FCC C2PC Test Report FCC ID : P27-IG502L **Equipment**: Monitor Gateway Model No. : IG-502L Brand Name : OxTech, LLC Applicant : Sercomm Corporation Address : 8F, No. 3-1, YuanQu St., NanKang, Taipei 115, Taiwan, R.O.C. Standard : 47 CFR FCC Part 15.247 Received Date : Apr. 12, 2022 Tested Date : Apr. 13 ~ Apr. 18, 2022 We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It shall not be reproduced except in full without the written approval of our laboratory. Reviewed by: Approved by: Along Cheld/ Assistant Manager Gary Chang / Ma Report No.: FR1D2104-01-1AH Page: 1 of 21 # **Table of Contents** | 1 | GENERAL DESCRIPTION | 5 | |-----|--|----| | 1.1 | Information | 5 | | 1.2 | Local Support Equipment List | 7 | | 1.3 | Test Setup Chart | 7 | | 1.4 | The Equipment List | 8 | | 1.5 | Test Standards | 9 | | 1.6 | Reference Guidance | 9 | | 1.7 | Deviation from Test Standard and Measurement Procedure | g | | 1.8 | Measurement Uncertainty | g | | 2 | TEST CONFIGURATION | 10 | | 2.1 | Testing Facility | 1C | | 2.2 | The Worst Test Modes and Channel Details | 10 | | 3 | TRANSMITTER TEST RESULTS | 11 | | 3.1 | Unwanted Emissions into Restricted Frequency Bands | 11 | | 3.2 | Unwanted Emissions into Non-Restricted Frequency Bands | 13 | | 3.3 | Conducted Output Power | 14 | | 3.4 | Number of Hopping Frequency | 15 | | 3.5 | 20dB and Occupied Bandwidth | 16 | | 3.6 | Channel Separation | 17 | | 3.7 | Number of Dwell Time | 18 | | 3.8 | Power Spectral Density | 19 | | 3.9 | AC Power Line Conducted Emissions | 20 | | 4 | TEST I ABORATORY INFORMATION | 21 | - **Appendix A. Unwanted Emissions into Restricted Frequency Bands** - **Appendix B. Unwanted Emissions into Non-Restricted Frequency Bands** - **Appendix C. Conducted Output Power** - **Appendix D. Number of Hopping Frequency** - Appendix E. 20dB and Occupied Bandwidth - **Appendix F. Channel Separation** - Appendix G. Number of Dwell Time - **Appendix H. Power Spectral Density** - **Appendix I. AC Power Line Conducted Emissions** # **Release Record** | Report No. | Version | Description | Issued Date | |-----------------|---------|---------------|---------------| | FR1D2104-01-1AH | Rev. 01 | Initial issue | Apr. 27, 2022 | Report No.: FR1D2104-01-1AH Page: 3 of 21 # **Summary of Test Results** | FCC Rules | Test Items | Measured | Result | |-----------------|----------------------------------|---|--------| | 15.207 | AC Power Line Conducted Emission | [dBuV]: 0.410MHz
39.98 (Margin -7.66dB) - AV | Pass | | 15.247(d) | Unwanted Emissions | [dBuV/m at 3m]: 48.61MHz | Pass | | 15.209 | Offwarited Effilssions | 36.55 (Margin -3.45dB) - PK | r ass | | 15.247(d) | Band Edge | Meet the requirement of limit | Pass | | 15.247(b)(2)(3) | Conducted Output Power | Power [dBm]: 22.22 | Pass | | 15.247(a)(1)(i) | Number of Hopping Channels | Meet the requirement of limit | Pass | | 15.247(a)(1) | Hopping Channel Separation | Meet the requirement of limit | Pass | | 15.247(f) | Dwell Time | Meet the requirement of limit | Pass | | 15.247(f) | Power spectral density | Meet the requirement of limit | Pass | | 15.203 | Antenna Requirement | Meet the requirement of limit | Pass | #### **Declaration of Conformity:** The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. #### **Comments and Explanations:** The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification. Report No.: FR1D2104-01-1AH Page: 4 of 21 # 1 General Description #### 1.1 Information This report is issued as a FCC Class II Permissive Change. The modification is only concerned with adding $902.3 \sim 914.9$ MHz band by software setting. ### 1.1.1 Specification of the Equipment under Test (EUT) | RF General Information | | | | | | | | | |-----------------------------|--|-------------|---------------|--------|-----|--|--|--| | Frequency
