

2/F., Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong.

 Telephone:
 (852) 2173 8888

 Facsimile:
 (852) 2785 5487

 www.intertek.com

TEST REPORT

Report Number: 18101182HKG-001R3

Application for Original Grant of 47 CFR Part 15 Certification

Single New of RSS-247 Issue 2 Equipment

This report contains the data of 5GHz WLAN (WiFi) portion only.

FCC ID: AZ489FT7120

IC: 109U-89FT7120

This report supersedes previous report with report number 18101182HKG-001R2 dated April 02, 2019. Please refer HEE-S19-0020 Letter issued on April 08, 2019 for amendment/ supersede notification.

Tested, Prepared and Checked by:

Approved by:

Kelvin Liang Assistant Manager Shenzhen UnionTrust Quality and Technology Co., Ltd. Date: April 08, 2019 Lee Shui Tim, Tim Senior Lead Engineer Intertek Testing Services Hong Kong Date: April 08, 2019

Intertek's standard Terms and Conditions can be obtained at our website http://www.intertek.com/terms/.

The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

GENERAL INFORMATION

Motorola Solutions Inc. **Applicant Name: Applicant Address:** 8000 West Sunrise Boulevard, Fort Lauderdale, Florida 33322 **FCC Specification Standard:** FCC Part 15, October 1, 2017 Edition FCC ID: AZ489FT7120 FCC Model(s): Si200 Motorola Internal P/N: HKUN4120A **IC Specification Standard:** RSS-247 Issue 2, February 2017 RSS-Gen Issue 5, April 2018 IC: 109U-89FT7120 PMN: Si200 HVIN: HKUN4120A Type of EUT: Unlicensed National Information Infrastructure Devices **Description of EUT: Body Worn Camera** Serial Number: N/A Sample Receipt Date: October 29, 2018 December 08, 2018 to March 04, 2019 Date of Test: Shenzhen UnionTrust Quality and Technology Co., Ltd. **Place of Testing:** 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China. **Report Date:** April 08, 2019 **Environmental Conditions:** Temperature: +10 to 40°C Humidity: 10 to 90% **Conclusion:** Test was conducted by client submitted sample. The submitted sample as received complied with the 47 CFR Part 15 / RSS-247 Issue 2 Certification.

TABLE OF CONTENTS

1.0	TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE4		
	1.1 Summary of Test Results	4	
	1.2 Statement of Compliance	4	
2.0	GENERAL DESCRIPTION	5	
	2.1 Product Description	5	
	2.2 Test Methodology	7	
	2.3 Test Facility	7	
	2.4 Related Submittal(s) Grants	7	
3.0	SYSTEM TEST CONFIGURATION	8	
	3.1 Justification	8	
	3.2 EUT Exercising Software	9	
	3.3 Details of EUT and Description of Accessories	10	
	3.4 Measurement Uncertainty	10	
4.0	TEST RESULTS	11	
	4.1 Maximum Conducted (Avg) Output Power at Antenna Terminals	11	
	4.2 Minimum 6dB RF Bandwidth	16	
	4.3 26 dB Bandwidth & Occupied Bandwidth	18	
	4.3 Maximum Power Spectral Density	20	
	4.5 Field Strength Calculation	25	
	4.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions	26	
	4.6.1 Radiated Emission Configuration Photograph	26	
	4.6.2 Radiated Emission Data	26	
	4.6.3 Radiated Emission Test Setup	77	
	4.6.4 Transmitter Duty Cycle Calculation	78	
	4.7 AC Power Line Conducted Emission	81	
	4.7.1 AC Power Line Conducted Emission Configuration Photograph	81	
	4.7.2 AC Power Line Conducted Emission Data	81	
	4.7.3 Conducted Emission Test Setup		
	4.8 DFS Channel Shutdown and Non-occupancy period	85	
	4.9.1 Applicability of DFS requirement during normal operation	86	
	4.9.2 Response Requirements	87	
	4.9.3 Short pulse Radar test Wave forms		
	4.9.4 Calibration Setup and DFS Test Results		
	4.9.5 Radar Waveform Calibration Results	90	
	4.10.1 Test Procedures	91	
5.0	EQUIPMENT LIST	96	

1.0 TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE

1.1 Summary of Test Results

Test Items	FCC Part 15 Section	RSS-247/ RSS-Gen# Section	Results	Details See Section
Antenna Requirement	15.407(a)	6.2.1.1/ 6.2.2.1/ 6.2.3.1/ 6.2.4.1	Pass	2.1
Max. Conducted Output Power (Peak)	15.407(a)	6.2.1.1/ 6.2.2.1/ 6.2.3.1/ 6.2.4.1	Pass	4.1
Transmit Power Control (TPC)	15.407(h)	6.2.1.1/ 6.2.2.1/ 6.2.3.1/ 6.2.4.1	N/A	See Remark
Min. 6dB RF Bandwidth	15.407(e)	6.2.4.1	Pass	4.2
26 dB emission bandwidth	15.407(a)	6.2.1.2	Pass	4.3
Occupied Bandwidth	N/A	6.7	Pass	4.3
Max. Power Density (average)	15.407(a)	6.2.4.1	Pass	4.4
Radiated Emission in Restricted Bands and Spurious Emissions	15.407(b), 15.209 & 15.109	6.2.1.2/ 6.2.2.2/ 6.2.3.2/ 6.2.4.2	Pass	4.5
AC Power Line Conducted Emission	15.207 & 15.107	7.2.4 [#]	Pass	4.7
Dynamic Frequency Selection(DFS)	15.407	6.3.1	Pass	4.8

Remark: not applicable if the EUT is <500mW (27dBm)

Note: Pursuant to FCC Part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over expected variations in temperature and supply voltage were considered.

1.2 Statement of Compliance

The equipment under test is found to be complying with the following standard:

FCC Part 15, October 1, 2017 Edition RSS-247 Issue 2, February 2017 RSS-Gen Issue 5, April 2018

2.0 GENERAL DESCRIPTION

2.1 Product Description

The Si200 (HKUN4120A) is a Body Worn Camera and a Law enforcement recorder. It is the with Wireless Wi-Fi (802.11a/ac/b/g/n) connectivity, Bluetooth connectivity, The EUT was powered by 120AC adaptor.

For the WLAN (WiFi) module:

For 5.15-5.25GHz:

The Equipment Under Test (EUT) operates at frequency range of 5180MHz to 5240MHz with 4 channels. For 802.11a mode, it operates at frequency range of 5180.00MHz to 5250.000MHz with 4 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can be up to 54Mbps.

For 802.11n (with 20MHz bandwidth) mode, it operates at frequency range of 5180.00MHz to 5250.000MHz with 4 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 72.2Mbps.

For 802.11n (with 40MHz bandwidth) mode, it operates at frequency range of 5190.00MHz to 5230.000MHz with 2 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 150.0Mbps.

For 802.11ac (with 20MHz bandwidth) mode, it operates at frequency range of 5180.00MHz to 5250.000MHz with 4 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 86.7Mbps.

For 802.11ac (with 40MHz bandwidth) mode, it operates at frequency range of 5190.00MHz to 5230.000MHz with 2 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 200Mbps.

For 802.11ac (with 80MHz bandwidth) mode, it operates at frequency 5210MHz. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 433.3Mbps.

For 5.25-5.35GHz:

The Equipment Under Test (EUT) operates at frequency range of 5260MHz to 5320MHz with 4 channels.

For 802.11a mode, it operates at frequency range of 5260.00MHz to 5320.000MHz with 4 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can be up to 54Mbps.

For 802.11n (with 20MHz bandwidth) mode, it operates at frequency range of 5260MHz to 5320MHz with 4 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 72.2Mbps.

For 802.11n (with 40MHz bandwidth) mode, it operates at frequency range of 5270.00MHz to 5310.000MHz with 2 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 150Mbps.

For 802.11ac (with 20MHz bandwidth) mode, it operates at frequency range of 5260MHz to 5320MHz with 4 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 86.7Mbps.

For 802.11ac (with 40MHz bandwidth) mode, it operates at frequency range of 5270.00MHz to 5310.000MHz with 2 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 200Mbps.

For 802.11ac (with 80MHz bandwidth) mode, it operates at frequency 5290MHz. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 433.3Mbps.

For 5.47-5.725GHz:

The Equipment Under Test (EUT) operates at frequency range of 5500MHz to 5720MHz with 12 channels. For 802.11a mode, it operates at frequency range of 5500.00MHz to 5720.000MHz with 12 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can be up to 54Mbps.

For 802.11n (with 20MHz bandwidth) mode, it operates at frequency range of 5500MHz to 5720MHz with 12 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 72.2Mbps.

For 802.11n (with 40MHz bandwidth) mode, it operates at frequency range of 5510.00MHz to 5710.000MHz with 6 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 150Mbps.

For 802.11ac (with 20MHz bandwidth) mode, it operates at frequency range of 5500MHz to 5720MHz with 12 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 86.7Mbps.

For 802.11ac (with 40MHz bandwidth) mode, it operates at frequency range of 5510.00MHz to 5710.000MHz with 6 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 200Mbps.

For 802.11ac (with 80MHz bandwidth) mode, it operates at frequency range of 5530.00MHz to 5690.000MHz with 3 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 433.3Mbps.

For 5.725-5.850GHz:

The Equipment Under Test (EUT) operates at frequency range of 5745MHz to 5825MHz with 5 channels.

For 802.11a mode, it operates at frequency range of 5745.00MHz to 5825.000MHz with 5 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can be up to 54Mbps.

For 802.11n (with 20MHz bandwidth) mode, it operates at frequency range of 5745MHz to 5825MHz with 5 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 72.2Mbps.

For 802.11n (with 40MHz bandwidth) mode, it operates at frequency range of 5755.00MHz to 5795.000MHz with 2 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 150Mbps.

For 802.11ac (with 20MHz bandwidth) mode, it operates at frequency range of 5745MHz to 5825MHz with 5 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 86.7Mbps.

For 802.11ac (with 40MHz bandwidth) mode, it operates at frequency range of 5755.00MHz to 5795.000MHz with 2 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 200Mbps.

For 802.11ac (with 80MHz bandwidth) mode, it operates at frequency 5775.00MHz with 1 channel. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 433.3Mbps.

DFS description for 5250MHz to 5350MHz and 5470MHz to 5725MHz:

The operating mode of this device is Client mode without radar detection function. (IP based system) The Highest output power of this EUT is 10.82dBm.

