# **EMC TEST REPORT** Applicant Nokia Shanghai Bell Co., Ltd. FCC ID 2ADZRXS2426GA **Product** Nokia ONT Model XS-2426G-A **Report No.** R2011B0188-E1 Issue Date January 22, 2021 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2019)/ ANSI C63.4 (2014). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Prepared by: Wei Liu Approved by: Guangchang Fan Guangchang Fan TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 # **Table of Contents** Report No.: R2011B0188-E1 | 1 Te | est Laboratory | 2 | |--------|--------------------------------------------|----------------| | 1.1 | Notes of the Test Report | 4 | | 1.2 | Test facility | | | 1.3 | Testing Location | | | 2 G | eneral Description of Equipment under Test | إ | | 2.1 | Applicant and Manufacturer Information | t | | 2.2 | General information | t | | 2.3 | Applied Standards | 7 | | 3 Te | est Case Results | 8 | | 3.1 | Radiated Emission | 8 | | 3.2 | Conducted Emission | 15 | | 4 M | ain Test Instruments | 20 | | ANNE | X A: The EUT Appearance | 2 <sup>2</sup> | | VIVIE. | X R. Test Setun Photos | 23 | # **Summary of measurement results** | Number | Test Case | Clause in FCC Rules | Conclusion | |--------|--------------------|---------------------------------|------------| | 1 | Radiated Emission | FCC Part15.109, ANSI C63.4-2014 | PASS | | 2 | Conducted Emission | FCC Part15.107, ANSI C63.4-2014 | PASS | Date of Testing: November 6, 2020~December 9, 2020 and December 917, 2020 Date of Sample Received: November 5, 2020 Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. 1 Test Laboratory ## 1.1 Notes of the Test Report This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. Report No.: R2011B0188-E1 # 1.2 Test facility ## FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements. #### A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement. ## 1.3 Testing Location Company: TA Technology (Shanghai) Co., Ltd. Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China City: Shanghai Post code: 201201 Country: P. R. China Contact: Fan Guangchang Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: fanguangchang@ta-shanghai.com # 2 General Description of Equipment under Test # 2.1 Applicant and Manufacturer Information | Applicant | Nokia Shanghai Bell Co., Ltd. | | | | | |----------------------|--------------------------------------------------------------|--|--|--|--| | Applicant address | No. 388, Ningqiao Rd. Pilot Free Trade Zone, Shanghai, China | | | | | | Manufacturer | T&W | | | | | | Manufacturer address | 89# Jiang Nan Road, Loudong Street, Taicang, Shanghai, China | | | | | # 2.2 General information | EUT Description | | | | | | | | |-----------------------|-----------------------------------------------|-----------------------------|---------------|--|--|--|--| | Device Type: | Device Type: Movable Device | | | | | | | | Model: | XS-2426G-A | | | | | | | | SN: | 1# | | | | | | | | HW Version: | PEM2 | | | | | | | | SW Version: | FJH.L48p139 | | | | | | | | Antenna Type: | Internal Antenna | | | | | | | | | Band | Tx (MHz) | Rx (MHz) | | | | | | | WIFI 2.4G: | 2400 ~ 2483.5 | 2400 ~ 2483.5 | | | | | | <b></b> | WIFI 