Range
(MHz) | Range Ch. Freq. Channel List Data Rate Spread Factor Bandwidth | | | | | | | | | 902 ~ 928 | 902.3 ~ 914.9 | 64 channels | 980-5.47k bps | 7 ~ 10 | 125 | | | | Note 1: RF output power specifies that Maximum Conducted (Average) Output Power. Note 2: The device uses LoRa modulation. Note 3: The device supports hybrid mode #### 1.1.2 Antenna Details | Ant. No. | Туре | Connector | Gain (dBi) | Remark | |----------|--------|-----------|------------|--------| | 1 | Dipole | R-SMA | 2.1 | | #### 1.1.3 Power Supply Type of Equipment under Test (EUT) | Power Supply Type | 12Vdc from adapter | |-------------------|--------------------| |-------------------|--------------------| #### 1.1.4 Accessories | | Accessories | | | | | | |-----|-------------|---|--|--|--|--| | No. | Equipment | Description | | | | | | 1 | AC Adapter | Brand: Leader Model: MU18D1120150-A1 Power Rating: I/P: 100-240Vac, 50/60Hz, 0.6A O/P:12Vdc, 1.5A Power Line: 1.45m non-shielded without core | | | | | | 2 | AC Adapter | Brand: Sercomm Model: PU18W120ULB15-DPX-00 Power Rating: I/P: 100-240Vac, 50/60Hz, 0.7A O/P:12Vdc, 1.5A, 18.0W | | | | | | 3 | RJ45 | 1.45m non-shielded without core | | | | | Report No.: FR1D2104-01-1AH Page : 5 of 21 ### 1.1.5 Channel List | | Channel Bandwidth: 125KHz | | | | | | | |---------|---------------------------|---------|-----------------|---------|-----------------|---------|-----------------| | Channel | Frequency (MHz) | | 0 | 902.3 | 16 | 905.5 | 32 | 908.7 | 48 | 911.9 | | 1 | 902.5 | 17 | 905.7 | 33 | 908.9 | 49 | 912.1 | | 2 | 902.7 | 18 | 905.9 | 34 | 909.1 | 50 | 912.3 | | 3 | 902.9 | 19 | 906.1 | 35 | 909.3 | 51 | 912.5 | | 4 | 903.1 | 20 | 906.3 | 36 | 909.5 | 52 | 912.7 | | 5 | 903.3 | 21 | 906.5 | 37 | 909.7 | 53 | 912.9 | | 6 | 903.5 | 22 | 906.7 | 38 | 909.9 | 54 | 913.1 | | 7 | 903.7 | 23 | 906.9 | 39 | 910.1 | 55 | 913.3 | | 8 | 903.9 | 24 | 907.1 | 40 | 910.3 | 56 | 913.5 | | 9 | 904.1 | 25 | 907.3 | 41 | 910.5 | 57 | 913.7 | | 10 | 904.3 | 26 | 907.5 | 42 | 910.7 | 58 | 913.9 | | 11 | 904.5 | 27 | 907.7 | 43 | 910.9 | 59 | 914.1 | | 12 | 904.7 | 28 | 907.9 | 44 | 911.1 | 60 | 914.3 | | 13 | 904.9 | 29 | 908.1 | 45 | 911.3 | 61 | 914.5 | | 14 | 905.1 | 30 | 908.3 | 46 | 911.5 | 62 | 914.7 | | 15 | 905.3 | 31 | 908.5 | 47 | 911.7 | 63 | 914.9 | # 1.1.6 Test Tool and Duty Cycle | Test Tool | Putty, Version: V0.060 | | | |---------------|---------------------------------|------|--| | Mode | Duty Cycle (%) Duty Factor (dB) | | | | LoRa (125kHz) | 100.00% | 0.00 | | ### 1.1.7 Power Index of Test Tool | Channel Bandwidth: 125KHz | | | | | | |----------------------------------|------------|--|--|--|--| | Test Frequency (MHz) Power Index | | | | | | | 902.3 | pa 1pwid 4 | | | | | | 908.5 | pa 1pwid 3 | | | | | | 914.9 | pa 1pwid 4 | | | | | Report No.: FR1D2104-01-1AH Page: 6 of 21 # 1.2 Local Support Equipment List | Support Equipment List | | | | | | | | | | |------------------------|--|-----------|----------------|-----|--|--|--|--|--| | No. | No. Equipment Brand Model FCC ID Remarks | | | | | | | | | | 1 | Notebook | DELL | Latitude E5470 | DoC | | | | | | | 2 | Notebook | DELL | Latitude E5470 | DoC | | | | | | | 3 | USB 3.0 Flash | Transcend | JetFlash 700 | | | | | | | # 1.3 Test Setup Chart Report No.: FR1D2104-01-1AH Page: 7 of 21 # 1.4 The Equipment List | Test Item | Conducted Emission | | | | | | | | | | |--------------------------------|---|---|---------------|---------------|---------------|--|--|--|--|--| | Test Site | Conduction room 1 / (CO01-WS) | | | | | | | | | | | Tested Date | Apr. 18, 2022 | | | | | | | | | | | Instrument | Brand | Brand Model No. Serial No. Calibration Date Calibration Until | | | | | | | | | | Receiver | R&S ESR3 101658 Feb. 16, 2022 Feb. 15, 2023 | | | | | | | | | | | LISN | R&S ENV216 101295 Jan. 12, 2022 Jan. 11, 2023 | | | | | | | | | | | LISN (Support Unit) | SCHWARZBECK | NSLK 8127 | 8127667 | Jan .07, 2022 | Jan .06, 2023 | | | | | | | RF Cable-CON | Woken | CFD200-NL | CFD200-NL-001 | Oct. 19, 2021 | Oct. 18, 2022 | | | | | | | 50 ohm terminal (Support Unit) | 1 NA I 50 I 04 I May 25 2021 I May 24 2022 | | | | | | | | | | | Measurement
Software | ALIDIX I AS I 6.120210k I NA I NA | | | | | | | | | | | Test Item | Radiated Emission | | | | | |-------------------------|--------------------------|-----------------------|-------------------------|------------------|-------------------| | Test Site | 966 chamber3 / (03Cl | H03-WS) | | | | | Tested Date | Apr. 13 ~ Apr. 14, 202 | 22 | | | | | Instrument | Brand | Model No. | Serial No. | Calibration Date | Calibration Until | | Receiver | R&S | ESR3 | 101657 | Mar. 15, 2022 | Mar. 14, 2023 | | Spectrum Analyzer | R&S | FSV40 | 101499 | Mar. 08, 2022 | Mar. 07, 2023 | | Loop Antenna | R&S | HFH2-Z2 | 100330 | Nov. 08, 2021 | Nov. 07, 2022 | | Bilog Antenna | SCHWARZBECK | VULB9168 | VULB9168-685 | May 06, 2021 | May 05, 2022 | | Horn Antenna
1G-18G | SCHWARZBECK | BBHA 9120 D | BBHA 9120 D 1206 | Dec. 20, 2021 | Dec. 19, 2022 | | Horn Antenna
18G-40G | SCHWARZBECK | BBHA 9170 | BBHA 9170508 | Jan. 11, 2022 | Jan. 10, 2023 | | Preamplifier | EMC | EMC02325 | 980187 | Jul. 26, 2021 | Jul. 25, 2022 | | Preamplifier | Agilent | 83017A | MY39501309 | Sep. 06, 2021 | Sep. 05, 2022 | | Preamplifier | EMC | EMC184045B | 980192 | Jul. 14, 2021 | Jul. 13, 2022 | | Loop Antenna Cable | KOAX KABEL | 101354-BW | 101354-BW | Oct. 05, 2021 | Oct. 04, 2022 | | LF cable-0.8M | EMC | EMC8D-NM-NM-800 | EMC8D-NM-NM-800
-001 | Sep. 24, 2021 | Sep. 23, 2022 | | LF cable-3M | EMC | EMC8D-NM-NM-300
0 | 131103 | Sep. 24, 2021 | Sep. 23, 2022 | | LF cable-13M | EMC | EMC8D-NM-NM-130
00 | 131104 | Sep. 24, 2021 | Sep. 23, 2022 | | RF cable-3M | HUBER+SUHNER | SUCOFLEX104 | MY22620/4 | Sep. 24, 2021 | Sep. 23, 2022 | | RF cable-8M | EMC | EMC104-SM-SM-80
00 | 181107 | Sep. 24, 2021 | Sep. 23, 2022 | | Measurement
Software | AUDIX | e3 | 6.120210g | NA | NA | | Note: Calibration Inter | val of instruments liste | d above is one year. | | | | Report No.: FR1D2104-01-1AH Page: 8 of 21 | RF Conducted | | | | | |---------------|--|--|--|---| | (TH01-WS) | | | | | | Apr. 18, 2022 | | | | | | Brand | Model No. | Serial No. | Calibration Date | Calibration Until | | R&S | FSV40 | 101498 | Nov. 29, 2021 | Nov. 28, 2022 | | Anritsu | ML2495A | 1241002 | Nov. 07, 2021 | Nov. 06, 2022 | | Anritsu | MA2411B | 1207366 | Nov. 07, 2021 | Nov. 06, 2022 | | Sporton | SENSE-15247_FS | V5.10.7.11 | NA | NA | | | (TH01-WS) Apr. 18, 2022 Brand R&S Anritsu Anritsu | (TH01-WS) Apr. 18, 2022 Brand Model No. R&S FSV40 Anritsu ML2495A Anritsu MA2411B | (TH01-WS) Apr. 18, 2022 Brand Model No. Serial No. R&S FSV40 101498 Anritsu ML2495A 1241002 Anritsu MA2411B 1207366 | (TH01-WS) Apr. 18, 2022 Brand Model No. Serial No. Calibration Date R&S FSV40 101498 Nov. 29, 2021 Anritsu ML2495A 1241002 Nov. 07, 2021 Anritsu MA2411B 1207366 Nov. 07, 2021 | ### 1.5 Test Standards 47 CFR FCC Part 15.247 ANSI C63.10-2013 #### 1.6 Reference Guidance FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ### 1.7 Deviation from Test Standard and Measurement Procedure None # 1.8 Measurement Uncertainty