degradation of performance is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

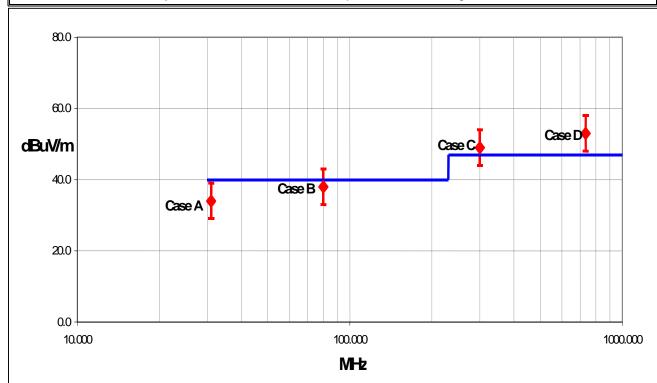
Performance Criteria C: Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of controls.

How should a device perform in order for a declaration of conformity to be made?

As already stated, it is the responsible party that must interpret and understand the results in such a way that a declaration of conformity is made. Having said that, we are often asked to render our opinion as to how a device should perform. Our recommendation simply follows the standards, as can be referenced below. Most of the standards and specifications offer the same performance criterion shown below as their requirements.

Test	Performance Criteria typically specified by the Standard Performance Criteria		
ESD	Performance Criteria B	Performance Criteria 1 or 2	
Radiated RF	Performance Criteria A	Performance Criteria 1	
EFT/Burst	Performance Criteria B	Performance Criteria 1 or 2	
Surge	Performance Criteria B	Performance Criteria 1 or 2	
Conducted RF	Performance Criteria A	Performance Criteria 1	
Magnetic Field	Performance Criteria A	Performance Criteria 1	
Voltage Dips and Variations	Performance Criteria B & C	Performance Criteria 1, 2, or 3	

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Test Result Scenarios:

Case A: Product complies.

Case B: Product conditionally complies. It is not possible to say with 95% confidence that the product complies.

Case C: Product conditionally does not comply. It is not possible to say with 95% confidence that the product does not comply.

Case D: Product does not comply.

Measurement Uncertainty

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability	Bico	nical	Log Pe	eriodic	D	ipole
	Distribution	Ante	enna	Ante	enna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty u _c (y)		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty <i>U</i>	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence ≈ 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability Distribution	Without High Pass Filter	With High Pass Filter
Combined standard uncertainty $u_c(y)$	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty <i>U</i> (level of confidence ≈ 95%)	normal (k=2)	+ 2.57 - 2.51	+ 2.76 2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty uc(y)	normal	1.05
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U	normal (k = 2)	2.10
(level of confidence ≈ 95 %)	Horriai (K = 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

 $\it U$ = combined standard uncertainty multiplied by the coverage factor: $\it k$. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then $\it k$ =3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

Labs OC01 - OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility

Labs EV01 – EV10

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility

Labs TE01 - TE03

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

Labs SU01 - SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Product Description

Revision 10/3/03

Party Requesting the Test		
Company Name:	Tripod Data Systems, Inc.	
Address:	345 SW Avery Ave	
City, State, Zip:	Corvallis, OR 97333	
Test Requested By:	Dennis York	
Model:	Cirronet Radio Module installed in the Ranger X Series Handheld	
Woder.	Computer	
First Date of Test: 4/26/2005		
Last Date of Test:	5/11/2005	
Receipt Date of Samples: 4/26/2005		
Equipment Design Stage:	gn Stage: Pre-Production	
Equipment Condition:	No visual damage.	

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not provided.
I/O Ports:	Not provided.

Functional Description of the EUT (Equipment Under Test):

The EUT is Tripod's Cirronet radio module, FCC ID: S9E-RNGR2410. It is a frequency hopping spread spectrum radio operating in the 2.4 GHz band. The radio module is installed in Tripod's Ranger X Series handheld computer.

Tripod's Ranger X handheld computer will also contain a second radio module (USI), FCC ID: S9E-RNGR80BT. It is an 802.11b / Bluetooth combo radio.

All radios in the Ranger X can transmit simultaneously – each radio through its own antenna.

The Cirronet radio utilizes a single integral antenna.

Client Justification for EUT Selection:

The product is a representative production sample.

Client Justification for Test Selection:

The Cirronet radio was previously certified under FCC ID: HSW-2410M. All the antenna direct connect test data from the previous certification continues to be representative, and will be used in support of the application of certification for the Cirronet radio in the Tripod's Ranger X handheld computer. New radiated spurious emissions data and AC powerline conducted emissions data was taken for Tripod's Ranger X configuration and is documented in this test report.

Modifications

	Equipment modifications				
Item	Test	Date	Modification	Note	Disposition of EUT
1	Spurious Radiated Emissions	04/26/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.
2	AC Power Line Conducted Emissions for Intentional Radiator	05/11/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT was returned to the client.

Radiated Emissions

Revision 1/4/2005

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated:

No Hop

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

120 VAC/60 Hz.

Other Settings Investigated:

All radios transmitting simultaneously

Frequency Range Inves	tigated		_
Start Frequency	30 MHz	Stop Frequency	25 GHz

Software\Firmware A	pplied During Test		
Operating system	Windows CE	Version	2003 Ozone Update
Exercise software	RTS 802.11	Version	1.0
Exercise software	BlueEMI	Version	1.0
Exercise software	Cirrochat	Version	1.0
Description			

Program written by Tripod Data Systems to exercise hardware for test purposes. Running Cirrochat v1.0 to continuously Transmit PSBS, running RTS 802.11 v1.0 to continuously Transmit PSBS, running BlueEMI v1.0 to continuously Transmit PSBS.

Radiated Emissions

Revision 1/4/2005

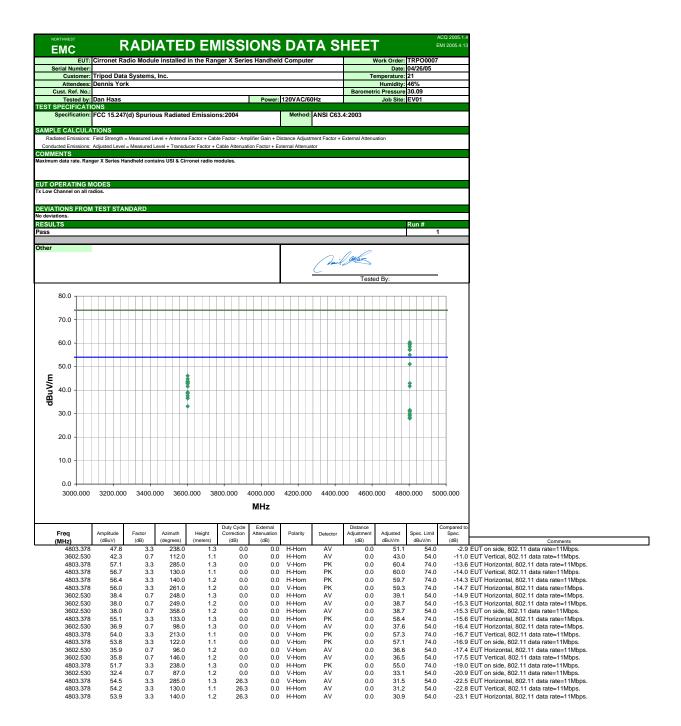
EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
EUT – 2.4 GHz FHSS Radio Module installed in Ranger X Series	Cirronet	Cirronet	Unknown
802.11b/Bluetooth Radio Module installed in Ranger X Series	USI	USI	Unknown
Host Device – Handheld Computer	Tripod Data Systems, Inc.	Ranger X Series	C24
GPS receiver	Tripod Data Systems, Inc.	Pocket Pathfinder	Unknown
Compact Flash GPS Receiver	Holux	Unknown	Unknown
DC Power Supply	Cincon	TR30R	N/A