This product equipped with single antenna in SISO mode and the antenna gain are stated as below:

5150-5250 MHz: Antenna Gain = 1.23 dBi 5250-5350 MHz: Antenna Gain = 3.01 dBi 5470-5725 MHz: Antenna Gain = 3.91 dBi 5725-5850 MHz: Antenna Gain = 2.99 dBi

2.2 Test Methodology

Both AC power line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Preliminary radiated scans and all radiated measurements were performed in radiated emission test sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application. Antenna port conducted measurements were performed according to ANSI C63.10 (2013) and KDB Publication No.789033 D02 v01r04 (02-May-2017) All other measurements were made in accordance with the procedures in 47 CFR Part 2 and RSS-Gen Issue 5 (2018).

2.3 Test Facility

The radiated emission test site and antenna port conducted measurement facility used to collect the radiated data and conductive data are at Shenzhen UnionTrust Quality and Technology Co., Ltd. (Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China). This test facility and site measurement data have been fully placed on file with the FCC and Industry Canada No.: 21600-1.

2.4 Related Submittal(s) Grants

This is a single application for certification of a transceiver (WiFi portion)

3.0 SYSTEM TEST CONFIGURATION

3.1 Justification

For radiated emissions testing, the equipment under test (EUT) was setup to transmit / receive continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst case emissions.

The EUT is power by 3.7VDC Li-ion battery (Motorola Internal P/N: PMNN4577A) and/or AC adaptor (100VAC to 240VAC, Model: MU15-X050300-C5) (Motorola Internal P/N: PS000277A01).

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable. If the base unit attached to peripherals, they were connected and operational (as typical as possible).

The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Radiated emissions were taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a pre-amplifier was used and/or the test was conducted at a closer distance.

For any intentional radiator powered by AC power line, measurements of the radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Radiated emission measurement for transmitter were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Emission that are directly caused by digital circuits in the transmit path and transmitter portion were measured, and the limit are according to FCC Part 15 Section 15.209 / RSS-247 2.5. Digital circuitries used to control additional functions other than the operation of the transmitter are subject to FCC Part 15 Section 15.109 / RSS-247 Section 5.5 Limits.

3.1 Justification – Cont'd

Detector function for radiated emissions was in peak mode. Average readings, when required, were taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 4.8.3.

Determination of pulse desensitization was made according to *Hewlett Packard Application Note 150-2, Spectrum Analysis… Pulsed RF.* The effective period (Teff) was referred to Exhibit 4.8.3. With the resolution bandwidth 1MHz and spectrum analyzer IF bandwidth 3dB, the pulse desensitization factor was 0dB.

For AC line conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50ohm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were manipulated to find the maximum emission.

Different data rates have been tested. Worst case is reported only.

All relevant operation modes have been tested, and the worst case data is included in this report.

All data rates were tested under normal mode of WiFi. Only the worst-case data is shown in the report for OFDM

3.2 EUT Exercising Software

The EUT exercise program (if any) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

3.3 Details of EUT and Description of Accessories

Details of EUT:

An AC adaptor (provided with the unit) was used to power the device. Their description are listed below.

(1) An AC adaptor (100VAC to 240VAC, Model: MU15-X050300-C5) (Provided by Client) (Motorola Internal P/N: PS000277A01)

Description of Accessories:

- (1) Swivel Belt Clip (Provided by Applicant) (Motorola Internal P/N: PMLN8220A)
- (2) Magnetic Clip (Provided by Applicant) (Motorola Internal P/N: PMLN8221A)

3.4 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test at a level of confidence of 95% has been considered. The values of the Measurement uncertainty:

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

4.0 TEST RESULTS

4.1 Maximum Conducted (Avg) Output Power at Antenna Terminals

RF Conduct Measurement Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

The antenna port of the EUT was connected to the input of a spectrum analyzer.

The antenna power of the EUT was connected to the input of a power meter. Power was read directly and cable loss correction was added to the reading to the obtain power at the EUT antenna terminals. The measurement procedure E.3.A (789033 D02 General UNII Test Procedures New Rules v01r04 Page 8) was used.

The EUT should be configured to transmit continuously (at a minimum duty cycle of 98%) at full power over the measurement duration. The measurement procedure AVG1 was used.

Frequency (MHz)	Conducted output power in dBm	Conducted output power in mWatt
5180	6.25	4.22
5220	6.31	4.28
5240	6.46	4.43
5260	6.06	4.04
5300	6.22	4.19
5320	6.27	4.24
5500	9.20	8.32
5580	9.40	8.71
5700	9.00	7.94
5720(U-NII-2C)	8.47	7.03
5720(U-NII-C)	1.77	1.50
5745	9.37	8.65
5785	9.02	7.98
5825	8.56	7.18

IEEE 802.11ac (20MHz) (MCSO) Antenna Gain = 1.23dBi (5150-5250 MHz),3.01 dBi (5250-5350 MHz),3.91 dBi (5470-5725 MHz), 2.99 dBi (5725-5850 MHz)

IEEE 802.11ac (40MHz) (MCS0) Antenna Gain = 1.23 dBi (5150-5250 MHz), 3.01dBi (5250-5350 MHz), 3.91 dBi (5470-5725 MHz), 2.99 dBi (5725-5850 MHz)

Frequency (MHz)	Conducted output power in dBm	Conducted output power in mWatt
5190	6.08	4.06
5230	6.12	4.09
5270	6.07	4.05
5310	6.21	4.18
5510	6.94	4.94
5550	6.99	5.00
5670	6.84	4.83
5710(N-UII-2C)	7.28	5.35
5710(N-UII-3)	-4.10	0.39
5755	8.53	7.13
5795	8.04	6.37

IEEE 802.11ac (80MHz) (MCSO) Antenna Gain = 1.23 dBi (5150-5250 MHz), 3.01 dBi (5250-5350 MHz), 3.91 dBi (5470-5725 MHz), 2.99 dBi (5725-5850 MHz)

Frequency (MHz)	Conducted output power in dBm	Conducted output power in mWatt
5210	5.29	3.38
5290	5.26	3.36
5530	6.13	4.10
5690(N-UII-2C)	6.55	4.52
5690(N-UII-3)	-8.36	0.15
5775	9.64	9.20

IEEE 802.11a (20MHz) (OFDM, 6 Mbps) Antenna Gain = 1.23 dBi (5150-5250 MHz), 3.01 dBi (5250-5350 MHz), 3.91 dBi (5470-5725 MHz), 2.99 dBi (5725-5850 MHz)

Frequency (MHz)	Conducted output power in dBm	Conducted output power in mWatt		
5180	6.67	4.65		
5220	6.76	4.74		
5240	6.89	4.89		
5260	6.34	4.31		
5300	6.56	4.53		
5320	6.55	4.52		
5500	9.88	9.73		
5580	9.88	9.73		
5700	9.41	8.73		
5720(N-UII-2C)	9.27	8.45		
5720(N-UII-3)	1.89	1.55		
5745	10.82	12.08		
5785	10.53	11.30		
5825	10.21	10.50		

IEEE 802.11n (20MHz) (OFDM, MCS0) Antenna Gain = 1.23 dBi (5150-5250 MHz), 3.01 dBi (5250-5350 MHz), 3.91 dBi (5470-5725 MHz), 2.99 dBi (5725-5850 MHz)

Frequency (MHz)	Conducted output power in dBm	Conducted output powein mWatt
5180	6.40	4.37
5220	6.46	4.43
5240	6.48	4.45
5260	5.97	3.95
5300	6.15	4.12
5320	6.40	4.37
5500	9.32	8.55
5580	9.22	8.36
5700	9.24	8.39
5720(N-UII-2C)	8.65	7.33
5720(N-UII-3)	0.99	1.26
5745	10.56	11.38
5785	10.22	10.52
5825	10.04	10.09

IEEE 802.11n (40MHz) (OFDM, MCSO) Antenna Gain =1.23 dBi (5150-5250 MHz),3.01 dBi (5250-5350 MHz),3.91 dBi (5470-5725 MHz),2.99 dBi (5725-5850 MHz)

Frequency (MHz)	Conducted output power in dBm	Conducted output power in mWatt		
5190	6.37	4.34		
5230	6.48	4.45		
5270	6.89	4.89		
5310	6.82	4.81		
5510	7.24	5.30		
5550	7.26	5.32		
5670	6.93	4.93		
5710(N-UII-2C)	7.54	5.68		
5710(N-UII-3)	-4.04	0.39		
5755	8.62	7.28		
5795	8.19	6.59		

For maximum e.i.r.p.

IEEE 802.11ac (20MHz) (MCS0) Antenna Gain = 1.23 dBi (5150-5250 MHz)

Frequency (MHz)	Conducted output	EIRP in dBm	EIRP
	power in dBm		in mWatt
5180	6.25	7.48	5.60
5220	6.31	7.54	5.68
5240	6.46	7.69	5.87

IEEE 802.11ac (40MHz) (MCS0) Antenna Gain = 1.23 dBi (5150-5250 MHz)

Frequency (MHz)	Conducted output power in dBm	EIRP in dBm	EIRP in mWatt
5190	6.08	7.31	5.38
5230	6.12	7.35	5.43

IEEE 802.11ac (80MHz) (MCS0) Antenna Gain =1.23 dBi (5150-5250 MHz)

Frequency (MHz)	Conducted output power in dBm	EIRP in dBm	EIRP in mWatt
5210	5.29	6.52	4.49
IEEE 802.11a	(20MHz) (OFDM, 6 Mbps) Ar	ntenna Gain = 1.23 dBi (515	50-5250 MHz)
Frequency (MHz)	Conducted output	EIRP in dBm	EIRP
	power in dBm		in mWatt
5180	6.67	7.9	6.17
5220	6.76	7.99	6.30
5240	6.89	8.12	6.49

IEEE 802.11n (20MHz) (OFDM, MCS0) Antenna Gain = 1.23 dBi (5150-5250 MHz

Frequency (MHz)	Conducted output power in dBm	EIRP in dBm	EIRP in mWatt
5180	6.40	7.63	5.79
5220	6.42	7.65	5.82
5240	6.48	7.71	5.90

IEEE 802.11n (40MHz) (OFDM, MCS0) Antenna Gain = 1.23 dBi (5150-5250 MHz)

Frequency (MHz)	Conducted output power in dBm	EIRP in dBm	EIRP in mWatt
5190	6.37	7.6	5.75
5230	6.48	7.71	5.90

Motorola Solutions Inc. Intertek Report No: 18101182HKG-001R3

TEST REPORT

Cable loss : 1.02 dB External Attenuation : 10 dB

Cable loss, external attenuation:

included in OFFSET function added to SA raw reading

IEEE 802.11ac (20MHz) (OFDM, MCS0) max. conducted output level = 6.46 dBm

IEEE 802.11ac (40MHz) (OFDM, MCS0) max. conducted output level = <u>6.12</u>dBm

IEEE 802.11ac (80MHz) (OFDM, MCS0) max. conducted output level = <u>5.29</u> dBm

IEEE 802.11a (20MHz) (OFDM, 6 Mbps) max. conducted output level = <u>6.89</u> dBm

IEEE 802.11n (20MHz) (OFDM, MCS0) max. conducted output level = <u>6.48</u> dBm

IEEE 802.11n (40MHz) (OFDM, MCS0) max. conducted output level = <u>6.48</u> dBm

Remark:

- 1. Maximum e.i.r.p = Maximum conducted output power + Duty Cycle Factor + Antenna Gain
- 2. Maximum conducted output power = Conducted output power + Duty Cycle Factor
- Duty cycle= On Time/ Period; Duty Cycle factor = 10 * log(1/ Duty cycle); Average factor = 20 log10 Duty Cycle.