5G(U-NII-1): | 5150 ~ 5250 | 5150 ~ 5250 | | | | | | Frequency: | WIFI 5G(U-NII-2A): | 5250 ~ 5350 | 5250 ~ 5350 | | | | | | | WIFI 5G(U-NII-2C): | 5470 ~ 5725 | 5470 ~ 5725 | | | | | | | WIFI 5G(U-NII-3): | 5725 ~ 5850 | 5725 ~ 5850 | | | | | | | WLAN 802.11b: DSSS | | | | | | | | Modulation: | WLAN 802.11a/g/n/ac: OFDM | | | | | | | | | WLAN 802.11ax: OFDMA | | | | | | | | | EU | Γ Accessory | | | | | | | Adoptor 1 | Manufacturer: Donggu | an Shilong Fuhua Electronic | c Co., Ltd. | | | | | | Adapter 1 | Model: UES36WU-120300SPA | | | | | | | | Adapter 2 | Manufacturer: ShenZhen SOY Technology Co.,Ltd | | | | | | | | Adapter 2 | Model: SOY-1200300US-050 | | | | | | | | | Antenna 1:RFDPA051106IM5B9C4 | | | | | | | | Antenna Type #1 | Antenna 2:RFDPA051 | 118IM5B9C2 | | | | | | | Antenna Type #1 | Antenna 3:RFPCA400 | 814IMAB9C1 | | | | | | | | Antenna 4:RFPCA400 | 822IMAB9C1 | | | | | | | Antenna Type #2 | Antenna 1: 6011F0021 | 1 | | | | | | | TA Taskaslamı (Chanal | | TA MD 00 004E | Done F of 00 | | | | | TA Technology (Shanghai) Co., Ltd. TA-MB-06-001E Page 5 of 22 Antenna 2: 6011F00212 Antenna 3: 6011F00209 Antenna 4: 6011F00210 Note:1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant. 2. There are more than one Adapter, each one should be applied throughout the compliance test respectively, however, only the worst case will be recorded in this report. ## **Information of Configuration:** | No. | Name Model/Code No | | Edition | Serial No. or Quantity | |-----|--------------------|-----------------------------|---------|------------------------| | 1 | EMA-XS-2426G-A | 3FE49348AA | PEM2 | PEM | | 2 | Power adapter | FUHUA:<br>UES36WU-120300SPA | A/0 | | | 3 | Power adapter | SOY:<br>SOY-1200300US-050 | A/0 | | | ONT Mnemonic | Kit Code | EMA Code | Part Description | Power Adaptor and UPS | |--------------|------------|------------|-------------------------------------------------------------------------------------|-----------------------------------------------------| | XS-2426G-A | 3FE49351AA | 3FE49348AA | XS-2426G-A, XGS-PON<br>ONT, 2 POTS,<br>4xGE, 2x2 11n +<br>2x2 11ax.1 USB<br>3.0, US | FUHUA:UES36WU-12030<br>SPA<br>SOY:SOY-1200300US-050 | ## Auxiliary equipment details: | No. | Name | Brand name | Model | NSB code | Valid Until | |-----|-------------|------------|--------|----------------|------------------| | 1 | Test Center | Spirent | DE48E0 | DC2228 | No Cal. Required | | 2 | PC | Lenovo | T61 | 7661MC4L3KW965 | No Cal. Required | | 3 | PC | Lenovo | T61 | 7661MC4L3KW959 | No Cal. Required | | 4 | OLT | NOKIA | 7360 | N.A | No Cal. Required | ## Information of Ports: | No. | Port name | Number | Shielded or unshielded | Cable type (optic, twisted pair, etc.) | Max. Cable length | |-----|-----------|--------|------------------------|----------------------------------------|-------------------| | 1 | AC port | 1 | Unshielded | Unshielded | | | 2 | GE | 4 | Unshielded | | | | 3 | USB | 1 | shielded | | | | 4 | POTS | 2 | Unshielded | | | # 2.3 Applied Standards According to the specifications of the manufacturer, it must comply with the requirements of the following standards: Test standards