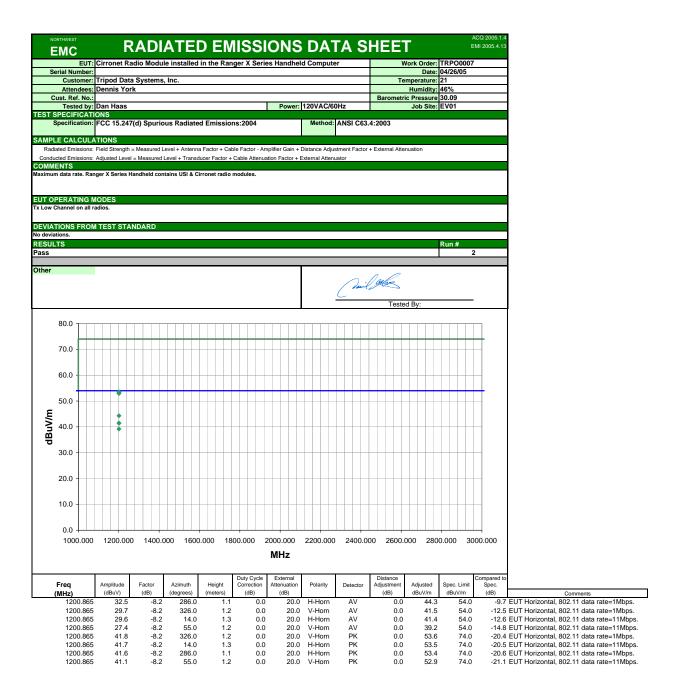
Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.0	Yes	Host Device – Handheld Computer	Unterminated
USB	Yes	1.8	No	Host Device – Handheld Computer	Unterminated
DC Leads	No	1.8	Yes	Host Device – Handheld Computer	AC Power
Serial	Yes	1.7	Yes	Host Device – Handheld Computer	GPS receiver

Measurement Equip	ment				
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	03/01/2005	13 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APJ	01/05/2004	16 mo
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	02/17/2005	13 mo
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	02/15/2005	13 mo
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo
Attenuator	Coaxicom	66702 5910-20	RBJ	02/25/2005	13 mo
High Pass Filter	Micro-Tronics	HPM50111	HFO	03/09/2005	13 mo

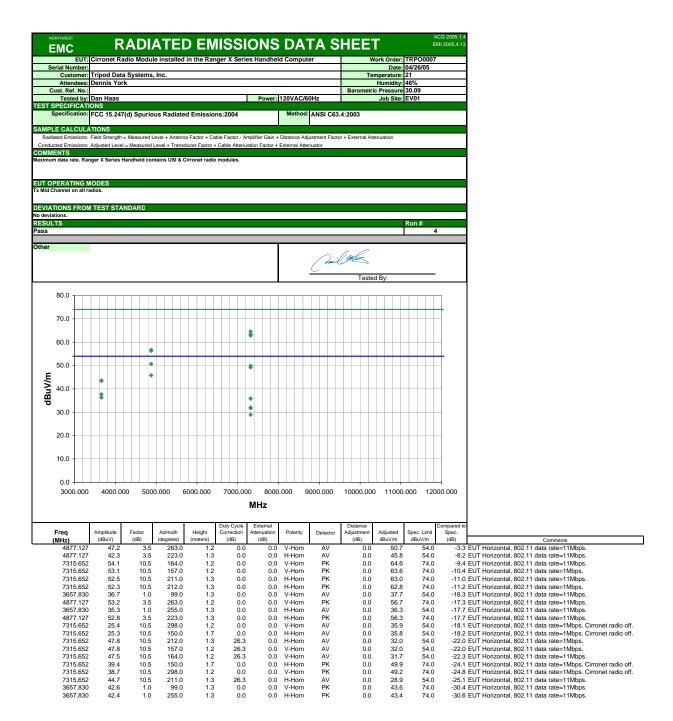
Test Description

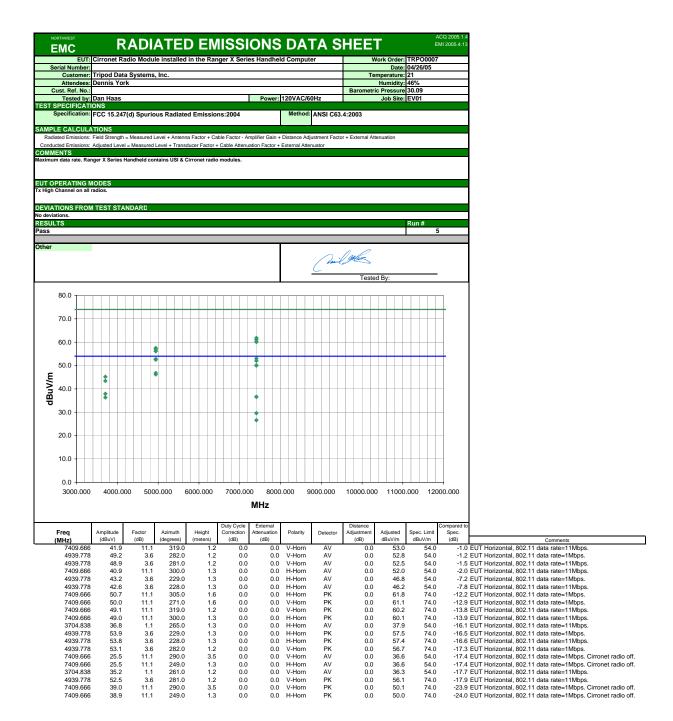
Requirement: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.


<u>Configuration</u>: The antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

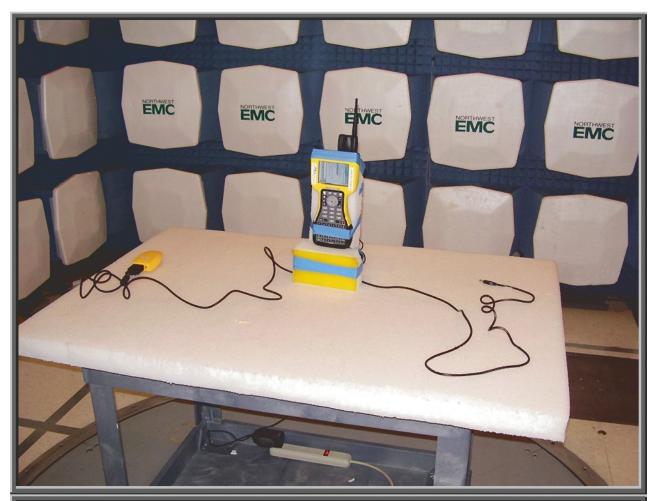

Radiated Emissions

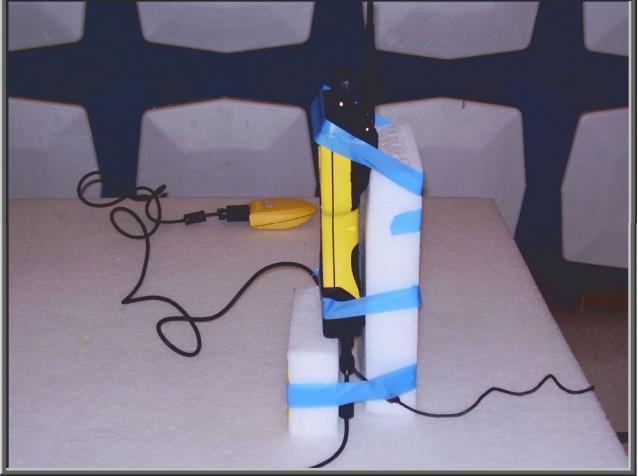
Revision 1/4/2005


Measurement Bandwidtl	hs		
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 – 0.15	1.0	0.2	0.2
0.15 – 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were i	made using the bandwidths	and detectors specified. No	video filter was used.