4. Limits for FCC:

5150-5250MHz:

250mW (24dBm) for antennas with gains of 6dBi or less. (Client device)

5250-5350MHz:

250mW (24dBm)

5470-5725MHz:

250mW (24dBm)

5725-5850MHz:

1W (30dBm) for antennas with gains of 6dBi or less.

Limits for RSS: <u>5150-5250MHz:</u> 200mW (23dBm) for antennas with gains of 6dBi or less. <u>5250-5350MHz:</u> 250mW (24dBm) <u>5470-5725MHz:</u> 250mW (24dBm) <u>5725-5850MHz:</u> 1W (30dBm) for antennas with gains of 6dBi or less.

4.2 Minimum 6dB RF Bandwidth

The antenna port of the EUT was connected to the input of a spectrum analyzer. The EBW measurement procedure was used. A PEAK output reading was taken, a DISPLAY line was drawn 6dB lower than PEAK level. The 6dB bandwidth was determined from where the channel output spectrum intersected the display line.

IEEE 802.11ac (2	20MHz) (MCS0)	
Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)
5720(U-NII-3)	3.74	N/A
5745	17.56	17.652
5785	17.32	17.644
5825	17.34	17.651

c (40MHz) (MCS0)	
6dB Bandwidth (MHz)	99% Bandwidth (MHz)
3.12	N/A
35.93	36.051
35.92	36.046
	c (40MHz) (MCS0) 6dB Bandwidth (MHz) 3.12 35.93 35.92

IEEE 802.11ac (80MHz) (MCS0)		
Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)
5690(U-NII-3)	2.55	N/A
5775	75.49	75.307

IEEE 802.11a (20MHz) (OFDM, 6Mbps)

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)
5720(U-NII-3)	3.12	N/A
5745	16.35	16.461
5785	16.35	16.477
5825	16.35	16.451

IEEE 802.11n (40MHz) (OFDM, MCS0)

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)
5710(U-NII-3)	3.11	N/A
5755	35.67	36.044
5795	35.93	36.049

IEEE 802.11n (20MHz) (OFDM, MCSO)

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)
5720(U-NII-3)	3.75	N/A
5745	17.07	17.660
5785	17.57	17.644
5825	17.31	17.701

Limits:

For 5725-5850MHz:

6 dB bandwidth shall be at least 500kHz

The plots of 6dB RF bandwidth and occupied bandwidth are saved with filename: OBW DATA.pdf

4.3 26 dB Bandwidth & Occupied Bandwidth

The antenna port of the EUT was connected to the input of a spectrum analyser. The EBW measurement procedure was used. A PEAK output reading was taken, a DISPLAY line was drawn 26dB lower than PEAK level. The 26dB bandwidth was determined from where the channel output spectrum intersected the display line.

IEEE 802.11ac (20MHz) (MCS0)		
Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
5180	21.85	17.98
5220	21.75	18.02
5240	21.40	17.93
5260	21.76	17.99
5300	21.72	17.97
5320	21.49	17.99
5500	21.69	17.95
5580	21.57	17.95
5700	21.58	18.00
5720	21.47	17.91

IEEE 802.11ac (40MHz) (MCS0)

Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
5190	40.01	36.21
5230	39.84	36.29
5270	39.87	36.27
5310	39.83	36.30
5510	39.95	36.24
5550	39.89	36.25
5670	39.96	36.30
5710	39.89	36.28

IEEE 802.11ac (80MHz) (MCS0)

Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
5210	81.59	75.51
5290	82.24	75.50
5530	81.78	75.38
5690	81.05	75.45

Motorola Solutions Inc. Intertek Report No: 18101182HKG-001R3

TEST REPORT

IEEE 802.11a (20M	Hz) (OFDM, 6Mbps)	
Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
5180	21.36	16.91
5220	21.17	16.88
5240	21.32	16.89
5260	21.29	16.93
5300	21.41	16.89
5320	21.45	16.87
5500	21.26	16.89
5580	21.35	16.89
5700	21.26	16.89
5720	21.18	16.92

IEEE 802.11n (20MHz) (OFDM, MCS0)		
Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
5180	21.73	17.97
5220	21.50	17.97
5240	21.56	17.98
5260	21.57	17.95
5300	21.71	17.96
5320	21.89	18.00
5500	21.35	17.95
5580	21.56	17.94
5700	21.61	17.98
5720	21.54	17.96

IEEE 802.11N (40MHz) (OFDM, MCS0)

Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
5190	40.10	36.32
5230	39.86	36.33
5270	39.99	36.34
5310	40.06	36.31
5510	40.23	36.28
5550	39.90	36.27
5670	39.70	36.31
5710	39.81	36.26

4.4 Maximum Power Spectral Density

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyser according to the following Settings:

1. For U-NII-1, U-NII-2A, U-NII-2C band:

Using method SA-2

a) Set span to encompass the entire emission bandwidth (EBW) of the signal.

b) Set RBW = 1 MHz, Set VBW ≥ 3 RBW, Detector = RMS

c) Sweep time = auto, trigger set to "free run".

d) Trace average at least 100 traces in power averaging mode.

e) Record the max value and add 10 log (1/duty cycle)

2. For U-NII-3 band:

a) Set span to encompass the entire emission bandwidth (EBW) of the signal.

b) Set RBW = 500 kHz, Set VBW ≥ 3 RBW, Detector = RMS

c) Use the peak marker function to determine the maximum power level in any 500 kHz band segment within the fundamental EBW.

d) Sweep time = auto, trigger set to "free run".

e) Trace average at least 100 traces in power averaging mode.

f) Record the max value and add 10 log (1/duty cycle)

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

IEEE 802.11a (20MHz) (OFDM, 6 Mbps)			
Frequency (MHz)	Conducted		
	PSD in 1MHz (dBm)		
5180	-3.336		
5220	-3.169		
5240	-2.828		
5260	-3.069		
5300	-3.314		
5320	-3.133		
5500	-0.456		
5580	-0.073		
5700	0.038		
5720(U-NII-2C)	0.124		
Frequency (MHz)	Conducted		
	PSD in 500kHz (dBm)		
5745	-1.388		
5785	-1.905		
5825	-1.780		
5720(U-NII-3)	-5.632		

Motorola Solutions Inc. Intertek Report No: 18101182HKG-001R3

TEST REPORT

IEEE 802.11ac (20MHz) (MCS0)

Frequency (MHz)	Conducted PSD in 1MHz (dBm)
5180	-3.848
5220	-3.845
5240	-3.574
5260	-4.007
5300	-3.861
5320	-3.883
5500	-0.893
5580	-0.718
5700	-0.696
5720(U-NII-2C)	-0.905
Frequency (MHz)	Conducted
	PSD in 500kHz (dBm)
5745	-3.155
5785	-3.217
5825	-3.560
5720(U-NII-3)	-6.145

IEEE 802.11ac (40MHz) (MCS0)

Frequency (MHz)	Conducted
	PSD in 1MHz (dBm)
5190	-6.272
5230	-6.238
5270	-6.438
5310	-6.601
5510	-7.113
5550	-7.535
5670	-6.624
5710(U-NII-2C)	-5.623
Frequency (MHz)	Conducted
	PSD in 500kHz (dBm)
5755	-7.372
5795	-7.437
5710(U-NII-3)	-11.2

IEEE 802.11ac (80MHz) (MCS0)

Frequency (MHz)	Conducted PSD in 1MHz (dBm)
5210	-9.596
5290	-9.670
5530	-10.473
5680(U-NII-2C)	-9.331
Frequency (MHz)	Conducted
	PSD in 500kHz (dBm)
5775	-8.292
5680(U-NII-3)	-15.490

	IEEE 802.11n (20MHz) (OFDM, MCS0)
Frequency (MHz)	Conducted
	PSD in 1MHz (dBm)
5180	-3.635
5220	-3.869
5240	-3.742
5260	-3.810
5300	-3.861
5320	-3.802
5500	-0.824
5580	-0.475
5700	-0.582
5720(U-NII-2C)	-0.877
Frequency (MHz)	Conducted
	PSD in 500kHz (dBm)
5745	-2.049
5785	-2.193
5825	-2.371
5720(U-NII-3)	-5.833

Motorola Solutions Inc. Intertek Report No: 18101182HKG-001R3

TEST REPORT

IEEE 802.11n (40MHz) (OFDM, MCSO)

Frequency (MHz)	Conducted
	PSD in 1MHz (dBm)
5190	-6.039
5230	-6.242
5270	-6.321
5310	-6.429
5510	-6.893
5550	-6.222
5670	-5.504
5710(U-NII-2C)	-5.190
Frequency (MHz)	Conducted
	PSD in 500kHz (dBm)
5755	-7.076
5795	-6.802
5710(U-NII-3)	-11.055

For maximum e.i.r.p.