FCC Code CFR47 Part15B (2019) ANSI C63.4 (2014) ### 3 Test Case Results #### 3.1 Radiated Emission #### Ambient condition | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C~26°C | 45%~50% | 101.5kPa | #### **Methods of Measurement** The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power. Set the spectrum analyzer in the following: Below 1GHz: RBW=100 kHz / VBW=300 kHz / Sweep=AUTO Above 1GHz: - (a) PEAK Detector: RBW=1MHz / VBW=3MHz/ Sweep=AUTO - (b) AVERAGE Detector: RBW=1MHz / VBW=3MHz / Sweep=AUTO The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded. #### **Test Setup** #### **Below 1GHz** #### **Above 1GHz** Note: Area side: 2.4mX3.6m Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast. #### Limits #### Class B | Frequency<br>(MHz) | Field Strength<br>(dBµV/m) | Detector | |----------------------------------------------|----------------------------|------------| | 30 -88 | 40.0 | Quasi-peak | | 88-216 | 43.5 | Quasi-peak | | 216 – 960 | 46.0 | Quasi-peak | | 960-1000 | 54.0 | Quasi-peak | | 1000-5 <sup>th</sup> harmonic of the highest | 54 | Average | | frequency or 40GHz, which is lower | 74 | Peak | # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. | Frequency | Uncertainty | |----------------|-------------| | 30MHz~200MHz | 4.17 dB | | 200MHz~1000MHz | 4.84 dB | | 1GHz~18GHz | 4.35 dB | | 18GHz~26.5GHz | 5.90 dB | | 26.5GHz~40GHz | 5.92 dB | #### **Test Results** Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier, the Emissions in the frequency band 18GHz –40GHz is more than 20dB below the limit are not reported. The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. # Antenna Type #1 Adapter 2: Radiated Emission from 30MHz to 1GHz | Frequency<br>(MHz) | Quasi-Peak<br>(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct<br>Factor (dB) | Margin<br>(dB) | Limit<br>(dBuV/m) | |--------------------|------------------------|-------------|--------------|---------------|------------------------|----------------|-------------------| | 51.016250 | 24.79 | 100.0 | V | 2.0 | -1.0 | 15.21 | 40.00 | | 68.560000 | 26.47 | 100.0 | V | 76.0 | -6.0 | 13.53 | 40.00 | | 98.742500 | 25.01 | 100.0 | V | 241.0 | -5.2 | 18.49 | 43.50 | | 192.998750 | 26.23 | 100.0 | Н | 124.0 | -6.2 | 17.27 | 43.50 | | 471.830000 | 28.45 | 100.0 | V | 184.0 | -1.1 | 17.55 | 46.00 | | 787.161250 | 36.74 | 100.0 | Н | 155.0 | 3.4 | 9.26 | 46.00 | Remark: 1. Correction Factor = Antenna factor + Insertion loss(cable loss+amplifier gain) 2. Margin = Limit - Quasi-Peak Radiated Emission from 1GHz to 18GHz | Frequency<br>(MHz) | Peak<br>(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct<br>Factor<br>(dB) | Margin<br>(dB) | Limit<br>(dBuV/m) | |--------------------|------------------|-------------|--------------|---------------|---------------------------|----------------|-------------------| | 1193.361250 | 40.9 | 100.0 | V | 170.0 | -11.2 | 33.1 | 74.0 | | 2607.456875 | 39.7 | 100.0 | Н | 14.0 | -6.2 | 34.3 | 74.0 | | 4119.525000 | 41.9 | 400.0 | V | 148.0 | -2.3 | 32.1 | 74.0 | | 6663.115000 | 48.0 | 100.0 | V | 267.0 | 5.0 | 26.0 | 74.0 | | 10734.483750 | 54.0 | 200.0 | Н | 47.0 | 13.3 | 