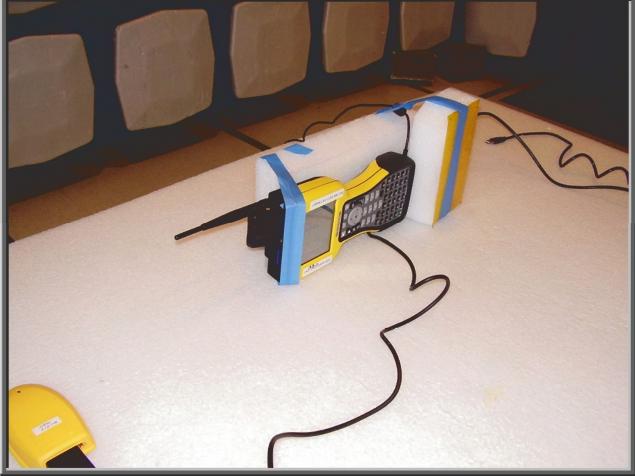

Completed by

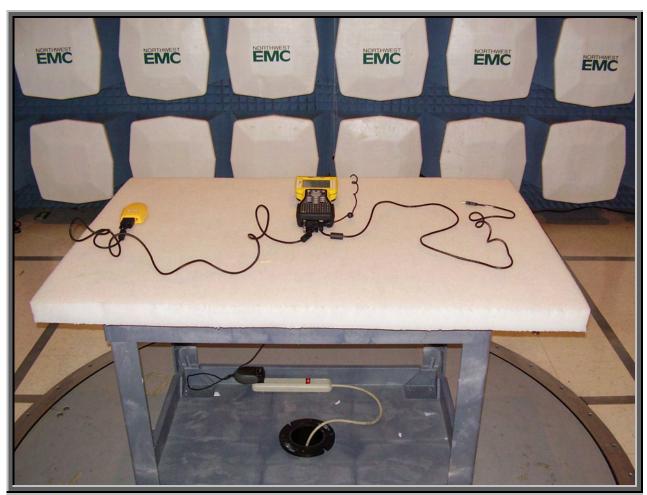
EUT Cirronet Radio Module Installed in the Ranger X Series Handheld Computer United Marinet Programmers (1900 data Systems, Inc. 1900 data Systems, I																													۸۵	·O 2005	1.4
Serial Nameses Cautomers Tripod Data Systems, Inc. Frequenture 21					F	RA	D	IA	TE	ΞC) E	ΞV	IIS	35	SI (0	NS		ŊΑ	T	A S	H	EE	Τ							
Serial Nameses Cautomers Tripod Data Systems, Inc. Frequenture 21			EUT:	Cirror	net Ra	adio N	Иod	lule i	nstall	ed i	n the	Ran	aer	ΧS	erie	s Ha	andhe	ld C	amo	utei				Wo	rk C	Order:	TRF	000	07		П
Customer Tripod Data Systems, Inc.	Se	erial Nu											<u> </u>																		
Autoritidate Contrib Vol. Court Pet No. Court Pet No				Trino	1 Dat	a Svs	ten	ıs İn	ıc													+		Tem							-
Second Process Second Process Second Process 120VAC/60Hz Job Sites EV01 TSST SECOND EV01 TSST SECOND EV01							ten	13, 11														+									-
Tested by: Dan Haas				Denni	3 101	N.																+	Param								-
Tests Sepecification Fired Support County				D I											_			1404				+	barom	etric							_
September Foct St. 247 (d) Spurious Radiated Emissions: 2004 Method: ANSI C63.4:2003	O C				aas												Power	120	JVAC	,/6U	HZ				Job	Site:	ΕVU	7			
Radiated Emissions: Field Strength - Measured Level - Amortino Factor - Carible Factor - Amplited Cain - Distance Adjustment Factor + External Attenuation Confidence - Amplited Cain - Distance Amplitude Cain - Distance Amplitude Cain - External Attenuation Factor - External Attenuation Factor + External A					5.247	'(d) S	pur	ious	Radia	ated	Emi	ssio	າຣ:2	004					Metho	od:	ANSI C63	3.4:2	003								
Conditional Contained Level = Primesure Factor + Calebri Attenuation Factor + External Attenuation Early Contained C																															
Commercial modules Commerc	Radi	ated Emi	ssions:	Field St	rength	= Meas	sure	d Leve	l + Ante	enna	Factor	+ Cat	le Fa	ctor ·	- Am	plifier	Gain +	Dista	nce A	djust	ment Factor	r + Ex	ternal A	ttenu	ation						
### Maximum data rate. Ranger X Series Handheld contains USI & Cirronet radio modules. ###################################			ssions:	Adjuste	d Leve	= Mea	sure	d Lev	el + Tra	nsdu	cer Fa	ctor +	Cable	e Atte	enuat	ion F	actor +	Exter	nal Att	enua	ator										
Note distance Note	Maximun	n data ra				landhe	eld c	ontair	ns USI a	& Cirı	ronet	radio	modu	ıles.																	
Right Freq																															-
Run #			FROM	TEST	STA	NDAI	RD																								
Solidad Freq																											D				
Solution Tested By: Teste		.TS																									Run	#			
Tested By: Tes	Pass																										<u> </u>		3		_
Tested By: Tes																															
No. Tested By:	Other																				Dami	.Qg	War	2							
70.0 60.0 50.0 1000.000 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 MHz																				_					Ву:				_		
70.0 60.0 50.0 1000.000 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 MHz																															
Freq Amplitude Factor (dB) (degrees) (meters) (dB)		80.0 -					_																							7	
Freq Amplitude Factor (dB) (degrees) (meters) (dB)																															
Freq Amplitude Factor (dB) (degrees) (meters) (dB)						-	+				_											-								+	
Freq Amplitude Factor (dB) (degrees) (meters) (dB)		70 O -																													
Solution Freq (MHz) Azimuth (degrees) Total (degrees) To		70.0																													
Solution Freq (MHz) Azimuth (degrees) Total (degrees) To																															
40.0 30.0 20.0 1000.000 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 MHz		60.0 -																													
40.0 30.0 20.0 1000.000 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 MHz																														+	
40.0 30.0 20.0 1000.000 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 MHz		50 O -																													
30.0 20.0 10.0 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 Treq (MHz) (dBW) (dB) Factor (dB) Azimuth (degrees) (meters) (dB) (dB) (dB) (dB) Polarity (dB) (dB) (dB) Polarity (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)	Ę/	50.0 -																													
30.0 20.0 10.0 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 Treq (MHz) (dBW) (dB) Factor (dB) Azimuth (degrees) (meters) (dB) (dB) (dB) (dB) Polarity (dB) (dB) (dB) Polarity (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)	<u> </u>	40.0 -				++	+			\vdash	+	+	+	+	-	+					+++	+			+		++	+	-	-	
30.0 20.0 10.0 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 Treq (MHz) (dBW) (dB) Factor (dB) Azimuth (degrees) (meters) (dB) (dB) (dB) (dB) Polarity (dB) (dB) (dB) Polarity (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)	<u> </u>																														
20.0 10.0 1000.000 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 The contract of the contract	Ъ																														
20.0 10.0 1000.000 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 The contract of the contract		30.0 -					_						_	\perp											_					-	
10.0																															
10.0																															
10.0		20.0 -					_							\perp																	
1000.000 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000																															
1000.000 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000																															
1000.000 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000		10.0																													
1000.000 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 MHz		10.0																													
1000.000 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 MHz																															
1000.000 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 MHz																															
Freq		0.0 -			-			-		+			-		- 1									+			+ +			-	
Freq	1	1000	0.000	120	0.000) 1	400	0.000	16	300.	000	18	00.0	000	2	000	.000	22	200.0	00	2400.0	000	260	0.00	00	280	0.00	0	300	0.000	
Freq (MHz) Amplitude (dBuV) Factor (dBu V) Azimuth (degrees) Height (meters) Duty Cycle Correction (dB) External Attenuation (dB) Detector (dB) Distance Adjustment (dB) Adjusted dBuV/m (dB) Spec. Limit dBuV/m (dB) Compared to Spec. (dB) 1219.253 28.9 -8.2 38.0 1.3 0.0 20.0 H-Horn AV 0.0 40.7 54.0 -13.3 1219.253 28.3 -8.2 245.0 1.2 0.0 20.0 V-Horn AV 0.0 40.1 54.0 -13.9 1219.253 41.7 -8.2 38.0 1.3 0.0 20.0 H-Horn PK 0.0 53.5 74.0 -20.5																															
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Correction (dB) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjustment (dB) Adjustment (dB) Spec. Limit (dB) Spec. Limit (dB) 1219.253 28.9 -8.2 38.0 1.3 0.0 20.0 H-Horn AV AV 0.0 40.7 54.0 -13.3 1219.253 28.3 -8.2 245.0 1.2 0.0 20.0 V-Horn V-Horn AV AV 0.0 40.1 54.0 -13.9 1219.253 41.7 -8.2 38.0 1.3 0.0 20.0 H-Horn V-Horn V-Horn AV 0.0 53.5 74.0 -20.5																MH	ΗZ														
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Correction (dB) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjustment (dB) Adjustment (dB) Spec. Limit (dB) Spec. Limit (dB) 1219.253 28.9 -8.2 38.0 1.3 0.0 20.0 H-Horn AV AV 0.0 40.7 54.0 -13.3 1219.253 28.3 -8.2 245.0 1.2 0.0 20.0 V-Horn V-Horn AV AV 0.0 40.1 54.0 -13.9 1219.253 41.7 -8.2 38.0 1.3 0.0 20.0 H-Horn V-Horn V-Horn AV 0.0 53.5 74.0 -20.5					,							-	_		-1- 1			1		,		-	2:						1-		_
(MHz) (dBuV) (dB) (degrees) (meters) (dB) (dB) (dB) (dB) dBuV/m dBuV/m dBuV/m (dB) 1219.253 28.9 -8.2 38.0 1.3 0.0 20.0 H-Horn AV 0.0 40.7 54.0 -13.3 1219.253 28.3 -8.2 245.0 1.2 0.0 20.0 V-Horn AV 0.0 40.1 54.0 -13.9 1219.253 41.7 -8.2 38.0 1.3 0.0 20.0 H-Horn PK 0.0 53.5 74.0 -20.5	1	Ero		۸ ۱۰۰	u sale		40-		A mine of		1.1-2	ala 4						1 -	Dale -14	.	D-4 :				A ziti	oto -l	C-	a 1.1-			ı to
1219.253 28.9 -8.2 38.0 1.3 0.0 20.0 H-Horn AV 0.0 40.7 54.0 -13.3 1219.253 28.3 -8.2 245.0 1.2 0.0 20.0 V-Horn AV 0.0 40.1 54.0 -13.9 1219.253 41.7 -8.2 38.0 1.3 0.0 20.0 H-Horn PK 0.0 53.5 74.0 -20.5															on				olarity	′	Detector	A									
1219.253 28.3 -8.2 245.0 1.2 0.0 20.0 V-Horn AV 0.0 40.1 54.0 -13.9 1219.253 41.7 -8.2 38.0 1.3 0.0 20.0 H-Horn PK 0.0 53.5 74.0 -20.5						(dl	•				(mete	-				(aBu						_
1219.253 41.7 -8.2 38.0 1.3 0.0 20.0 H-Horn PK 0.0 53.5 74.0 -20.5																															
							-8.	.2						(0.0													54	.0		
1219.253 41.0 -8.2 245.0 1.2 0.0 20.0 V-Horn PK 0.0 52.8 74.0 -21.2		121	9.253		41.7		-8.	.2	38	.0		1.3		(0.0		20.0) H	l-Hori	n	PK		0	.0		53.5		74	.0	-20).5
		121	9.253		41.0		-8.	2	245	.0		1.2		(0.0		20.0) V	-Horr	n	PK		0	.0		52.8		74	.0	-21	1.2