IEEE 802.11a (20MHz) (OFDM, 6 Mbps)			
Frequency (MHz)	EIRP		
	PSD in 1MHz (dBm)		
5180	-2.106		
5220	-1.939		
5240	-1.598		

IEEE 802.11ac (20MHz) (MCS0)

Frequency (MHz)	EIRP	
	PSD in 1MHz (dBm)	
5180	-2.618	
5220	-2.615	
5240	-2.344	

IEEE 802.11ac (40MHz) (MCS0)

Frequency (MHz)	EIRP	
	PSD in 1MHz (dBm)	
5190	-5.042	
5230	-5.008	

IEEE 802.11ac (80MHz) (MCS0) Frequency (MHz) EIRP PSD in 1MHz (dBm)

5210	-8.366

IEEE 802.11n (20MHz) (OFDM, MCS0)

Frequency (MHz)	EIRP
	PSD in 1MHz (dBm)
5180	-2.405
5220	-2.639
5240	-2.512

IEEE 802.11n (40MHz) (OFDM, MCS0)

Frequency (MHz)	EIRP PSD in 1MHz (dBm)
5190	-4.809
5230	-5.012

Remark:

- 1. Cable Loss: 1.02 dB
- 2. **Error! Reference source not found.**e.i.r.p. spectral density = Power spectral density + Duty Cycle Factor + Antenna Gain
- 3. Power spectral density = Conducted power spectral density + Duty Cycle Factor
- Duty cycle= On Time/ Period;
 Duty Cycle factor = 10 * log(1/ Duty cycle);
 Average factor = 20 log10 Duty Cycle.
- 5. Limit:

For U-NII-1:

FCC:

11dBm/MHz for mobile/portable device.

RSS:

10dBm/MHz E.I.R.P

- For U-NII-2:
- FCC:

11dBm/MHz RSS:

11dBm/MHz

For U-NII-3:

FCC:

30dBm/500kHz. RSS: 30dBm/500kHz.

The test data are saved with filename: PSD DATA.pdf

4.5 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBμV
CF = Cable Attenuation Factor in dB
AF = Antenna Factor in dB
AG = Amplifier Gain in dB
PD = Pulse Desensitization in dB
AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

<u>Example</u>

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29.0 dB is subtracted. The pulse desensitization factor of the spectrum analyzer is 0.0 dB, and the resultant average factor is -10.0 dB. The net field strength for comparison to the appropriate emission limit is 32.0 dB μ V/m. This value in dB μ V/m is converted to its corresponding level in μ V/m.

RA = 62.0 dBµV AF = 7.4 dB CF = 1.6 dB AG = 29.0 dB PD = 0.0 dB AV = -10 dB

 $FS = 62.0 + 7.4 + 1.6 - 29.0 + 0.0 + (-10.0) = 32.0 \text{ dB}\mu\text{V/m}$

Level in μ V/m = Common Antilogarithm [(32.0 dB μ V/m)/20] = 39.8 μ V/m

4.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

4.6.1 Radiated Emission Configuration Photograph

Worst Case Restricted Band Radiated Emission

at

5470 MHz

The worst case radiated emission configuration photographs are saved with filename: config photos.pdf

4.6.2 Radiated Emission Data

The data in below tables list the significant emission frequencies, the limit and the margin of compliance.

Judgement -

Passed by 3.75 dB margin

RADIATED EMISSION DATA

Table 1
IEEE 802.11A (20MHz) (OFDM,6MBs)

Radiated Emission Test Data (Above 1GHz):								
IEEE 802.11 a	IEEE 802.11a_Channel 36							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis		
1	10360.00	51.49	74.00	-22.51	Peak	Horizontal		
2	10360.00	39.41	54.00	-14.59	Average	Horizontal		
3	15540.00	48.41	74.00	-25.59	Peak	Horizontal		
4	15540.00	36.57	54.00	-17.43	Average	Horizontal		
5	10360.00	49.71	74.00	-24.29	Peak	Vertical		
6	10360.00	37.70	54.00	-16.30	Average	Vertical		
7	15540.00	50.04	74.00	-23.96	Peak	Vertical		
8	15540.00	37.51	54.00	-16.49	Average	Vertical		

IEEE 802.11a_Channel 44							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis	
1	10440.00	52.45	74.00	-21.55	Peak	Horizontal	
2	10440.00	39.94	54.00	-14.06	Average	Horizontal	
3	15660.00	49.40	74.00	-24.60	Peak	Horizontal	
4	15660.00	36.95	54.00	-17.05	Average	Horizontal	
5	10440.00	49.10	74.00	-24.90	Peak	Vertical	
6	10440.00	37.38	54.00	-16.62	Average	Vertical	
7	15660.00	49.70	74.00	-24.30	Peak	Vertical	
8	15660.00	37.28	54.00	-16.72	Average	Vertical	

IEEE 802.11a_Channel 48							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis	
1	10480.00	51.27	74.00	-22.73	Peak	Horizontal	
2	10480.00	39.46	54.00	-14.54	Average	Horizontal	
3	15720.00	48.80	74.00	-25.20	Peak	Horizontal	
4	15720.00	36.55	54.00	-17.45	Average	Horizontal	
5	10480.00	50.05	74.00	-23.95	Peak	Vertical	
6	10480.00	37.23	54.00	-16.77	Average	Vertical	
7	15720.00	50.03	74.00	-23.97	Peak	Vertical	
8	15720.00	37.40	54.00	-16.60	Average	Vertical	

IEEE 802.11a_Channel 52							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis	
1	10520.00	52.51	74.00	-21.49	Peak	Horizontal	
2	10520.00	39.69	54.00	-14.31	Average	Horizontal	
3	15780.00	48.25	74.00	-25.75	Peak	Horizontal	
4	15780.00	36.62	54.00	-17.38	Average	Horizontal	
5	10520.00	49.12	74.00	-24.88	Peak	Vertical	
6	10520.00	37.41	54.00	-16.59	Average	Vertical	
7	15780.00	49.30	74.00	-24.70	Peak	Vertical	
8	15780.00	37.55	54.00	-16.45	Average	Vertical	

IEEE 802.11a_Channel 60							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis	
1	10600.00	52.37	74.00	-21.63	Peak	Horizontal	
2	10600.00	39.82	54.00	-14.18	Average	Horizontal	
3	15900.00	49.08	74.00	-24.92	Peak	Horizontal	
4	15900.00	37.38	54.00	-16.62	Average	Horizontal	
5	10600.00	49.16	74.00	-24.84	Peak	Vertical	
6	10600.00	37.70	54.00	-16.30	Average	Vertical	
7	15900.00	50.29	74.00	-23.71	Peak	Vertical	
8	15900.00	38.45	54.00	-15.55	Average	Vertical	

IEEE 802.11a_Channel 64							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis	
1	10640.00	52.83	74.00	-21.17	Peak	Horizontal	
2	10640.00	39.87	54.00	-14.13	Average	Horizontal	
3	15960.00	49.56	74.00	-24.44	Peak	Horizontal	
4	15960.00	37.15	54.00	-16.85	Average	Horizontal	
5	10640.00	49.10	74.00	-24.90	Peak	Vertical	
6	10640.00	37.87	54.00	-16.13	Average	Vertical	
7	15960.00	51.34	74.00	-22.66	Peak	Vertical	
8	15960.00	38.23	54.00	-15.77	Average	Vertical	

IEEE 802.11a_Channel 100							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis	
1	11000.00	51.07	74.00	-22.93	Peak	Horizontal	
2	11000.00	39.08	54.00	-14.92	Average	Horizontal	
3	16500.00	50.51	74.00	-23.49	Peak	Horizontal	
4	16500.00	38.53	54.00	-15.47	Average	Horizontal	
5	11000.00	49.12	74.00	-24.88	Peak	Vertical	
6	11000.00	37.28	54.00	-16.72	Average	Vertical	
7	16500.00	50.81	74.00	-23.19	Peak	Vertical	
8	16500.00	38.79	54.00	-15.21	Average	Vertical	

IEEE 802.11a_Channel 116

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	11160.00	51.04	74.00	-22.96	Peak	Horizontal
2	11160.00	38.45	54.00	-15.55	Average	Horizontal
3	16740.00	50.51	74.00	-23.49	Peak	Horizontal
4	16740.00	38.76	54.00	-15.24	Average	Horizontal
5	11160.00	49.39	74.00	-24.61	Peak	Vertical
6	11160.00	36.73	54.00	-17.27	Average	Vertical
7	16740.00	50.73	74.00	-23.27	Peak	Vertical
8	16740.00	38.59	54.00	-15.41	Average	Vertical

IEEE 802.11a_Channel 140

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	11400.00	50.91	74.00	-23.09	Peak	Horizontal
2	11400.00	39.06	54.00	-14.94	Average	Horizontal
3	17100.00	51.22	74.00	-22.78	Peak	Horizontal
4	17100.00	38.72	54.00	-15.28	Average	Horizontal
5	11400.00	48.75	74.00	-25.25	Peak	Vertical
6	11400.00	37.55	54.00	-16.45	Average	Vertical
7	17100.00	50.09	74.00	-23.91	Peak	Vertical
8	17100.00	37.91	54.00	-16.09	Average	Vertical

IEEE 802.11a_Channel 144

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	11440.00	50.89	74.00	-23.11	Peak	Horizontal
2	11440.00	38.27	54.00	-15.73	Average	Horizontal
3	17160.00	49.67	74.00	-24.33	Peak	Horizontal
4	17160.00	37.39	54.00	-16.61	Average	Horizontal
5	11440.00	49.49	74.00	-24.51	Peak	Vertical
6	11440.00	37.77	54.00	-16.23	Average	Vertical
7	17160.00	49.56	74.00	-24.44	Peak	Vertical
8	17160.00	37.32	54.00	-16.68	Average	Vertical

IEEE 802.11a_Channel 149							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis	
1	11490.00	50.83	74.00	-23.17	Peak	Horizontal	
2	11490.00	38.58	54.00	-15.42	Average	Horizontal	
3	17235.00	55.44	74.00	-18.56	Peak	Horizontal	
4	17235.00	39.61	54.00	-14.39	Average	Horizontal	
5	11490.00	49.34	74.00	-24.66	Peak	Vertical	
6	11490.00	37.33	54.00	-16.67	Average	Vertical	
7	17235.00	57.77	74.00	-16.23	Peak	Vertical	
8	17235.00	38.45	54.00	-15.55	Average	Vertical	

IEEE 802.11a_Channel 157							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis	
1	11570.00	50.81	74.00	-23.19	Peak	Horizontal	
2	11570.00	38.34	54.00	-15.66	Average	Horizontal	
3	17355.00	57.44	74.00	-16.56	Peak	Horizontal	
4	17355.00	40.34	54.00	-13.66	Average	Horizontal	
5	11570.00	49.05	74.00	-24.95	Peak	Vertical	
6	11570.00	36.88	54.00	-17.12	Average	Vertical	
7	17355.00	54.53	74.00	-19.47	Peak	Vertical	
8	17355.00	39.36	54.00	-14.64	Average	Vertical	

IEEE 802.11a_Channel 165						
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	11650.00	51.00	74.00	-23.00	Peak	Horizontal
2	11650.00	38.75	54.00	-15.25	Average	Horizontal
3	17475.00	54.20	74.00	-19.80	Peak	Horizontal
4	17475.00	40.10	54.00	-13.90	Average	Horizontal
5	11650.00	49.51	74.00	-24.49	Peak	Vertical
6	11650.00	37.71	54.00	-16.29	Average	Vertical
7	17475.00	54.24	74.00	-19.76	Peak	Vertical
8	17475.00	39.05	54.00	-14.95	Average	Vertical

NOTES: 1. Peak detector is used for the emission measurement.