20.0 | 74.0 | | 14929.759375 | 64.7 | 100.0 | Н | 234.0 | 15.8 | 9.3 | 74.0 | | Frequency<br>(MHz) | Average<br>(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct<br>Factor<br>(dB) | Margin<br>(dB) | Limit<br>(dBuV/m) | |--------------------|---------------------|-------------|--------------|---------------|---------------------------|----------------|-------------------| | 1190.940000 | 32.0 | 100.0 | V | 157.0 | -11.2 | 22.0 | 54.0 | | 2439.188125 | 28.4 | 100.0 | Н | 351.0 | -6.6 | 25.6 | 54.0 | | 3952.689375 | 31.4 | 100.0 | Н | 125.0 | -2.9 | 22.6 | 54.0 | | 6637.615000 | 38.2 | 400.0 | V | 148.0 | 5.0 | 15.8 | 54.0 | | 9953.225000 | 48.9 | 100.0 | V | 315.0 | 12.0 | 5.1 | 54.0 | | 14929.935625 | 48.8 | 100.0 | Н | 234.0 | 15.8 | 5.2 | 54.0 | Antenna Type #2 Adapter 1: Report No.: R2011B0188-E1 Radiated Emission from 30MHz to 1GHz | Frequency (MHz) | Quasi-Peak<br>(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct<br>Factor (dB) | Margin<br>(dB) | Limit<br>(dBuV/m) | |-----------------|------------------------|-------------|--------------|---------------|------------------------|----------------|-------------------| | 41.432500 | 32.1 | 100.0 | V | 253.0 | -13.0 | 7.9 | 40.0 | | 128.980000 | 32.7 | 100.0 | V | 282.0 | -20.3 | 10.8 | 43.5 | | 148.868750 | 27.9 | 100.0 | V | 65.0 | -21.3 | 15.6 | 43.5 | | 249.987500 | 33.0 | 100.0 | V | 327.0 | -17.3 | 13.0 | 46.0 | | 497.256250 | 31.0 | 100.0 | V | 353.0 | -11.9 | 15.0 | 46.0 | | 749.982500 | 33.0 | 114.0 | V | 87.0 | -7.3 | 13.0 | 46.0 | Remark: 1. Correction Factor = Antenna factor + Insertion loss(cable loss+amplifier gain) 2. Margin = Limit - Quasi-Peak Radiated Emission from 1GHz to 18GHz | Frequency<br>(MHz) | Peak<br>(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct<br>Factor<br>(dB) | Margin<br>(dB) | Limit<br>(dBuV/m) | |--------------------|------------------|-------------|--------------|---------------|---------------------------|----------------|-------------------| | 1051.692500 | 37.4 | 200.0 | V | 12.0 | -11.6 | 36.6 | 74.0 | | 1996.688750 | 41.5 | 100.0 | Н | 107.0 | -8.9 | 32.5 | 74.0 | | 4137.125000 | 43.2 | 200.0 | V | 0.0 | -2.3 | 30.8 | 74.0 | | 4984.560000 | 45.0 | 100.0 | Н | 98.0 | -0.5 | 29.0 | 74.0 | | 6787.811250 | 49.0 | 100.0 | Н | 25.0 | 5.1 | 25.0 | 74.0 | | 10785.485000 | 54.4 | 100.0 | V | 0.0 | 13.4 | 19.6 | 74.0 | | Frequency<br>(MHz) | Average<br>(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct<br>Factor<br>(dB) | Margin<br>(dB) | Limit<br>(dBuV/m) | |--------------------|---------------------|-------------|--------------|---------------|---------------------------|----------------|-------------------| | 1089.132500 | 25.1 | 100.0 | V | 359.0 | -11.4 | 19.9 | 54.0 | | 2001.422500 | 30.8 | 100.0 | Н | 107.0 | -8.9 | 13.2 | 54.0 | | 3699.995000 | 34.3 | 100.0 | Н | 19.0 | -3.5 | 19.7 | 54.0 | | 4849.441250 | 32.8 | 100.0 | V | 59.0 | -0.6 | 21.2 | 54.0 | | 6861.091250 | 37.8 | 200.0 | Н | 0.0 | 5.0 | 16.2 | 54.0 | | 9953.675000 | 43.0 | 100.0 | V | 0.0 | 12.0 | 11.0 | 54.0 | TA-MB-06-001E ## 3.2 Conducted Emission #### **Ambient condition** | Temperature | Relative humidity | Pressure | | | |-------------|-------------------|----------|--|--| | 23°C~26°C | 45%~50% | 101.5kPa | | | #### **Methods of Measurement** The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line. #### **Test Setup** Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz. #### Limits | Frequency | Conducted Limits(dBμV) | | | | | | | |--------------------------------------------------|------------------------|-----------|--|--|--|--|--| | (MHz) | Quasi-peak | Average | | | | | | | 0.15 - 0.5 | 66 to 56 <sup>*</sup> | 56 to 46* | | | | | | | 0.5 - 5 | 56 | 46 | | | | | | | 5 - 30 | 60 | 50 | | | | | | | * Decreases with the logarithm of the frequency. | | | | | | | | ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.57 dB. #### **Test Results** Following plots, Blue trace uses the peak detection; Green trace uses the average detection. ## Antenna Type #1 # Adapter 1: | Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Average<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Line | Filter | Corr.<br>(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.15 | 46.95 | | 65.88 | 18.93 | 1000.0 | 9.000 | L1 | ON | 19 | | 0.31 | | 35.58 | 50.10 | 14.52 | 1000.0 | 9.000 | L1 | ON | 19 | | 0.40 | | 38.44 | 47.91 | 9.47 | 1000.0 | 9.000 | L1 | ON | 19 | | 0.41 | 46.90 | | 57.63 | 10.73 | 1000.0 | 9.000 | L1 | ON | 19 | | 0.97 | 36.71 | | 56.00 | 19.29 | 1000.0 | 9.000 | L1 | ON | 19 | | 0.98 | | 31.28 | 46.00 | 14.72 | 1000.0 | 9.000 | L1 | ON | 19 | | 2.15 | | 28.38 | 46.00 | 17.62 | 1000.0 | 9.000 | L1 | ON | 19 | | 3.75 | 34.90 | | 56.00 | 21.10 | 1000.0 | 9.000 | L1 | ON | 19 | | 5.72 | 31.01 | | 60.00 | 28.99 | 1000.0 | 9.000 | L1 | ON | 19 | | 6.17 | | 26.08 | 50.00 | 23.92 | 1000.0 | 9.000 | L1 | ON | 19 | | 29.97 | 25.10 | | 60.00 | 34.90 | 1000.0 | 9.000 | L1 | ON | 20 | | 29.98 | | 21.58 | 50.00 | 28.42 | 1000.0 | 9.000 | L1 | ON | 20 | Remark: Correct factor=cable loss + LISN factor L line 150k 2M Frequency in Hz ЗМ 4M 5M 6 8 10M 20M Report No.: R2011B0188-E1 | Frequency<br>(MHz) | QuasiPeak<br>(dΒμV) | Average<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Line | Filter | Corr.<br>(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.15 | 45.66 | | 66.00 | 20.34 | 1000.0 | 9.000 | N | ON | 19 | | 0.34 | | 33.09 | 49.23 | 16.14 | 1000.0 | 9.000 | N | ON | 19 | | 0.42 | 43.42 | | 57.45 | 14.03 | 1000.0 | 9.000 | N | ON | 19 | | 0.42 | | 34.96 | 47.40 | 12.45 | 1000.0 | 9.000 | N | ON | 19 | | 1.82 | 31.58 | | 56.00 | 24.42 | 1000.0 | 9.000 | N | ON | 19 | | 2.12 | | 27.40 | 46.00 | 18.60 | 1000.0 | 9.000 | N | ON | 19 | | 2.77 | 34.27 | | 56.00 | 21.73 | 1000.0 | 9.000 | N | ON | 19 | | 3.75 | | 27.41 | 46.00 | 18.59 | 1000.0 | 9.000 | N | ON | 19 | | 9.26 | | 24.03 | 50.00 | 25.97 | 1000.0 | 9.000 | N | ON | 19 | | 9.26 | 28.64 | | 60.00 | 31.36 | 1000.0 | 9.000 | N | ON | 19 | | 14.14 | 29.25 | | 60.00 | 30.75 | 1000.0 | 9.000 | N | ON | 19 | | 14.43 | | 25.09 | 50.00 | 24.91 | 1000.0 | 9.000 | N | ON | 19 | Remark: Correct factor=cable loss + LISN factor 300 400 500 800 1M N line #### Adapter 2: | Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Average<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Line | Filter | Corr.