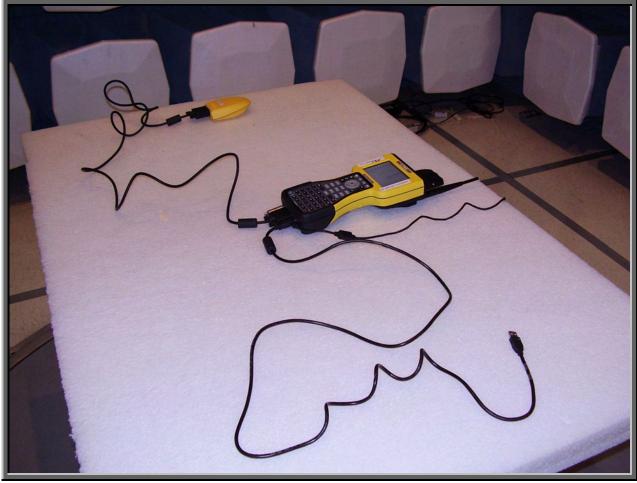



	RTHWEST				R,	4[)I	A	T	Ξſ)	Ξ	M	IS	3	310	Ol	NS	D	A	T.	A	SI	-11	= [: T						CQ 2005.1.4 //I 2005.4.13
		т. (irror	net F	Radi	o Mo	odu	le in	stal	led	in th	e R	ang	er X	Se	ries	Hai	ndhe	d Co	nput	er					W	ork (order:	TR	PO0	007	
Se	rial Numbe		J U.			•						• • • •	<u>g</u>	•••							·							Date:				
	Custome	_	ripo	d Da	ıta S	yste	ms	, Inc	;.																	Ten		ature:				
	Attende	es: [Denni	s Yo	ork																						Hum	nidity:	46%	6		
Cı	ust. Ref. N																							Ва	arom	etric		ssure				
	Tested b			laas													Р	ower:	120V	AC/6	60H	z					Job	Site:	EV	01		
	PECIFICA																															
	pecificatio				47(d) Sp	uric	us F	Radi	ate	d Em	iss	ions	s:20	04				IVI	ethod	: A	NSI (263.4	1:20	03							
	E CALCU						a a al I				F) - l- l -		1	Λ	UC /	- i	Di-t	- A -II	1	t - T -	-1	Forte	1	11						
	ated Emission ated Emission			-												-				-			ictor +	Exte	ernai A	attenu	ation					
COMME		113. 7	lujuste	u Lev	CI - I	vicasc	ileu	Level	Ŧ 110	arisu	acer i	acto	+ 0	able	Allei	luali	JIII a	CIOI +	LXterria	Allei	lual	Л										
	data rate. F	Rang	er X S	eries	Han	dheld	con	tains	USI	& Ci	rrone	t rad	io m	odul	es.																	
	PERATING thannel on a			;																												
	IONS FR			ST	ΔΝΓ	ARI	<u> </u>																									
No deviat		J 101		<u> </u>																												
RESUL [*]	TS																												Ru	n #		
Pass																															6	
Other																								0		2						
																						/ v.)anil 2	9		sted	Ву:					
	80.0																															7
	70.0																															
	60.0																															
	50.0			•																												
dBuV/m	40.0			\$																												
	30.0																															
	20.0																															
	10.0																															
	0.0	20	120	0.00	20	140	00.0	000	1	600	.000	Ш.	180	0.00	00	20	000.0	000	220	0.00	0	240	0.00	0	260	00.00	20	280	00.00	00	300	00.000
	1000.00		.20	5.00		171		.00		550	.000		. 50	J.00			MH				•	0	5.00	-	_00			_00			500	

					Duty Cycle	External			Distance		i i	Compared to	1
Freq	Amplitude	Factor	Azimuth	Height	Correction	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(dB)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
1234.938	31.4	-8.1	19.0	1.3	3.0	20.0	H-Horn	AV	0.0	43.3	54.0	-10.7	_
1234.938	29.8	-8.1	281.0	1.2	3.0	20.0	V-Horn	AV	0.0	41.7	54.0	-12.3	
1234.938	41.6	-8.1	19.0	1.3	3.0	20.0	H-Horn	PK	0.0	53.5	74.0	-20.5	
1234.938	41.2	-8.1	281.0	1.2	3.0	20.0	V-Horn	PK	0.0	53.1	74.0	-20.9	