- 2. Average detector is used for the average data of emission measurement.
- 3. All measurements were made at 3 meters. Radiated emissions not detected at the 3meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emission (the row indicated by **bold italic**) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Table 2
IEEE 802.11N (20MHz) (MCS0)

Radiated Emission Test Data (Above 1GHz):								
IEEE 802.11n-HT20_Channel 36								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis		
1	10360.00	52.23	74.00	-21.77	Peak	Horizontal		
2	10360.00	40.11	54.00	-13.89	Average	Horizontal		
3	15540.00	48.89	74.00	-25.11	Peak	Horizontal		
4	15540.00	36.94	54.00	-17.06	Average	Horizontal		
5	10360.00	50.03	74.00	-23.97	Peak	Vertical		
6	10360.00	38.19	54.00	-15.81	Average	Vertical		
7	15540.00	50.04	74.00	-23.96	Peak	Vertical		
8	15540.00	37.87	54.00	-16.13	Average	Vertical		

IEEE 802.11n-HT20_Channel 44

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	10440.00	52.40	74.00	-21.60	Peak	Horizontal
2	10440.00	40.51	54.00	-13.49	Average	Horizontal
3	15660.00	48.73	74.00	-25.27	Peak	Horizontal
4	15660.00	36.95	54.00	-17.05	Average	Horizontal
5	10440.00	49.75	74.00	-24.25	Peak	Vertical
6	10440.00	38.47	54.00	-15.53	Average	Vertical
7	15660.00	50.40	74.00	-23.60	Peak	Vertical
8	15660.00	38.17	54.00	-15.83	Average	Vertical

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	10480.00	52.57	74.00	-21.43	Peak	Horizontal
2	10480.00	40.07	54.00	-13.93	Average	Horizontal
3	15720.00	49.54	74.00	-24.46	Peak	Horizontal
4	15720.00	36.47	54.00	-17.53	Average	Horizontal
5	10480.00	50.56	74.00	-23.44	Peak	Vertical
6	10480.00	38.13	54.00	-15.87	Average	Vertical
7	15720.00	50.16	74.00	-23.84	Peak	Vertical
8	15720.00	37.71	54.00	-16.29	Average	Vertical

TEST REPORT

IEEE 802.11n-HT20_Channel 52								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis		
1	10520.00	52.03	74.00	-21.97	Peak	Horizontal		
2	10520.00	40.23	54.00	-13.77	Average	Horizontal		
3	15780.00	49.61	74.00	-24.39	Peak	Horizontal		
4	15780.00	36.62	54.00	-17.38	Average	Horizontal		
5	10520.00	49.93	74.00	-24.07	Peak	Vertical		
6	10520.00	38.29	54.00	-15.71	Average	Vertical		
7	15780.00	50.89	74.00	-23.11	Peak	Vertical		
8	15780.00	37.78	54.00	-16.22	Average	Vertical		

IEEE 802.11n-HT20_Channel 60

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	10600.00	51.95	74.00	-22.05	Peak	Horizontal
2	10600.00	40.09	54.00	-13.91	Average	Horizontal
3	15900.00	49.06	74.00	-24.94	Peak	Horizontal
4	15900.00	37.08	54.00	-16.92	Average	Horizontal
5	10600.00	50.36	74.00	-23.64	Peak	Vertical
6	10600.00	38.24	54.00	-15.76	Average	Vertical
7	15900.00	50.46	74.00	-23.54	Peak	Vertical
8	15900.00	38.15	54.00	-15.85	Average	Vertical

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	10640.00	51.83	74.00	-22.17	Peak	Horizontal
2	10640.00	39.54	54.00	-14.46	Average	Horizontal
3	15960.00	49.05	74.00	-24.95	Peak	Horizontal
4	15960.00	36.35	54.00	-17.65	Average	Horizontal
5	10640.00	49.59	74.00	-24.41	Peak	Vertical
6	10640.00	37.76	54.00	-16.24	Average	Vertical
7	15960.00	49.19	74.00	-24.81	Peak	Vertical
8	15960.00	37.10	54.00	-16.90	Average	Vertical

TEST REPORT

IEEE 802.11n-HT20_Channel 100								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis		
1	11000.00	50.45	74.00	-23.55	Peak	Horizontal		
2	11000.00	38.65	54.00	-15.35	Average	Horizontal		
3	16500.00	49.38	74.00	-24.62	Peak	Horizontal		
4	16500.00	36.96	54.00	-17.04	Average	Horizontal		
5	11000.00	49.01	74.00	-24.99	Peak	Vertical		
6	11000.00	37.01	54.00	-16.99	Average	Vertical		
7	16500.00	49.32	74.00	-24.68	Peak	Vertical		
8	16500.00	37.16	54.00	-16.84	Average	Vertical		

IEEE 802.11n-HT20_Channel 116

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	11160.00	50.03	74.00	-23.97	Peak	Horizontal
2	11160.00	38.06	54.00	-15.94	Average	Horizontal
3	16740.00	49.34	74.00	-24.66	Peak	Horizontal
4	16740.00	37.35	54.00	-16.65	Average	Horizontal
5	11160.00	48.31	74.00	-25.69	Peak	Vertical
6	11160.00	36.34	54.00	-17.66	Average	Vertical
7	16740.00	49.40	74.00	-24.60	Peak	Vertical
8	16740.00	36.99	54.00	-17.01	Average	Vertical

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	11400.00	50.86	74.00	-23.14	Peak	Horizontal
2	11400.00	38.49	54.00	-15.51	Average	Horizontal
3	17100.00	48.57	74.00	-25.43	Peak	Horizontal
4	17100.00	36.30	54.00	-17.70	Average	Horizontal
5	11400.00	49.66	74.00	-24.34	Peak	Vertical
6	11400.00	37.09	54.00	-16.91	Average	Vertical
7	17100.00	47.32	74.00	-26.68	Peak	Vertical
8	17100.00	35.54	54.00	-18.46	Average	Vertical

TEST REPORT

IEEE 802.11n-HT20_Channel 144								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis		
1	11440.00	51.29	74.00	-22.71	Peak	Horizontal		
2	11440.00	39.40	54.00	-14.60	Average	Horizontal		
3	17160.00	50.34	74.00	-23.66	Peak	Horizontal		
4	17160.00	38.30	54.00	-15.70	Average	Horizontal		
5	11440.00	49.58	74.00	-24.42	Peak	Vertical		
6	11440.00	37.58	54.00	-16.42	Average	Vertical		
7	17160.00	49.73	74.00	-24.27	Peak	Vertical		
8	17160.00	37.23	54.00	-16.77	Average	Vertical		

IEEE 802.11n-HT20_Channel 149

	_					
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	11490.00	50.87	74.00	-23.13	Peak	Horizontal
2	11490.00	38.31	54.00	-15.69	Average	Horizontal
3	17235.00	49.76	74.00	-24.24	Peak	Horizontal
4	17235.00	37.62	54.00	-16.38	Average	Horizontal
5	11490.00	49.09	74.00	-24.91	Peak	Vertical
6	11490.00	36.57	54.00	-17.43	Average	Vertical
7	17235.00	51.10	74.00	-22.90	Peak	Vertical
8	17235.00	36.64	54.00	-17.36	Average	Vertical

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	11570.00	50.01	74.00	-23.99	Peak	Horizontal
2	11570.00	37.89	54.00	-16.11	Average	Horizontal
3	17355.00	54.60	74.00	-19.40	Peak	Horizontal
4	17355.00	38.61	54.00	-15.39	Average	Horizontal
5	11570.00	47.87	74.00	-26.13	Peak	Vertical
6	11570.00	36.54	54.00	-17.46	Average	Vertical
7	17355.00	50.11	74.00	-23.89	Peak	Vertical
8	17355.00	38.13	54.00	-15.87	Average	Vertical

IEEE 802.11n-HT20_Channel 165							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis	
1	11650.00	50.16	74.00	-23.84	Peak	Horizontal	
2	11650.00	38.20	54.00	-15.80	Average	Horizontal	
3	17475.00	51.54	74.00	-22.46	Peak	Horizontal	
4	17475.00	39.00	54.00	-15.00	Average	Horizontal	
5	11650.00	49.05	74.00	-24.95	Peak	Vertical	
6	11650.00	37.23	54.00	-16.77	Average	Vertical	
7	17475.00	53.00	74.00	-21.00	Peak	Vertical	
8	17475.00	38.10	54.00	-15.90	Average	Vertical	

- NOTES: 1. Peak detector is used for the emission measurement.
 - 2. Average detector is used for the average data of emission measurement
 - 3. All measurements were made at 3 meters. Radiated emissions not detected at the 3meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
 - 4. Negative value in the margin column shows emission below limit.
 - 5. Horn antenna is used for the emission over 1000MHz.
 - 6. Emission (the row indicated by **bold italic**) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
 - 7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
 - 8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth

Table 3 Frequency: 5190MHz IEEE 802.11n (40MHz) (MCS0)

IEEE 802.11n-HT40_Channel 38							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis	
1	10380.00	51.05	74.00	-22.95	Peak	Horizontal	
2	10380.00	39.47	54.00	-14.53	Average	Horizontal	
3	15570.00	47.98	74.00	-26.02	Peak	Horizontal	
4	15570.00	35.87	54.00	-18.13	Average	Horizontal	
5	10380.00	49.91	74.00	-24.09	Peak	Vertical	
6	10380.00	37.70	54.00	-16.30	Average	Vertical	
7	15570.00	47.97	74.00	-26.03	Peak	Vertical	
8	15570.00	35.79	54.00	-18.21	Average	Vertical	

IEEE 802.11n-HT40_Channel 46

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	10460.00	52.55	74.00	-21.45	Peak	Horizontal
2	10460.00	40.51	54.00	-13.49	Average	Horizontal
3	15690.00	49.22	74.00	-24.78	Peak	Horizontal
4	15690.00	37.09	54.00	-16.91	Average	Horizontal
5	10460.00	49.95	74.00	-24.05	Peak	Vertical
6	10460.00	38.37	54.00	-15.63	Average	Vertical
7	15690.00	50.12	74.00	-23.88	Peak	Vertical
8	15690.00	38.02	54.00	-15.98	Average	Vertical