<br>(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.15 | 50.85 | | 66.00 | 15.15 | 1000.0 | 9.000 | L1 | ON | 19 | | 0.16 | | 37.82 | 55.63 | 17.81 | 1000.0 | 9.000 | L1 | ON | 19 | | 0.46 | | 37.53 | 46.72 | 9.19 | 1000.0 | 9.000 | L1 | ON | 19 | | 0.46 | 44.98 | | 56.64 | 11.66 | 1000.0 | 9.000 | L1 | ON | 19 | | 0.94 | 32.04 | | 56.00 | 23.96 | 1000.0 | 9.000 | L1 | ON | 19 | | 1.45 | | 23.39 | 46.00 | 22.61 | 1000.0 | 9.000 | L1 | ON | 19 | | 2.13 | 30.36 | | 56.00 | 25.64 | 1000.0 | 9.000 | L1 | ON | 19 | | 2.65 | | 21.65 | 46.00 | 24.35 | 1000.0 | 9.000 | L1 | ON | 19 | | 9.75 | 31.08 | | 60.00 | 28.92 | 1000.0 | 9.000 | L1 | ON | 19 | | 12.02 | | 25.84 | 50.00 | 24.16 | 1000.0 | 9.000 | L1 | ON | 19 | | 26.87 | 31.02 | | 60.00 | 28.98 | 1000.0 | 9.000 | L1 | ON | 20 | | 29.80 | | 26.00 | 50.00 | 24.00 | 1000.0 | 9.000 | L1 | ON | 20 | Remark: Correct factor=cable loss + LISN factor L line | Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Average<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Line | Filter | Corr.<br>(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.16 | | 38.96 | 55.63 | 16.67 | 1000.0 | 9.000 | N | ON | 19 | | 0.16 | 50.75 | | 65.52 | 14.77 | 1000.0 | 9.000 | N | ON | 19 | | 0.46 | | 37.71 | 46.77 | 9.06 | 1000.0 | 9.000 | N | ON | 19 | | 0.46 | 46.16 | | 56.64 | 10.48 | 1000.0 | 9.000 | N | ON | 19 | | 1.42 | | 26.86 | 46.00 | 19.14 | 1000.0 | 9.000 | N | ON | 19 | | 1.48 | 35.79 | | 56.00 | 20.21 | 1000.0 | 9.000 | N | ON | 19 | | 3.68 | | 28.37 | 46.00 | 17.63 | 1000.0 | 9.000 | N | ON | 19 | | 3.87 | 36.28 | | 56.00 | 19.72 | 1000.0 | 9.000 | N | ON | 19 | | 10.46 | | 29.48 | 50.00 | 20.52 | 1000.0 | 9.000 | N | ON | 19 | | 10.86 | 35.13 | | 60.00 | 24.87 | 1000.0 | 9.000 | N | ON | 19 | | 12.69 | | 29.25 | 50.00 | 20.75 | 1000.0 | 9.000 | N | ON | 19 | | 16.03 | 34.81 | | 60.00 | 25.19 | 1000.0 | 9.000 | N | ON | 19 | Remark: Correct factor=cable loss + LISN factor N line # 4 Main Test Instruments | Name | Manufacturer | Туре | Serial<br>Number | Calibration<br>Date | Expiration<br>Time | |----------------------------|--------------|-----------------------|------------------|---------------------|--------------------| | Spectrum<br>Analyzer | R&S | FSV40 | 15195-01-<br>00 | 2020-05-17 | 2021-05-16 | | EMI Test<br>Receiver | R&S | ESCI | 100948 | 2020-05-17 | 2021-05-16 | | Trilog Antenna | SCHWARZBECK | VULB 9163 | 391 | 2019-12-16 | 2021-12-15 | | Horn Antenna | R&S | HF907 | 102723 | 2018-08-11 | 2021-08-10 | | Horn Antenna | ETS-Lindgren | 3160-09 | 00102643 | 2018-06-20 | 2021-06-19 | | Standard Gain<br>Horn | STEATITE | QSH-SL-26-<br>40-K-15 | 16779 | 2019-12-24 | 2021-12-23 | | EMI Test<br>Receiver | R&S | ESR | 101667 | 2020-05-17 | 2021-05-16 | | LISN | R&S | ENV216 | 101171 | 2018-12-15 | 2021-12-14 | | Bore Sight<br>Antenna mast | ETS | 2171B | 00058752 | 1 | 1 | | Test software | EMC32 | R&S | 9.26.0 | 1 | 1 | \*\*\*\*\*\*END OF REPORT \*\*\*\*\*\* # **ANNEX A: The EUT Appearance** The EUT Appearance are submitted separately. # **ANNEX B: Test Setup Photos** The Test Setup Photos are submitted separately.