	ORTHWEST			R	RA	DI	Α	ΤЕ	D	ΕN	11:	SS	I	10	IS	D/	\ T	Ά	S	1	ΞE	T					2005.1.4 105.4.13
		UТ·	Cirron	et Ra	ndio I	Modu	ıle in	staller	l in th	e Rar	nger	X Ser	ies	Han	dhel	d Comp	uter		1			Work	Order:	TRPO	0007		
Se	erial Numb		0		10.0	out	110 111	otunoc		o itai	.gc.	Х ОО.		···	uno	<u>u 00111p</u>	, uto.					TTO:IX		04/26/			
	Custon		Tripod	d Data	a Svs	tems	s. Inc														Т	emper	ature:				
	Attende						, c																nidity:				
С	ust. Ref. N																			Ba	aromet			30.09			
	Tested		Dan H	aas										Po	wer:	120VA	C/60	Hz					b Site:				
TEST S	SPECIFIC																										
0	Specificati	on:	FCC 1	5.247	'(d) S	puri	ous F	Radiate	ed En	nissio	ns:2	2004				Meth	od:	ANSI	C63.4	1:20	03						
SAMPL	LE CALCI	ULA	TIONS	`																							
Radi	iated Emissi	ons:	Field St	rength :	= Mea	sured	Level -	- Antenr	na Fact	or + Ca	ble F	actor - A	mpl	ifier G	ain + I	Distance A	Adjust	ment F	actor +	Exte	rnal Att	enuatio	n				
	ıcted Emissi	ons:	Adjusted	d Level	= Mea	asured	Level	+ Trans	ducer F	actor +	Cab	le Atteni	uatio	n Fac	tor + E	external A	ttenua	ator									
СОММ																											
Maximun	n data rate.	Kan	ger X Se	eries H	landhe	eld co	ntains	USI & C	irrone	t radio	moa	ules.															
	PERATIN Channel on																										
DEVIA	TIONS FR	ROM	TEST	STA	NDA	RD																					
No devia																											
RESUL	_TS																							Run#			
Pass																									7	_	
Other																				_	0						
																	-	<u>(</u>	Jamil	94	Test	ed By					
	80.0																										
	70.0																										
	60.0																										
	00.0																										
	-																									_	
_	50.0																									-	
dBuV/m																				*							
≥	40.0					\perp												\perp								_	
ಸ	10.0																										
ᇴ																											
	30.0					\perp												\perp								_	
	20.0	-																\perp								_	
	10.0																										
	0.0										4			4					\perp							_	
	1000.0)))	120	0.000	1	400.	በበባ	160	0.000	10	00.	000	20	00.0	00	2200.0	ากก	2/1	00.00	Λ	2600	000	200	000	20	00.0	000
	1000.0	,00	120	0.000	, I	→ 00.	000	100	0.000	10	.00.1	000		МН :		۷۷۰۰۱	JUU	241	00.00	J	2000	.000	200	0.000	30	JU.C	,00
	Frea		Amplit		Fac			imuth		eight		ity Cycle		Exte		Polarit			ctor		stance ustment		usted	Spec.			pared to


					Duty Cycle	External			Distance			Compared to	4
Freq	Amplitude	Factor	Azimuth	Height	Correction	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(dB)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
2483.500	27.6	-2.2	265.0	1.2	3.0	20.0	H-Horn	AV	0.0	45.4	54.0	-8.6	-
2483.500	26.8	-2.2	155.0	1.2	3.0	20.0	V-Horn	AV	0.0	44.6	54.0	-9.4	
2483.500	43.0	-2.2	265.0	1.2	3.0	20.0	H-Horn	PK	0.0	60.8	74.0	-13.2	
2483.500	41.2	-2.2	155.0	1.2	3.0	20.0	V-Horn	PK	0.0	59.0	74.0	-15.0	



AC Powerline Conducted Emissions

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated:

No Hop

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

120 VAC/60 Hz.

Other Settings Investigated:

All radios transmitting simultaneously

Software\Firmware A	applied During Test		
Operating system	Windows CE	Version	2003 Ozone Update
Exercise software	RTS 802.11	Version	1.0
Exercise software	BlueEMI	Version	1.0
Exercise software	Cirrochat	Version	1.0
Description			

Program written by Tripod Data Systems to exercise hardware for test purposes. Running Cirrochat v1.0 to continuously Transmit PSBS, running RTS 802.11 v1.0 to continuously Transmit PSBS, running BlueEMI v1.0 to continuously Transmit PSBS.

AC Powerline Conducted Emissions

Revision 10/1/03

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
EUT – 2.4 GHz FHSS Radio Module installed in Ranger X Series	Cirronet	Cirronet	Unknown
802.11b/Bluetooth Radio Module installed in Ranger X Series	USI	USI	Unknown
Host Device – Handheld Computer	Tripod Data Systems, Inc.	Ranger X Series	C24
GPS receiver	Tripod Data Systems, Inc.	Pocket Pathfinder	Unknown
Compact Flash GPS Receiver	Holux	Unknown	Unknown
DC Power Supply	Cincon	TR30R	N/A

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.0	Yes	Host Device – Handheld Computer	Unterminated
USB	Yes	1.8	No	Host Device – Handheld Computer	Unterminated
DC Leads	No	1.8	Yes	Host Device – Handheld Computer	AC Power
Serial	Yes	1.7	Yes	Host Device – Handheld Computer	GPS receiver

Measurement Equipm	ent				
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo
High Pass Filter	TTE	H97-100k-50-720B	HFC	12/29/2004	13 mo
LISN	Solar	9252-50-R-24-BNC	LIN	12/29/2004	13 mo

AC Powerline Conducted Emissions

Revision 10/1/03

Test Description

Requirement: Per 47 15.207(c), in addition to devices which are powered directly from the AC power line, conducted emissions measurements shall also be made on battery operated devices that can transmit while charging, as well as on devices that are powered from AC adaptors, or devices that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines. All of these devices shall be tested to demonstrate compliance with the conducted limits of 15.207.

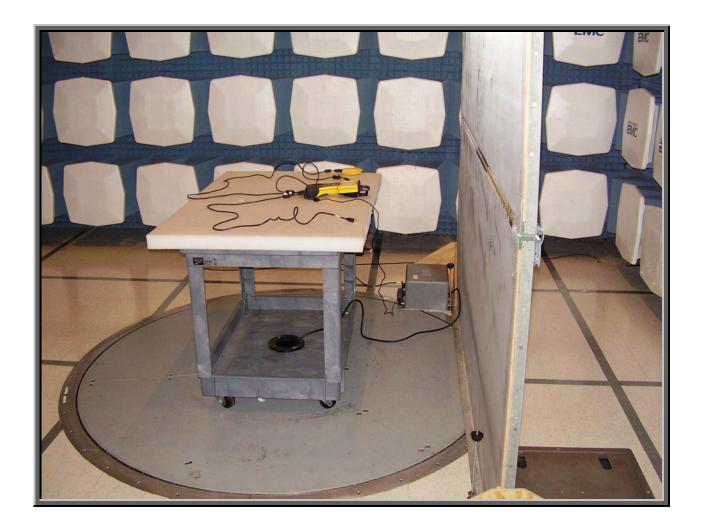
<u>Configuration:</u> The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.4-2003.

Completed by:

	ORTHWEST		(CO	ND)U	СТ	Έľ) E	MIS	S	ON	S	D	47	ΓΑ	SH	ΙEΕ	Т				2005.1.4 005.4.13
										ger X Se									rk Order:	TRP	00007		
S	erial Nu			- ·																05/1	1/05		
			Tripod None	Data S	ysten	ns, Inc	<u>. </u>												perature: Humidity:				
C	Cust. Ref	f. No.:															Bar		Pressure	30.0	9		
TEST S	Teste SPECIF		Rod Pe	eloquin)							Power:	120\	/AC/6	60Hz				Job Site:	EV0	1		
				5.207 A	C Pov	verline	e Con	ducte	d Emis	sions:20	04		M	ethod	: AN	ISI C63	.4:200	3					
SAMPI	LE CAL	CUI A	TIONS																				
Rad	iated Emi	ssions:	Field Stre	-						ole Factor -							+ Exteri	nal Attenua	ation				
COMM		ssions:	Adjusted	Level = N	Measure	ed Level	+ Tran	sducer	Factor +	Cable Atter	nuation	Factor + E	externa	al Atter	uator								
		ite. Ran	ger X Se	ries Han	dheld c	ontains	USI &	Cirron	et radio	modules.													
	PERAT																						
				O= 4 N I																			
No devia		FRON	TEST	STAND	DARD																		
RESUL Pass	LTS																Line	L1		Run		1	
																	1						
Other															-	20	,	70	2				
															14	rly	le	Reli	دود				
																V		Tested	Dv.				
																		resteu	ωу.				
	80.0								1													\Box	
	70.0								-													+	
	60.0								_				_									\perp	
						\							4										
	50.0																						
	30.0					^																	
≥	40.0					∧ ∄.																	
dBuV	40.0		٠ ٨	۸.	n l	VAA.	ı.N	Anhania	Mmw^\	What we	M.	usikata .			_								
			1//	/ \ ./\	. LaN	1 1111	MAANI		II "	. idi., idi	٧	Appropria	4444	Name of	/ /	السابه	եսև .	المال					
	30.0		V.	/ " \/ !	MU			####	T -							Tour		بالألالية				+	
				V	MA.		, Mr.	i									1	A Property lift					
	20.0								1													+	
	10.0																						
	0.0																					Щ	
	0.1	00						1.0	000						10.	.000					1	00.0	000
											N	1Hz											
	Freq		Amplitu	ıde				Tra	nsducer	Cable		External tenuation			г	etector			Adjusted	Spec	c. Limit		pared to Spec.
	(MHz)		(dBu\						(dB)	(dB)	'"	(dB)			(blan	k equal peaks	3		dBuV		BuV		(dB)
		0.421	1	1.1					0.0	^	.0	20.0			1	AV			41.1		47.4		-6.3
		0.421		3.1					0.0		.0	20.0				QP			43.1		47.4 57.4		-14.3
		0.425	2	6.2					0.0	0	.2	20.0							46.4		47.3		-0.9
		0.396 2.496		2.8					0.0		.2 .4	20.0 20.0							43.0 40.4		47.9 46.0		-4.9 -5.6
		0.451		0.7					0.0		.2	20.0							40.9		46.9		-5.9
		0.995		9.4					0.0		.3	20.0							39.7		46.0		-6.3
		1.295 1.018		9.3 9.0					0.0		.3 .3	20.0 20.0							39.6 39.3		46.0 46.0		-6.4 -6.7
		0.970		8.9					0.0		.3	20.0							39.2		46.0		-6.8
		0.485		9.2					0.0	0	.2	20.0							39.4		46.3		-6.8
		1.545 0.696		8.6 8.6					0.0		.4 .3	20.0 20.0							39.0 38.9		46.0 46.0		-7.0 -7.1
		1.135		8.4					0.0		.3 .3	20.0							38.7		46.0		-7.3
		1.175		8.3					0.0	0	.3	20.0							38.6		46.0		-7.4
		1.105 0.781		8.3 8.3					0.0		.3 .3	20.0 20.0							38.6 38.6		46.0 46.0		-7.4 -7.4
		2.276		8.1					0.0		.3 .4	20.0							38.5		46.0		-7. 4 -7.5
		0.726		8.2					0.0		.3	20.0							38.5		46.0		-7.5

	IORTHWE			CC	N	DŲ	IC	Ţ	E	D E	MI	SS	IOI	IS	D	Α	ΓΑ	S	HE	ĒΤ					2005.1.4 005.4.13
	71/10												s Handhe							Vork Ord	er: 1	TRPO	0007		
S		lumber:																			_)5/11/	05		
		stomer: endees:		d Data	Syste	ms, I	nc.												Te	mperatu Humidi	_				
-		ef. No.:	None															E	Barometr	ic Pressi					
		sted by:		Peloqu	in								Power	120	VAC	/60H	z			Job Si	ite: E	EV01			
		FICATI ication:		15 207	AC Po	werli	ne (Cone	duct	ed Fm	issions	-2004		P	/letho	d: A	NSI C	63.4:2	003						
	орос			13.207	70.0	/WC111	iic (JOI11	uuci	cu Liii	3310113	.2004				. A	101 0	00.4.2	000						
		LCULA											O :	D: .											
				-									plifier Gain + ion Factor +			-		tor + Ex	ternal Atte	nuation					
COMM	MENTS	;																							
Maximu	m data	rate. Ran	ger X S	eries Ha	andheld	contai	ns U	SI &	Cirro	net radio	module	s.													
EUT C	PERA	TING N	IODES	5																					
Tx low (Channel	l on all ra	dios.																						
DEVIA	TIONS	C EDOM	TECT	CTAN	IDADE																				
No devi		S FROM	IES	SIAN	IDARL	J																			
RESU																		Lir	ne		F	Run #			
Pass																				١				2	
Other														Т											
Other																	10	1	D	0					
																	och	y h	. Re	eng					
																_	U			<u>/</u>					
														1					leste	ed By:					
	80 г																								7
	70																								
	60									+														-	-
						$\overline{}$								_											
	50																								
	00																								
≥) " [۱۸. ا																			
dBuV	40		1/1	ΛΛ	A	VIAA	111	١,١	MAA.	1	Marie Marie	JAY N	۱			Н,									1
٥			Vh	1 V 1/1	. N	' W	VVA	Man	Ш	"	T '	•	Appre - Appre -	*	Maria	<i>J</i>	1	alii I.		.					
	30		יו ע	• \	MN'	- 11	Ш	WH	Ш	#!						qua.	7		البيانايا	late.				++	-
				¥	ייעיי	İ	'''	ilii.											The second second	party fre					
	20																								
	_																								
	10									1															1
	0									-															4
	0.	1								1							10							1	00
													MHz												
<u> </u>						Ţ			T			ı	External			1					Т			Com	pared to
	Freq		Ampli						Tra	ansducer			Attenuation				Detect			Adjuste		Spec.		S	pec.
	(MHz))	(dBı	1()						(dB)	(dl	3)	(dB)			1	PK] from so	an)		dBuV		dBu	IV	((dB)
<u> </u>		0.421		25.2					-1	0.0)	0.2	20.0)		!				4	5.4		47.4		-2.0
		0.396		24.6						0.0		0.2	20.0								4.8		47.9		-3.1
		0.452 2.376		21.6 20.4						0.0		0.2	20.0 20.0								1.8 0.8		46.8 46.0		-5.0 -5.2
		0.484		20.4						0.0		0.4	20.0								0.6 0.9		46.3		-5.2 -5.3
		1.105		19.9						0.0)	0.3	20.0)						40	0.2		46.0		-5.8
		0.845		19.9						0.0		0.3	20.0								0.2		46.0		-5.8
		0.514 0.819		19.9 19.5						0.0		0.2	20.0 20.0								0.1 9.8		46.0 46.0		-5.9 -6.2
		1.045		19.3						0.0		0.3	20.0								9.6		46.0		-6.4
		0.904		19.3						0.0)	0.3	20.0)						39	9.6		46.0		-6.4
		0.878		19.3						0.0		0.3	20.0								9.6		46.0		-6.4
		1.415 0.788		19.2 19.1						0.0		0.3	20.0 20.0								9.5 9.4		46.0 46.0		-6.5 -6.6
		0.545		19.1						0.0		0.3	20.0								9.4		46.0		-6.6
		0.757		18.9						0.0		0.3	20.0								9.2		46.0		-6.8
		2.216 1.035		18.7 18.5						0.0		0.4	20.0 20.0								9.1 8.8		46.0 46.0		-6.9 -7.2
		0.571		18.2						0.0		0.3	20.0								8.5		46.0		-7.5