The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)). | Measurement Uncertainty | | | | | |--------------------------|-------------|--|--|--| | Parameters | Uncertainty | | | | | Bandwidth | ±34.130 Hz | | | | | Conducted power | ±0.808 dB | | | | | Power density | ±0.583 dB | | | | | Unwanted Emission ≤ 1GHz | ±3.96 dB | | | | | Unwanted Emission > 1GHz | ±4.51 dB | | | | Report No.: FR1D2104-01-1AH Page: 9 of 21 # 2 Test Configuration # 2.1 Testing Facility | Test Laboratory | International Certification Corporation | |----------------------|--| | Test Site | CO01-WS, TH01-WS | | Address of Test Site | No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.) | | Test Site | 03CH03-WS | | Address of Test Site | No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 333, Taiwan (R.O.C.) | FCC Designation No.: TW0009FCC site registration No.: 207696 ➤ ISED#: 10807C ➤ CAB identifier: TW2732 #### 2.2 The Worst Test Modes and Channel Details | Test item | Channel
Bandwidth (kHz) | Test Frequency
(MHz) | Separating Factor | Test
Configuration | |---|----------------------------|-------------------------|-------------------|-----------------------| | AC Power Line Conducted Emission | 125 | 902.3 / 908.5 / 914.9 | SF10 | 2 | | Unwanted Emissions Conducted Output Power Hopping Channel Separation 20dB and Occupied bandwidth Power Spectral Density | 125 | 902.3 / 908.5 / 914.9 | SF10 | 1 | | Number of Hopping Channels | 125 | 902.3 ~ 914.9 | SF10 | 1 | | Dwell Time | 125 | 902.3 | SF10, 9, 8, 7 | 1 | #### NOTE: Two adapters (Leader and Sercomm) had been covered during the pretest, and found that Sercomm adapter was the worst case of AC Power line conducted emission test item and Leader adapter was the worst case of Unwanted Emissions test item. 2. Test configurations are as below Configuration 1: Leader adapter for Unwanted Emissions and antenna port conducted test Configuration 2: Sercomm adapter for AC Power Line Conducted Emissions Report No.: FR1D2104-01-1AH Page: 10 of 21 ### 3 Transmitter Test Results ### 3.1 Unwanted Emissions into Restricted Frequency Bands #### 3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands | Restricted Band Emissions Limit | | | | | | |---------------------------------|-----------------------|-------------------------|----------------------|--|--| | Frequency Range (MHz) | Field Strength (uV/m) | Field Strength (dBuV/m) | Measure Distance (m) | | | | 0.009~0.490 | 2400/F(kHz) | 48.5 - 13.8 | 300 | | | | 0.490~1.705 | 24000/F(kHz) | 33.8 - 23 | 30 | | | | 1.705~30.0 | 30 | 29 | 30 | | | | 30~88 | 100 | 40 | 3 | | | | 88~216 | 150 | 43.5 | 3 | | | | 216~960 | 200 | 46 | 3 | | | | Above 960 | 500 | 54 | 3 | | | #### Note 1: Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**: Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade. #### 3.1.2 Test Procedures - Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m - 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m. - 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations. #### Note: - 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz. - 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz. - 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz. Report No.: FR1D2104-01-1AH Page: 11 of 21 ### 3.1.3 Test Setup #### 3.1.4 Test Results Refer to Appendix A. Report No.: FR1D2104-01-1AH Page: 12 of 21 # 3.2 Unwanted Emissions into Non-Restricted Frequency Bands #### 3.2.