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	10540.00	51.77	74.00	-22.23	Peak	Horizontal
2	10540.00	40.16	54.00	-13.84	Average	Horizontal
3	15810.00	49.04	74.00	-24.96	Peak	Horizontal
4	15810.00	36.90	54.00	-17.10	Average	Horizontal
5	10540.00	49.97	74.00	-24.03	Peak	Vertical
6	10540.00	38.24	54.00	-15.76	Average	Vertical
7	15810.00	51.05	74.00	-22.95	Peak	Vertical
8	15810.00	37.90	54.00	-16.10	Average	Vertical

TEST REPORT

IEEE 802.11n-HT40_Channel 62							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis	
1	10620.00	52.15	74.00	-21.85	Peak	Horizontal	
2	10620.00	40.19	54.00	-13.81	Average	Horizontal	
3	15930.00	49.62	74.00	-24.38	Peak	Horizontal	
4	15930.00	37.38	54.00	-16.62	Average	Horizontal	
5	10620.00	50.39	74.00	-23.61	Peak	Vertical	
6	10620.00	38.45	54.00	-15.55	Average	Vertical	
7	15930.00	50.75	74.00	-23.25	Peak	Vertical	
8	15930.00	38.60	54.00	-15.40	Average	Vertical	

IEEE 802.11n-HT40_Channel 102

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	11020.00	51.68	74.00	-22.32	Peak	Horizontal
2	11020.00	39.29	54.00	-14.71	Average	Horizontal
3	16530.00	51.06	74.00	-22.94	Peak	Horizontal
4	16530.00	38.45	54.00	-15.55	Average	Horizontal
5	11020.00	49.77	74.00	-24.23	Peak	Vertical
6	11020.00	37.54	54.00	-16.46	Average	Vertical
7	16530.00	50.93	74.00	-23.07	Peak	Vertical
8	16530.00	38.55	54.00	-15.45	Average	Vertical

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	11340.00	51.71	74.00	-22.29	Peak	Horizontal
2	11340.00	39.14	54.00	-14.86	Average	Horizontal
3	17010.00	50.92	74.00	-23.08	Peak	Horizontal
4	17010.00	37.85	54.00	-16.15	Average	Horizontal
5	11340.00	49.17	74.00	-24.83	Peak	Vertical
6	11340.00	37.54	54.00	-16.46	Average	Vertical
7	17010.00	49.09	74.00	-24.91	Peak	Vertical
8	17010.00	37.01	54.00	-16.99	Average	Vertical

TEST REPORT

IEEE 802.11n-HT40_Channel 142							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Detector	
1	11420.00	51.60	74.00	-22.40	Peak	Horizontal	
2	11420.00	39.21	54.00	-14.79	Average	Horizontal	
3	17130.00	51.05	74.00	-22.95	Peak	Horizontal	
4	17130.00	37.81	54.00	-16.19	Average	Horizontal	
5	11420.00	49.49	74.00	-24.51	Peak	Vertical	
6	11420.00	37.74	54.00	-16.26	Average	Vertical	
7	17130.00	49.99	74.00	-24.01	Peak	Vertical	
8	17130.00	37.08	54.00	-16.92	Average	Vertical	

IEEE 802.11	IEEE 802.11n-HT40_Channel 151							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Detector		
1	11510.00	51.37	74.00	-22.63	Peak	Horizontal		
2	11510.00	38.74	54.00	-15.26	Average	Horizontal		
3	17265.00	51.62	74.00	-22.38	Peak	Horizontal		
4	17265.00	39.22	54.00	-14.78	Average	Horizontal		
5	11510.00	49.24	74.00	-24.76	Peak	Vertical		
6	11510.00	37.43	54.00	-16.57	Average	Vertical		
7	17265.00	51.08	74.00	-22.92	Peak	Vertical		
8	17265.00	38.20	54.00	-15.80	Average	Vertical		

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Detector
1	11590.00	50.60	74.00	-23.40	Peak	Horizontal
2	11590.00	38.56	54.00	-15.44	Average	Horizontal
3	17385.00	52.75	74.00	-21.25	Peak	Horizontal
4	17385.00	40.27	54.00	-13.73	Average	Horizontal
5	11590.00	48.83	74.00	-25.17	Peak	Vertical
6	11590.00	37.09	54.00	-16.91	Average	Vertical
7	17385.00	51.15	74.00	-22.85	Peak	Vertical
8	17385.00	39.28	54.00	-14.72	Average	Vertical

Те	st Channel:	Channel 134	Ant. Polar. :	Horizontal				
120 ^L	evel (dBuV/m)							
110								
100								
90	man	~~						
80								
70			FCC-PA	RT 15E Band edge-Peak				
60		Lummin	Management and the second and the second					
50			-					
40								
30								
20	\$50			5025				
Frequency (MHz)								
	Frequency (MHz)	Peak level (dBm)	Peak Limit (dBm)	Conclusion				
	5725.0000	55.41	68.20	Pass				

- NOTES: 1. Peak detector is used for the emission measurement.
 - 2. Average detector is used for the average data of emission measurement
 - 3. All measurements were made at 3 meters. Radiated emissions not detected at the 3meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
 - 4. Negative value in the margin column shows emission below limit.
 - 5. Horn antenna is used for the emission over 1000MHz.
 - 6. Emission (the row indicated by **bold italic**) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
 - 7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
 - 8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Table 4 Frequency: 5210MHz IEEE 802.11ac (80MHz) (MCS0)

IEEE 802.11ac-VHT80_Channel 42							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis	
1	10420.00	52.83	74.00	-21.17	Peak	Horizontal	
2	10420.00	40.36	54.00	-13.64	Average	Horizontal	
3	15630.00	49.21	74.00	-24.79	Peak	Horizontal	
4	15630.00	37.31	54.00	-16.69	Average	Horizontal	
5	10420.00	51.11	74.00	-22.89	Peak	Vertical	
6	10420.00	38.92	54.00	-15.08	Average	Vertical	
7	15630.00	50.37	74.00	-23.63	Peak	Vertical	
8	15630.00	37.95	54.00	-16.05	Average	Vertical	

IEEE 802.11ac-VHT80_Channel 58

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	10580.00	52.92	74.00	-21.08	Peak	Horizontal
2	10580.00	40.32	54.00	-13.68	Average	Horizontal
3	15870.00	48.91	74.00	-25.09	Peak	Horizontal
4	15870.00	36.90	54.00	-17.10	Average	Horizontal
5	10580.00	51.26	74.00	-22.74	Peak	Vertical
6	10580.00	38.29	54.00	-15.71	Average	Vertical
7	15870.00	50.41	74.00	-23.59	Peak	Vertical
8	15870.00	37.75	54.00	-16.25	Average	Vertical

IEEE 802.11ac-VHT80_Channel 106

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	11060.00	51.87	74.00	-22.13	Peak	Horizontal
2	11060.00	39.10	54.00	-14.90	Average	Horizontal
3	16590.00	50.81	74.00	-23.19	Peak	Horizontal
4	16590.00	38.17	54.00	-15.83	Average	Horizontal
5	11060.00	50.25	74.00	-23.75	Peak	Vertical
6	11060.00	37.39	54.00	-16.61	Average	Vertical
7	16590.00	50.59	74.00	-23.41	Peak	Vertical
8	16590.00	38.06	54.00	-15.94	Average	Vertical

IEEE 802.11ac-VHT80_Channel 138							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis	
1	11380.00	51.79	74.00	-22.21	Peak	Horizontal	
2	11380.00	38.86	54.00	-15.14	Average	Horizontal	
3	17070.00	49.94	74.00	-24.06	Peak	Horizontal	
4	17070.00	37.73	54.00	-16.27	Average	Horizontal	
5	11380.00	50.24	74.00	-23.76	Peak	Vertical	
6	11380.00	37.70	54.00	-16.30	Average	Vertical	
7	17070.00	48.98	74.00	-25.02	Peak	Vertical	
8	17070.00	36.99	54.00	-17.01	Average	Vertical	

IEEE 802.11ac-VHT80_Channel 155						
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	11550.00	49.88	74.00	-24.12	Peak	Horizontal
2	11550.00	38.09	54.00	-15.91	Average	Horizontal
3	17325.00	51.71	74.00	-22.29	Peak	Horizontal
4	17325.00	38.27	54.00	-15.73	Average	Horizontal
5	11550.00	49.24	74.00	-24.76	Peak	Vertical
6	11550.00	37.38	54.00	-16.62	Average	Vertical
7	17325.00	50.24	74.00	-23.76	Peak	Vertical
8	17325.00	38.03	54.00	-15.97	Average	Vertical

NOTES: 1. Peak detector is used for the emission measurement.

- 2. Average detector is used for the average data of emission measurement
- 3. All measurements were made at 3 meters. Radiated emissions not detected at the 3meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emission (the row indicated by **bold italic**) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth

Mode: WIFI Connected

Table 5

Motorola Solutions Inc. Intertek Report No: 18101182HKG-001R3

TEST REPORT

NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Emission (the row indicated by **bold italic**) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.