	ORTHWEST		C	O	ND)U(CT	ΕĮ) E	MIS	SS	ION	S	D	A T	ГΑ	SHE	E	Ī			CQ 2005.1.4 MI 2005.4.13
	_WC	EUT:								ger X S										TRP00	007	
S	erial Nur	nber:																		05/11/0		
			Tripod E	Data Sy	ystem	ıs, Inc													erature:			
-	Atten Cust. Ref	dees:	None														Barom		umidity: ressure			
			Rod Pel	oquin								Power:	120	VAC	60Hz	2	Baroni		ob Site:			
	SPECIFI																					
	Specifica	ation:	FCC 15.	207 A	C Pov	verline	Con	ducte	ed Emis	ssions:2	004		IV	letho	d: AN	NSI C6	3.4:2003					
SAMP	LE CAL	CULA	TIONS																			
				-													or + External A	Attenuati	on			
COMN		ssions: /	Adjusted L	.evel = IV	leasure	ed Level	+ Iran	sducer	Factor +	Cable Atte	nuatioi	n Factor +	Extern	al Atte	nuato	r						
	m data rat	te. Ranç	ger X Serie	es Hand	lheld c	ontains	USI &	Cirron	et radio	modules.												
EUT O	PERATI	NG M	ODES																			
	channel o																					
DEVIA No devi	TIONS I	FROM	TEST S	TAND	ARD																	
RESU																	Line			Run#		
Pass																		L1			3	
011													_									
Other													1		1	10	1 1	0				
															10	och	jh F	elen	2			
																V						
																	Te	sted B	у:			
	80.0																					_
	00.0																					
	70.0								†													
	60.0								-				_									
						\searrow							_									
	50.0																					
	00.0					A																
dBuV			\ \ \			A I																
<u>B</u>	40.0		١ ٨ ١			MAN.	.44		Male	νν ^Δ Λ. Ε	√ /\	1.44										
0			-\/\/). A. Ia	11	Y VAAA	1.aNI	MM		. Mrth	. <i>N</i>	NHMM.	male	Mary L		Marin J						
	30.0		-₩₩	WIN	A FILLY				Щ				- '	- Property	,	77		l.lu.				
				W.	M.	111	ייווןן	111									Designation of the last	plotter.				
	20.0																					
	20.0																					
	10.0								1													
	0.0								1							-						
	0.1	00						1.	000						10	.000					10	00.000
											N	ИHz										
											11	12										
		ı						T			1	External						1			To	Compared to
	Freq		Amplitud						nsducer	Cable		ttenuation				Detector			djusted	Spec. Li	mit	Spec.
	(MHz)		(dBuV)						(dB)	(dB)		(dB)			(P	K] from scar	n)	- '	dBuV	dBuV		(dB)
	(0.421	20).7				<u> </u>	0.0	(0.0	20.0)			AV			40.7	4	7.4	-6.7
		0.421	22	2.7					0.0		0.0	20.0)			QP			42.7		7.4	-14.7
		0.425 2.426	26 20						0.0).2).4	20.0 20.0							46.7 40.7		7.4 6.0	-0.6 -5.3
		0.392	22						0.0		0.4	20.0							42.7		8.0	-5.3 -5.3
	2	2.606	19	.2					0.0	(0.5	20.0)						39.7	4	6.0	-6.3
		1.055	19						0.0		0.3	20.0							39.3		6.0	-6.7
		0.996 1.265	19 18						0.0		0.3 0.3	20.0 20.0							39.3 39.2		6.0 6.0	-6.7 -6.8
		0.479	19						0.0		0.2	20.0							39.3		6.3	-7.0
		1.515	18						0.0		0.3	20.0							38.9		6.0	-7.1
		0.961 0.729	18 18						0.0		0.3 0.3	20.0 20.0							38.9 38.9		6.0 6.0	-7.1 -7.1
		0.729	18						0.0).3).3	20.0							38.9		6.0	-7.1 -7.3
	1	1.029	18	3.3					0.0	(0.3	20.0)						38.6	4	6.0	-7.4
		3.816	17						0.0		0.6	20.0							38.5		6.0	-7.5
		1.145 1.005	18 18						0.0		0.3 0.3	20.0 20.0							38.4 38.4		6.0 6.0	-7.6 -7.6
		0.817	18						0.0		0.3	20.0							38.3		6.0	-7.7


	NORTHWES		(CO	NE)U(T	ΕĮ) E	MIS	SI	ON	SI	DΑ	T	4 5	HE	ET_		ACQ 2 EMI 20	2005.1.4 005.4.13
										ger X Se								Work Order:	TRPO000	7	
S	Serial N	umber:																Date:	05/11/05		
			Tripod	Data S	ysten	ns, Inc.											Te	emperature:			
	Cust. R	endees: ef. No.:	None														Barometr	Humidity:			
	Tes	ted by:	Rod Pe	loquin								Power:	120V	AC/60	Hz			Job Site:			
		FICATI		207 A	C Box	worling	Cond	wata	d Emi	ssions:20	0.4		Mot	hod:	ANCI	CG2 4	.2002				
	Specifi	ication:	FCC 15	.207 A	C PO	weriine	Cond	ucte	ea Emis	ssions:20	04		wet	noa:	ANSI	C63.4	:2003				
		LCULA																			
				-										-		actor +	External Atte	nuation			
	MENTS		Adjusted	Level = N	vieasure	ea Lever	+ Irans	uucei	ractor +	Cable Atten	uation i	ractor + E	zxternai	Allenua	llor						
Maximu	ım data ı	rate. Ran	ger X Se	ries Hand	dheld c	ontains	USI & C	irron	et radio	modules.											
EUT O	PERA	TING N	IODES																		
Tx mid	channel	on all ra	dios.																		
DEVIA	TIONS	FROM	TEOT	OTAND	ABB																
No devi		FROM	TEST	STANL	JAKU																
RESU	LTS															L	_ine		Run#		
Pass																		<u> </u>		4	
Other																					
Strict															2	2	L Re	1			
														•		17		ling			
														_			Teste	ad Bv:		_	
																	10010	ou by.			
	80																				7
	70																				
	00																				
	60																				
	50							-													-
_			١		٨								-								
dBuV	40		1.1	A		AAA		40.1-	Idea		<u> </u>										
쁑			11/1/	1/11	N,	LANNAV	n. M	Ma	, ""Y	March Appropriate	WAR	Madelland	and diday.		Λ.						
	20		VV	V 1/17	ا الما	1444	MANTI					pulling frequency of	at a land	WHY		واللوا		h.			
	30		1	VY	י ווי	.,111	IIII.	וייי								ALC: N	A STATE OF THE PERSON NAMED IN	7.48 UK			
					W		'														
	20							-													
	10																				
	0																				
	0.	1							1						10					1	00
	0.	•							-		8.5	ш-								,	55
											íVi	Hz									
											F	xternal	1	1		Т				Comr	pared to
	Freq		Amplitu						nsducer	Cable	Atte	enuation			Dete			Adjusted	Spec. Limit	S	pec.
	(MHz)		(dBu\	')					(dB)	(dB)		(dB)			(blank equ [PK] fror	al peaks n scan)		dBuV	dBuV	(dB)
L		0.395	2	5.1				1	0.0	0.	2	20.0	<u> </u>			1_		45.3	48.0)	-2.6
		0.424	2	4.5					0.0	0.	2	20.0						44.7	47.4		-2.6
		0.452 2.376		2.1 0.5					0.0			20.0 20.0						42.3 40.9	46.8 46.0		-4.5 -5.1
		0.481		0.9					0.0			20.0						41.1	46.3		-5.1 -5.2
		0.511	2	0.2					0.0	0.	2	20.0						40.4	46.0)	-5.6
		0.904 1.105		0.0					0.0			20.0 20.0						40.3 40.1	46.0 46.0		-5.7 -5.9
		1.105		9.8 9.7					0.0			20.0						40.1	46.0		-5.9 -6.0
		2.236	1	9.5					0.0	0.	4	20.0						39.9	46.0)	-6.1
		0.817		9.5					0.0			20.0						39.8	46.0		-6.2
		0.842 0.788		9.3 9.0					0.0			20.0 20.0						39.6 39.3	46.0 46.0		-6.4 -6.7
		0.757		9.0					0.0			20.0						39.3	46.0		-6.7
		1.455		8.9					0.0			20.0						39.2			-6.8
		0.872 0.543		8.7 8.7					0.0			20.0 20.0						39.0 39.0	46.0 46.0		-7.0 -7.0
		1.035		8.6					0.0			20.0						38.9	46.0		-7.0 -7.1
		1.024		8.3					0.0			20.0						38.6	46.0		-7.4