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz. #### 3.2.2 Test Procedures #### **Reference Level Measurement** - 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak. - 2. Set Sweep time = auto couple, Trace mode = max hold. - 3. Allow trace to fully stabilize. - 4. Use the peak marker function to determine the maximum amplitude level. #### **Unwanted Emissions Level Measurement** - 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak. - 2. Trace Mode = max hold, Sweep = auto couple. - 3. Allow the trace to stabilize. - Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth. #### 3.2.3 Test Setup #### 3.2.4 Test Results | Ambient Condition | 22°C / 67% | Tested By | Aska Huang | |-------------------|------------|-----------|------------| |-------------------|------------|-----------|------------| Refer to Appendix B. Report No.: FR1D2104-01-1AH Page: 13 of 21 # 3.3 Conducted Output Power #### 3.3.1 Limit of Conducted Output Power 1W #### 3.3.2 Test Procedures - A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz - 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power #### 3.3.3 Test Setup #### 3.3.4 Test Results | Ambient Condition | 22°C / 67% | Tested By | Aska Huang | |-------------------|------------|-----------|------------| Refer to Appendix C. Report No.: FR1D2104-01-1AH Page: 14 of 21 # 3.4 Number of Hopping Frequency ### 3.4.1 Limit of Number of Hopping Frequency | | Number of Hopping Frequencies Limit for Frequency Hopping Systems | | | | | |------|---|--|--|--|--| | | ☑ 902-928 MHz Band: | | | | | | | | | | | | | | | N ≥ 25, 20 dB bandwidth of the hopping channel is 250 kHz or greater | | | | | | | | | | | | N: 1 | N: Number of Hopping Frequencies | | | | | #### 3.4.2 Test Procedures - 1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold. - 2 Allow trace to stabilize. ### 3.4.3 Test Setup #### 3.4.4 Test Results | Ambient Condition | 22°C / 67% | Tested By | Aska Huang | |-------------------|------------|-----------|------------| Refer to Appendix D. Report No.: FR1D2104-01-1AH Page: 15 of 21 # 3.5 20dB and Occupied Bandwidth #### 3.5.1 Test Procedures #### 20dB Bandwidth - 1. Set RBW=3kHz, VBW=10kHz, Sweep time=Auto, Detector=Peak Trace max hold. - 2 Allow trace to stabilize. - 3 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission. #### **Occupied Bandwidth** - 1. Set RBW=3kHz, VBW=10kHz, Sweep time = Auto, Detector=Peak, Trace max hold - 2 Allow trace to stabilize - 3. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth #### 3.5.2 Test Setup #### 3.5.3 Test Results | Ambient Condition 22° | °C / 67% | ested By | Aska Huang | |-----------------------|----------|----------|------------| |-----------------------|----------|----------|------------| Refer to Appendix E. Report No.: FR1D2104-01-1AH Page: 16 of 21 # 3.6 Channel Separation #### 3.6.1 Limit of Channel Separation Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. #### 3.6.2 Test Procedures - 1. Set RBW=10kHz, VBW=30kHz, Sweep time=Auto, Detector=Peak Trace max hold. - 2 Allow trace to stabilize. - 3 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit #### 3.6.3 Test Setup #### 3.6.4 Test Results | Ambient Condition | 22°C / 67% | Tested By | Aska Huang | |-------------------|------------|-----------|------------| | | | | | Refer to Appendix F. Report No.: FR1D2104-01-1AH Page: 17 of 21 ### 3.7 Number of Dwell Time #### 3.7.1 Limit of Dwell time | | Time of Occupancy (Dwell Time) Limit for Frequency Hopping Systems | | | | | |-------------|--|--|--|--|--| | \boxtimes | 902 | 002-928 MHz Band: | | | | | | | \leq 0.4 second within a 20 second period, 20 dB bandwidth of the hopping channel is less than 250 kHz | | | | | | | \leq 0.4 second within a 10 second period, 20 dB bandwidth of the hopping channel is 250 kHz or greater | | | | | | | Hybrid mode ,an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4 | | | | #### 3.7.2 Test Procedures - 1. Set RBW=200kHz, VBW=1000kHz, Sweep time=3.2s / 500ms, Detector=Peak, Span=0Hz, Trace max hold for 8 hopping channels. - 2. Set RBW=200kHz, VBW=1000kHz, Sweep time=6.4s / 500ms, Detector=Peak, Span=0Hz, Trace max hold for 16 hopping channels. - 3. Set RBW=200kHz, VBW=1000kHz, Sweep time=25.6s / 500ms, Detector=Peak, Span=0Hz, Trace max hold for 64 hopping channels. - 4. Measure and record the burst on time. #### 3.7.3 Test Setup #### 3.7.4 Test Results | - | | | | |-------------------|------------|-----------|------------| | Ambient Condition | 22°C / 67% | Tested By | Aska Huang | Refer to Appendix G. Report No.: FR1D2104-01-1AH Page: 18 of 21 # 3.8 Power Spectral Density #### 3.8.1 Limit of Power Spectral Density Power spectral density shall not be greater than 8 dBm in any 3 kHz band. This item is for Hybrid mode. #### 3.8.2 Test Procedures - 1. Set the RBW = 3kHz, VBW = 10 kHz. - 2. Detector = RMS, Sweep time = auto couple. - 3. Employ trace averaging (RMS) mode over a minimum of 100 traces - 4. Use the peak marker function to determine the maximum amplitude level. #### 3.8.3 Test Setup #### 3.8.4 Test Results | Ambient Condition 22°C / 67% | Tested By | Aska Huang | |------------------------------|-----------|------------| |------------------------------|-----------|------------| Refer to Appendix H. Report No.: FR1D2104-01-1AH Page: 19 of 21 #### 3.9 AC Power Line Conducted Emissions #### 3.9.1 Limit of AC Power Line Conducted Emissions | Conducted Emissions Limit | | | | | | | |--|------------|-----------|--|--|--|--| | Conducted Emissions Limit | | | | | | | | Frequency Emission (MHz) | Quasi-Peak | Average | | | | | | 0.15-0.5 | 66 - 56 * | 56 - 46 * | | | | | | 0.5-5 | 56 | 46 | | | | | | 5-30 | 60 | 50 | | | | | | Note 1: * Decreases with the logarithm of the frequency. | | | | | | | #### 3.9.2 Test Procedures - 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device. - The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port. - 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz. - 4. This measurement was performed with AC 120V / 60Hz. ### 3.9.3 Test Setup Note: 1. Support units were connected to second LISN. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes #### 3.9.4 Test Result of Conducted Emissions Refer to Appendix I. Report No.: FR1D2104-01-1AH Page: 20 of 21 # 4 Test laboratory information Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business. International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff. Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw. #### Linkou Tel: 886-2-2601-1640 No.30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan (R.O.C.) #### Kwei Shan Tel: 886-3-271-8666 No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.) No.2-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.) #### Kwei Shan Site II Tel: 886-3-271-8640 No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 333, Taiwan (R.O.C.) If you have any suggestion, please feel free to contact us as below information. Tel: 886-3-271-8666 Fax: 886-3-318-0345 Email: ICC Service@icertifi.com.tw ==END== Report No.: FR1D2104-01-1AH Page: 21 of 21 #### **Below 1GHz** Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain *Factor includes antenna factor , cable loss and amplifier gain *Factor includes antenna factor , cable loss and amplifier gain *Factor includes antenna factor, cable loss and amplifier gain *Factor includes antenna factor, cable loss and amplifier gain #### **Above 1GHz** Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain *Factor includes antenna factor, cable loss and amplifier gain *Factor includes antenna factor, cable loss and amplifier gain *Factor includes antenna factor, cable loss and amplifier gain *Factor includes antenna factor, cable loss and amplifier gain *Factor includes antenna factor, cable loss and amplifier gain # Conducted Output Power (Average) Appendix C Summary | Mode | Power