4.6.3 Radiated Emission Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

Test setup of radiated emissions up to 1GHz

Test setup of radiated emissions above 1GHz

4.6.4 Transmitter Duty Cycle Calculation

Marker Marker 3 Δ 1.53000 ms Trig: Free Run #Atten: 30 dB PNO: Fast +++ Select Marker ΔMkr3 1.530 ms -0.34 dB Ref 20.00 dBm 10 dB/div Log 3∆4 X Normal Delta **Fixed**▷ Center 5.180000000 GHz Res BW 8 MHz Span 0 Hz Sweep 10.00 ms (1001 pts) #VBW 8.0 MHz Off $s (\Delta)$ 3.28 dB 3.28 dB 8.04 dBm -0.34 dB 8.04 dBm 00 ms 30 ms (Δ) 10 ms Properties ► t m More 1 of 2

IEEE 802.11a

IEEE 802.11n20

Agilent Spectrum Analyzer - Swept SA				
Marker 3 Δ 2.02000 ms	SENS	E:INT SOURCE OFF ALIGN AU Avg Type: Log-F Run	UTO 02:52:48 PM Jan 09, 2019 Pwr TRACE 123456 TYPE WWWWWWW	Marker
	IFGain:Low #Atten: 30	dB		Select Marker
10 dB/div Ref 20.00 dBm			-0.44 dB	3
10.0	antal Xaldana ana antari	∧ 3∆4 √ Harawaa Artynakananataria	warmalonitaryahi Marikarika	Normal
-10.0				
-30.0				Delta
-50.0	ÇV		N	
-60.0				Fixed⊵
Center 5.180000000 GHz			Span 0 Hz	
	#VBW 8.0 MHz		p 10.00 ms (1001 pts)	Off
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.910 ms (∆) -0.16 d 3.215 ms 7.68 dB	B m		
3 Δ4 1 t (Δ) 4 F 1 t	2.020 ms (Δ) -0.44 d 3.215 ms 7.68 dB	B m		Properties►
6 7				
9				More 1 of 2
11 1	lin lin			
MSG		I ∕ <mark>o</mark> s	TATUS	

m Analyzer - Swept SA 02:54:25 PM Jan 09, 20 TRACE 1 2 3 4 R Marker Marker 3 ∆ 1.04500 ms Avg Type: Log-Pwr Trig: Free Run #Atten: 30 dB TYPE PNO: Fast IFGain:Low Select Marker ΔMkr3 1.045 ms -0.16 dB 3 10 d Log dB/div Ref 20.00 dBm **∆1∆2** 3∆4 _w Normal ć Xa Delta Ņ. **Fixed**▷ Center 5.190000000 GHz Res BW 8 MHz Span 0 Hz Sweep 5.000 ms (1001 pts) #VBW 8.0 MHz Off KB MODE TRO 9.48 dB -0.78 dBm -0.16 dB -0.78 dBm 0 μs (Δ) 1 1.295 ms 1.045 ms (Δ) 1.295 ms Properties► Δ More 1 of 2

IEEE 802.11n40

IEEE 802.11ac20

Agilent Spectrum Analyzer - Swept SA			
W RL RF 50 Ω DC Marker 3 Δ 1.44500 ms	SENSE:INT SOURCE OFF	ALIGNAUTO 02:55:54 PM Jan 0 g Type: Log-Pwr TRACE	09, 2019 2 3 4 5 6 Marker
PN IFG	0: Fast ↔ Trig: Free Run ain:Low #Atten: 30 dB		Select Marker
10 dB/div Ref 20.00 dBm		ΔΙΜΙΚΓ3 1.443 0.50	6 dB
10.0 pt the get the vertice of mountaining the second seco	พระกระจากสารสารสารสารสารสารสารสารสารสารสารสารสารส	of manufacture provided and	Normal
-10.0 -20.0 -30.0			Delta
-40.0	haji		
-60.0			Fixed⊳
Center 5.180000000 GHz Res BW 8 MHz	#VBW 8.0 MHz	Span Sweep 5.000 ms (100	1 0 Hz 1 pts) Off
MKR MODE TRC SCL X 1 $\Delta 2$ 1 t (Δ) 1.34	15 ms (Δ) 3.11 dB	FUNCTION WIDTH FUNCTION VAL	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 ms 5.86 dBm 15 ms (Δ) 0.56 dB 15 ms 5.86 dBm		Properties▶
7			More
			×
MSG		STATUS	

m Analyzer - Swept SA 21 PM Jan 09, 20 R 02:57 Marker Marker 3 Δ 765.000 μs Avg Type: Log-Pwr Trig: Free Run #Atten: 30 dB TYPE PNO: Fast + IFGain:Low Select Marker ∆Mkr3 765.0 µs -1.84 dB 3 10 dB/div Log Ref 20.00 dBm <\142 3∆4 _M Normal | X2 Delta ~ W **Fixed**▷ Center 5.190000000 GHz Res BW 8 MHz Span 0 Hz Sweep 5.000 ms (1001 pts) #VBW 8.0 MHz Off KRI MODEL TRO FUNCTIO 6.18 dB <u>1.04 dBm</u> -1.84 dB 1.04 dBm 0.0 μs (Δ) 1 2.760 ms 765.0 μs (Δ) 2.760 ms Properties► Δ More 1 of 2 10

IEEE 802.11ac40

IEEE 802.11ac80

Agilent Spe	ctrum A	nalyzer - S	wept SA								
LXI RL	F	(F 50	Ω DC		SI	ENSE:INT SOU	RCE OFF	ALIGN AUTO	02:58:55 PM	4 Jan 09, 2019	Marker
Marker	3∆4	132.000)µs			_	Avg Typ	e: Log-Pwr	TRAC	^E 123456	Widikci
	_			PNO: Fast IFGain:Low	, Trig: Fre , #Atten: 3	e Run 30 dB			DE		Select Marker
									\Mkr3.4	32.0 us	3
10 서미 서비	. D	of 20.00	dBm						_	2.10 dB	-
Log			, abiii								
10.0											
a and the	Arthe	Austina	war .	murburb	- North and star	h mark	House A 14	3∆4 antationale	and the later	بالمه سنحك	Normal
		A state	- n - n		1	X.			1		
-10.0						7 12		_			
-20.0											
											Delta
-30.0											Dena
-40.0	the.				4	100				10010	
-50.0	an - I A			۳			1 W	`		(1)-4	
50.0											
-60.0											Fixed⊳
-70.0											
Center	5.210	000000	GHz						S	pan 0 Hz	
Res BW	8 MI	z		#V	BW 8.0 MH:	Z		Sweep 3	.000 ms ('	1001 pts)	Off
	I TROL OF	21		1		510			FUNCTIO		
	THU SU	.L (Δ)	~	333 O ue	(A) 0.06		NUTION FU	INCTION WIDTH	FUNCTIO	IN VALUE	
2 F	1 1	((23)		1.602 ms	-3.47 (IBm					
3 ∆4	1 t	(Δ)		432.0 µs	(Δ) - <u>2.10</u>) dB					Bronorticat
4 E	1 t			1.602 ms	-3.47 (IBm					Properues
6											
7											
8											More
9											4.40
11										~	1012
<										>	
MSG								TA STATUS			

4.7 AC Power Line Conducted Emission
Not applicable – EUT is only powered by battery for operation.
EUT connects to AC power line. Emission Data is listed in following pages.
Base Unit connects to AC power line and has transmission. Handset connects to AC power line but has no transmission. Emission Data of Base Unit is listed in following pages.
4.7.1 AC Power Line Conducted Emission Configuration Photograph Worst Case Line-Conducted Configuration at

3574 kHz

The worst case line conducted configuration photographs are attached in the Appendix and saved with filename: config photos.pdf

4.7.2 AC Power Line Conducted Emission Data

The plot(s) and data in the following pages list the significant emission frequencies, the limit and the margin of compliance.

Passed by 14.37 dB margin compare with Quasi-peak limit

Motorola Solutions Inc. Intertek Report No: 18101182HKG-001R3

TEST REPORT

AC POWER LINE CONDUCTED EMISSION

Worst Case: WiFi Operating

Motorola Solutions Inc. Intertek Report No: 18101182HKG-001R3

Worst Case: WiFi Operating

4.8 DFS Channel Shutdown and Non-occupancy period.

According to standard 905462 DO2 UNII DFS Compliance procedures New Pules v02 section 5.1.1 and 5.1.2.

Master Devices

a) The *Master Device* will use DFS in order to detect *Radar Waveforms* with received signal strength above the *DFS Detection Threshold* in the 5250 - 5350 MHz and 5470- 5725 MHz bands. DFS is not required in the 5150 - 5250 MHz or 5725 - 5825 MHz bands.

b) Before initiating a network on a *Channel*, the *Master Device* will perform a *Channel Availability Check* for a specified time duration (*Channel Availability Check Time*) to ensure that there is no radar system operating on the *Channel*, using DFS described under subsection a) above.

c) The *Master Device* initiates a U-NII network by transmitting control signals that will enable other U-NII devices to *Associate* with the *Master Device*.

d) During normal operation, the *Master Device* will monitor the *Channel (In-Service Monitoring)* to ensure that there is no radar system operating on the *Channel*, using DFS described under a).

e) If the *Master Device* has detected a *Radar Waveform* during *In-Service Monitoring* as described under d), the *Operating Channel* of the U-NII network is no longer an *Available Channel*. The *Master Device* will instruct all associated *Client Device(s)* to stop transmitting on this *Channel* within the *Channel Move Time*. The transmissions during the *Channel Move Time* will be limited to the *Channel Closing Transmission Time*.

f) Once the *Master Device* has detected a *Radar Waveform* it will not utilize the *Channel* for the duration of the *Non-Occupancy Period*. 3

g) If the *Master Device* delegates the *In-Service Monitoring* to a *Client Device*, then the combination will be tested to the requirements described under d) through f) above.

Client Devices

a) A *Client Device* will not transmit before having received appropriate control signals from a *Master Device*.

b) A *Client Device* will stop all its transmissions whenever instructed by a *Master Device* to which it is associated and will meet the *Channel Move Time* and *Channel Closing Transmission Time* requirements. The *Client Device* will not resume any transmissions until it has again received control signals from a *Master Device*.

c) If a *Client Device* is performing *In-Service Monitoring* and detects a *Radar Waveform* above the *DFS Detection Threshold*, it will inform the *Master Device*. This is equivalent to the *Master Device* detecting the *Radar Waveform* and d) through f) of section 5.1.1 apply.

d) Irrespective of *Client Device* or *Master Device* detection the *Channel Move Time* and *Channel Closing Transmission Time* requirements remain the same.

e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-

Occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear.

Requirement	Operational	Operational Mode				
	Master Device or Client with Radar Detection	Client Without Radar Detection				
DFS Detection Threshold	Yes	Not required				
Channel Closing Transmission Time	Yes	Yes				
Channel Move Time	Yes	Yes				
U-NII Detection Bandwidth	Yes	Not required				

4.9.1 Applicability of DFS requirement during normal operation.

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection	
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required	
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link	
All other tests	Any single BW mode	Not required	
Note: Frequencies selected for statistical perf frequencies within the radar detection detection bandwidth. For 802.11 devi bonded 20 MHz channels and the char	ormance check (Section 7.8.4) sho bandwidth and frequencies near th ices it is suggested to select frequen nnel center frequency.	uld include several ne edge of the radar ncies in each of the	

The operational behavior and individual DFS requirements that are associated with these modes are as follows:

4.9.2 Response Requirements

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U- NII 99% transmission power bandwidth. See Note 3.
Note 1: Channel Move Time and the Channel Closing Transf Radar Type 0. The measurement timing begins at the end of the Note 2: The Channel Closing Transmission Time is comprised beginning of the Channel Move Time plus any additional interm facilitate a Channel move (an aggregate of 60 milliseconds) due period. The aggregate duration of control signals will not count Note 3: During the U-NII Detection Bandwidth detection test, frequency step the minimum percentage of detection is 90 percent	mission Time should be performed with e Radar Type 0 burst. of 200 milliseconds starting at the nittent control signals required to ring the remainder of the 10 second quiet periods in between transmissions. radar type 0 should be used. For each ent. Measurements are performed with

no data traffic.