	ORTHWEST EMC			CO	NC	U	CT	Έľ) E	MIS	SION	S	DΑ	TA	SHE	ĒΤ		ACQ 2005.1.4 EMI 2005.4.13
		EUT:									ies Handhel						TRPO0007	7
S	Serial Nun	nber:								•						Date:	05/11/05	
	Attend		Tripod None	Data S	ysten	ns, inc									16	emperature: Humidity:		
(Cust. Ref.		Dod D	Januin							Dawan	1201/	V C /C OI		Barometr	ic Pressure		
TEST	SPECIFI		Rod Pe	eloquin							Power:	12007	AC/601	1Z		Job Site:	EVUI	
	Specifica	tion:	FCC 15	5.207 A	C Pov	verlin	e Con	ducte	d Emis	sions:200)4	Met	hod:	NSI C63	.4:2003			
SAMP	LE CAL	CULA	TIONS															
				-							mplifier Gain +				+ External Atte	nuation		
COMM	IENTS										adion racion +	LXterrial	Allerida	101				
Maximu	m data rat	e. Ran	ger X Se	ries Han	dheld c	ontains	USI &	Cirron	et radio	modules.								
	PERATI channel o																	
_																		
DEVIA No devia	TIONS F	ROM	TEST	STAND	DARD													
RESU															Line		Run #	
Pass															<u> </u>	.1		5
Other														1 0		0		
													/	locky	le Res	leng		
													_	0		//		_
															Teste	ed By:		
	80.0								1									\neg
	70.0																	
	60.0																	
						\						┛╵						
	50.0																	
	00.0					Λ.						┛╵						
dBuV	40.0		١			1			ļ.,		_							
쁑	40.0		١٨	ΛΛ	N	VAA	. A. AN	MAAAAA	MANAN	Mark Market	V JWWW	Maria Lab	l U	N.				
	30.0		W	MN	a All	ı yyın	MANY				T	Mann	July 19	Marille Marie				
	30.0		٠ ١	·	141,	"	MANI.	դիկի							toder before the			
	20.0			'	1	'												
	20.0																	
	10.0																	
	10.0																	
	0.0																	
	0.0 F	nn			'			1 (000	'			1	0.000	'			100.000
	0.10	00							500		MHz			0.000				.00.000
											WITIZ							
	_							T			External							Compared to
	Freq (MHz)		Amplitu (dBu\						nsducer (dB)	Cable (dB)	Attenuation (dB)			Detector blank equal peaks		Adjusted dBuV	Spec. Limit dBuV	Spec. (dB)
	` '													[PK] from scan)				
).421).421		20.9 22.6					0.0	0.0 0.0				AV QP		40.9 42.6	47.4 57.4	
	0	.424	2	26.3					0.0	0.2	2 20.0			α.		46.5	47.4	-0.8
		0.395 2.456		23.6 20.6					0.0	0.2 0.4						43.8 41.0	48.0 46.0	-4.1 -5.0
	1	.265	1	9.9					0.0	0.3	3 20.0					40.2	46.0	-5.8
		0.995		9.5 9.1					0.0	0.3 0.3						39.8 39.4	46.0 46.0	-6.2 -6.6
	1	.235		9.0					0.0	0.3						39.4	46.0	-6.7
		.055		8.8					0.0	0.3						39.1	46.0	
		0.966		8.8 8.7					0.0	0.3 0.3						39.1 39.0	46.0 46.0	-6.9 -7.0
	1	.565	1	8.5					0.0	0.4	4 20.0					38.9	46.0	-7.1
).486).452		8.8 9.3					0.0	0.2 0.2						39.0 39.5	46.2 46.8	
	0).726	1	8.2					0.0	0.3	3 20.0					38.5	46.0	-7.5
		0.688		8.2 7.9					0.0	0.3 0.3						38.5 38.2	46.0 46.0	-7.5 -7.8
).784		7.9					0.0	0.3						38.2	46.0	-7.8 -7.8

	ORTHWEST EMC		CC	NE)U(CT	Εſ) E	MIS	SI	ON	S	D/	۲,	TA S	HEE	T			ACQ 2005.1.4 EMI 2005.4.13
	_11/10		Cirronet Ra														/ork Order	: TRPC	00007	
S	erial Nu																	: 05/11		
			Tripod Data	a Syster	ns, Inc.											Те	mperature			
(Atten Cust. Ref	dees:	None													Barometri	Humidity c Pressure			
			Rod Peloqu	uin							Power:	120V	AC/6	0Hz		Darometri	Job Site			
	SPECIF																			
	Specifica	ation:	FCC 15.207	AC Po	werline	Cond	lucte	d Emis	ssions:20	004		Me	ethod:	AN	SI C63.4:	2003				
SAMP	LE CAL	CULA	TIONS																	
			Field Strength										-		nt Factor + E	xternal Atter	nuation			
COMN		ssions: /	Adjusted Level	= Measur	ed Level	+ Frans	ducer	Factor +	Cable Atter	nuation	Factor + E	xterna	I Atten	uator						
		te. Rang	ger X Series H	andheld (contains	USI & C	Cirron	et radio	modules.											
EUT O	PERAT	ING M	ODES																	
	channel c																			
DEVIA No devi		FROM	TEST STA	NDARD																
RESU															Li	ine		Run #	#	
Pass																N			•	3
Other																				
Other														1	01	D	0			
														14	reling le	- Tel	eng			
															V		<u>/</u>			
																Teste	d By:			
	80.0							,												
	00.0																			
	70.0																			
	60.0						₩.												-	
					\searrow							_								
	50.0																			
	30.0																			
≥) ^ ^		Λ∯ .															
dBuV	40.0		1/1//	A A	IPAAAA		MAAA.	My	Marine Marine	Λ.	ataka.									
σ			- \/ \/ \/	Λ. Λ	LYYVYA	Ma.aN	YYYYM	1	Mar. M	1,444	. Apply to apply the party to t	10/10/4	Ber. 118	Λ	4					
	30.0		4 4 4 4		11	14444	ЩЩ						HAPPE		Hallagh,	بالتاليانيين	44			
				יעיי	'''	din.	"								71	Miles parking the	100			
	20.0																			
	20.0																			
	10.0						<u> </u>													
	0.0																			
	0.1	00					1.0	000						10.	000				1	00.000
										М	lHz									
		ı	I							E	External				1	1				Compared to
	Freq		Amplitude					nsducer	Cable		tenuation				etector k equal peaks		Adjusted	Spec.		Spec.
	(MHz)		(dBuV)				1	(dB)	(dB)		(dB)			[PK] from scan)		dBuV	dBı	uV	(dB)
	(0.421	20.2				1	0.0	0	.0	20.0			1	AV		40.2	2	47.4	-7.2
		0.421	23.2					0.0		.0	20.0				QP		43.2		57.4	-14.2
		0.424	25.2 24.9					0.0		.2 .2	20.0 20.0						45.4 45.		47.4 48.0	-1.9 -2.9
		0.483	21.5					0.0		.2	20.0						41.		46.3	-4.5
	2	2.416	20.2					0.0	0	.4	20.0						40.0	6	46.0	-5.4
		0.452	21.0					0.0		.2	20.0						41.2		46.8	-5.6
		1.105 0.842	19.9 19.9					0.0		.3 .3	20.0 20.0						40.2 40.2		46.0 46.0	-5.8 -5.8
		0.514	19.9					0.0		.2	20.0						40.		46.0	-5.9
	•	1.045	19.7					0.0	0	.3	20.0						40.0)	46.0	-6.0
		0.814	19.5					0.0		.3	20.0						39.8		46.0	-6.2
		0.785 0.543	19.3 19.3					0.0		.3 .3	20.0 20.0						39.0 39.0		46.0 46.0	-6.4 -6.4
	(0.904	19.1					0.0	0	.3	20.0						39.4	4	46.0	-6.6
		0.755	19.1					0.0		.3	20.0						39.4		46.0	-6.6
		1.385 0.871	18.9 18.9					0.0		.3 .3	20.0 20.0						39.2 39.2		46.0 46.0	-6.8 -6.8
		1.785	18.5					0.0		.3 .4	20.0						38.9		46.0	-7.1