(dBm) | Power
(W) | |---------------|----------------|--------------| | 902-928MHz | - | - | | LoRa (125kHz) | 22.22 | 0.16672 | ### Result | Mode | Result | Antenna Gain
(dBi) | Power
(dBm) | Power Limit
(dBm) | |---------------|--------|-----------------------|----------------|----------------------| | LoRa (125kHz) | - | - | - | - | | 902.3MHz | Pass | 2.10 | 22.16 | 30.00 | | 908.5MHz | Pass | 2.10 | 22.22 | 30.00 | | 914.9MHz | Pass | 2.10 | 22.04 | 30.00 | # Number of Hopping Frequency Appendix D Summary | Mode | Max-Hop No | |---------------|------------| | 902-928MHz | - | | LoRa (125kHz) | 64 | ### Result | Mode | | Result | Hopping No | Limit | |------------|------|--------|------------|-------| | LoRa (125l | (Hz) | - | - | - | | 902.3MF | lz | Pass | 64 | - | ## 20dB and Occupied Bandwidth Appendix E Summary | Mode | Max-N dB | Max-OBW | ITU-Code | Min-N dB | Min-OBW | |---------------|----------|---------|----------|----------|---------| | | (Hz) | (Hz) | | (Hz) | (Hz) | | 902-928MHz | - | - | - | - | - | | LoRa (125kHz) | 133.333k | 123.01k | 123KF1D | 133.333k | 123.01k | Max-N dB = Maximum 20dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 20dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth #### Result | Mode | Result | Limit
(Hz) | Port 1-N dB
(Hz) | Port 1-OBW
(Hz) | |---------------|--------|---------------|---------------------|--------------------| | LoRa (125kHz) | - | - | - | - | | 902.3MHz | Pass | Inf | 133.333k | 123.01k | | 908.5MHz | Pass | Inf | 133.333k | 123.01k | | 914.9MHz | Pass | Inf | 133.333k | 123.01k | Port X-N dB = Port X 20dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth # **Channel Separation** Appendix F Summary | Mode | Max-Space | Min-Space | |---------------|------------|-----------| | | (Hz) | (Hz) | | 902-928MHz | - | - | | LoRa (125kHz) | 201.73913k | 200k | ### Result | Mode | Result | FI
(Hz) | Fh
(Hz) | Ch.Space
(Hz) | Limit
(Hz) | |---------------|--------|-------------|-------------|------------------|---------------| | LoRa (125kHz) | - | - | - | - | - | | 902.3MHz | Pass | 902.23913M | 902.44087M | 201.73913k | 133.333k | | 908.5MHz | Pass | 908.558261M | 908.758261M | 200k | 133.333k | | 914.9MHz | Pass | 914.63913M | 914.84087M | 201.73913k | 133.333k | Page No. : 1 of 3 | Mode / SF | Freq. (MHz) | Length of
Transmission
Time (sec) | Number of
transmission
in a 25.6 S
(64 Hopping*0.4S) | Result (s) | Limit (s) | |-----------|-------------|---|---|------------|-----------| | LoRa / 7 | 902.3 | 0.393750 | 1 | 0.393750 | 0.4 | | LoRa / 8 | 902.3 | 0.387875 | 1 | 0.387875 | 0.4 | | LoRa / 9 | 902.3 | 0.386328 | 1 | 0.386328 | 0.4 | | LoRa / 10 | 902.3 | 0.362750 | 1 | 0.362750 | 0.4 | # **Power Spectral Density** Appendix H Summary | Mode | PD
(dBm/3kHz) | | |---------------|------------------|--| | 902-928MHz | - | | | LoRa (125kHz) | 7.76 | | ### Result | Mode | Result | Antenna
Gain | Power Density | Power Density Limit | |---------------|--------|-----------------|---------------|---------------------| | | | (dBi) | (dBm/3kHz) | (dBm/3kHz) | | LoRa (125kHz) | - | - | - | - | | 902.3MHz | Pass | 2.10 | 7.55 | 8.00 | | 908.5MHz | Pass | 2.10 | 7.76 | 8.00 | | 914.9MHz | Pass | 2.10 | 7.65 | 8.00 | Page No. : 1 of 6 Page No. : 2 of 6 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV). Page No. : 5 of 6 Page No. : 6 of 6