4.9.3 Short pulse Radar test Wave forms

Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum
Type	(µsec)	(µsec)		Percentage of	Number of
				Successful	Trials
				Detection	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique	$\left(\begin{pmatrix} 1 \end{pmatrix} \right)$	60%	30
		PRI values	260		
		randomly selected	Roundun		
		from the list of 23	(19.10 ⁶)		
		PRI values in Table			
		5a			
		Test B: 15 unique			
		PRI values			
		randomly selected			
		within the range of			
		518-3066 µsec,			
		with a minimum			
		increment of 1			
		µsec, excluding			
		PRI values selected			
		in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (I	Radar Types 1-	4)	-	80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

- 4.9.4 Calibration Setup and DFS Test Results
- 4.9.4.1 Calibration of Radar Waveform
- 4.9.4.2 Calibration Procedure:

The Interference Radar Detection Threshold Level is -64dBm that had been taken into account the output power range and antenna gain. The following equipment setup was used to calibrate the conducted Radar Waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process there were no transmissions by either the Master or client device. The Spectrum analyzer was switched was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 1MHz or 3MHz respectively to measure the type 0 radar waveform. The spectrum analyzer had offset to compensate and RF cable loss. The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was -64dBm. Capture the spectrum analyzer plots on short pulse radar waveform.

4.9.4.3 Conducted Setup

4.9.5 Radar Waveform Calibration Result

4.9.6 Test Deviation

There is no deviation with the original standard.

4.10.1 Test Procedures

- 1. The radar pulse generator is setup to provide a pulse at frequency that the Master and Client are operating. A type 0 radar pulse with a 1us pulse width and a 1428 us PRI is used for the testing.
- 2. The vector signal generator is adjusted to provide the radar burst (18 pules) at a level approximately -62dBm at the antenna of the Master device.
- 3. An external trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4. A U-NII device operating as a Client Device (EUT) will associate with the Master at same channel. The MEPG file "TestFile.mpg" specified by the FCC is streamed from the "file computer" through the master to the client device (EUT).
- 5. When a radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the operating Channel of the U-NII device. At time T0 the Radar Waveform generator sends a Burst of pulse of the radar waveform at Detection Threshold +1dB.
- 6. Observe the transmission of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the EUT during the observation time. One 20seconds plot is reported for the short pulse Radar Type 0. The plot for the short pulse radar types start at the end if the radar burst.
- Measurement of the aggregate duration of the Channel Closing Transmission Time method: Center Frequency: operating frequency Span: Zero

RBW: 1MHz VBW: 3MHz Sweep Time: 32Sec Detector: Max Peak Sweep: Single.

8. Measure the EUT for more than 30mintes following the Channel move time to verify the no transmission or beacons occur on this Channel.

4.10.3 Test Deviation There is no deviation with the original standard.

Motorola Solutions Inc. Intertek Report No: 18101182HKG-001R3

TEST REPORT

4.10.4 Test result

Mode : 802.11AC VHT 80

Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Type of Measurement value	Overall Result
5290.000000	0	Channel Move Time	PASS
5290.000000	0	Channel Closing Transmission Time	PASS
5290.000000	0	Non-occupancy period	PASS

Channel Move Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CMT Tx Time (s)	CMT Limit (s)	CMT Resul t	CMT Comment
5290.000000	0	0.7183	10.000	PASS	Tx Time value is last trailing edge found within sweep. See Note 1.

Channel Closing Transmission Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CCTT Type of Value	CCTT No. of Pulses found	CCTT Tx Time (ms)	CCTT Tx Time Limit (ms)	CCTT Result
5290.000000	0	remaining 10 second period	22	8.8	200+60	PASS

(continuation of the "Channel Closing Transmission Time Detailed Results" table from column 7 ...)

DUT Frequency	CCTT
(MHz)	Comment
5290.000000	See Note 1.

Non-occupancy period Detailed Results

DUT Frequency (MHz)	Radar Type No.	NOP No. of Pulses found	NOP No. of Pulses Limit	NOP Tx Time (s)	NOP Tx Time Limit (s)	NOP Result	NOP Comment
5290.000000	0	0	0	0.000	0.000	PASS	

Transmitting Test Detailed Results

DUT Frequency (MHz)	Tx-Test Tx Time (s)	Tx-Test No. of Pulses found	Tx-Test Result	Tx-Test Comment
5290.000000				not performed / not finished

Additional Information

Note	Description
Note 1:	Because of the radar pulse event at the beginning, the investigation of the trace begins with an offset of 1.5 s conforming to the end of the Radar burst.
Note 2:	-

Agilent Spectr	um Analyzer - Swe	pt SA					
Marker 5	RF 50 Ω	DC	SENSE:I	NT SOURCE OFF	ALIGN OFF	05:53:26 PM Jan 14, 2019 TRACE 1 2 3 4 5 6	Marker
		PNO: Fast IFGain:Low	Trig: Free Ru Atten: 10 dB	n		TYPE WWWWWW DET N N N N N N	Select Marker
10 dB/div	Ref 0.00 dE	Bm				Mkr5 1.500 s -19.25 dBm	5
-10.0 -20.0	5 4						Normal
-40.0 -50.0 -60.0	.⊖ ^{3∆4}		a Jugalen de Altrice en constitue per		enconstant and a large statistic	<u></u> 1∆2	Delta
-70.0 -80.0 -90.0							Fixed⊵
Center 5.: Res BW 3	290000000 G 8.0 MHz	Hz #VI	BW 3.0 MHz	EL NOTION	Sweep 1	Span 0 Hz 2.00 s (30000 pts)	Off
MKH MODE TH	t (Δ)	× 10.00 s (Δ) -46.46 dB	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 F 1 3 <u>A</u> 4 1 4 F 1 5 N 1 6	t (<u>A</u>) t t	781.7 ms 200.0 ms (781.7 ms 1.500 s	-17.87 dBm Δ) -46.75 dB -17.87 dBm -19.25 dBm				Properties►
7 8 9 10 11						v	More 1 of 2
MSG 🔀 Quer	y INTERRUPTE	D			I STATUS		

Channel Move Time & Channel Closing Transmission Time

Non-occupancy period

Agile	nt Spe	ctrui	n An	alyzer	 Swept 	SA											
LXI R	L		RF		50 Ω	DC			SENS	E:INT :	SOURCE OFF	🚹 ALIGN OFF	F 0	6:40:54 P	M Jan 14, 20	19	Markar
Mar	ker	1 /	1.	800	00 ks	S				_	Avg	Type: Log-Pw	vr	TRA	CE 1234	56	IVIdINCI
							PNO: Fast		I rig: Free	Run				11		NN	
							IFGain:Lov	v	Atten: 10 d	18						_	Select Marker
													ΔN	kr1 1	1 800 F	(S	1
													-	-4	1 71 4	ы	•
10 d	B/di	/	Re	0.00	u aBr	n									1.71 0		
LOg																	
-10.0																	Normal
-20.0	∧_2	2															Normai
-30.0																	
-40.0																	
																	Delta
-50.0															Δ1Δ2		Dena
-60.0		-		a contra locati	distant day	and a later	a dite of the scattering	441.44	and the set of the set of the set of the	a contra la contra	in the state of the second second		-	a da ana da ana an		- tota	
70.0																	
-70.0																- 11	
-80.0																- 11	Fixed⊳
																- 11	
-90.0																- 11	
						_								_			
Cer	nter	5.2	900	0000	IO GH	Z								5	span 0 i	1Z	
Res	зBМ	3.	0 M	Hz			#V	BW :	3.0 MHz			Sweep	2.00) ks (3	10000 pt	G)	Off
MKD	MODE	TDC	CCI.			v			v	_	FUNCTION	EUNCTION	TU	EUNCTI	ONLYALLIE		
1/11/11	MODE 02	1110	JUL 4	(0)		^	1.900 ka	(6)	41 71 d	P	FUNCTION	FUNCTION WID		FUNCT	UN VALUE		
2	F	1	÷	(<u>4</u>)			34 40 s	(Δ)	-16 55 dB	<u>р</u> m							
3			_`				04.40 0		-10.00 aD								_
4																	Properties►
5																Ξ	
6										_							
7																	
å																	More
10																	1 of 2
11																~	
<									Ш						>		
MSG								_				TA STA	TUS				
mou		_				_		_		_		NO 31A				_	

Motorola Solutions Inc. Intertek Report No: 18101182HKG-001R3

TEST REPORT

Mode : 802.11AC VHT 80

Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Type of Measurement value	Overall Result
5530.000000	0	Channel Move Time	PASS
5530.000000	0	Channel Closing Transmission Time	PASS
5530.000000	0	Non-occupancy period	PASS

Channel Move Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CMT Tx Time (s)	CMT Limit (s)	CMT Resul t	CMT Comment
5530.000000	0	0.6911	10.000	PASS	Tx Time value is last trailing edge found within sweep. See Note 1.

Channel Closing Transmission Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CCTT Type of Value	CCTT No. of Pulses found	CCTT Tx Time (ms)	CCTT Tx Time Limit (ms)	CCTT Result
5530.000000	0	remaining 10 second period	14	5.6	200+60	PASS

(continuation of the "Channel Closing Transmission Time Detailed Results" table from column 7 ...)

DUT Frequency	CCTT
(MHz)	Comment
5530.000000	See Note 1.

Non-occupancy period Detailed Results

DUT Frequency (MHz)	Radar Type No.	NOP No. of Pulses found	NOP No. of Pulses Limit	NOP Tx Time (s)	NOP Tx Time Limit (s)	NOP Result	NOP Comment
5530.000000	0	0	0	0.000	0.000	PASS	

Transmitting Test Detailed Results

DUT Frequency (MHz)	Tx-Test Tx Time (s)	Tx-Test No. of Pulses found	Tx-Test Result	Tx-Test Comment
5530.000000				not performed / not finished

Additional Information

Note	Description
Note 1:	Because of the radar pulse event at the beginning, the investigation of the trace begins with an offset of 1.384 s conforming to the end of the Radar burst.
Note 2:	•

Agilent Spec	trum An	alyzer - Sw	ept SA							
LXI RL	RF	50 Ω	DC		SENSE	INT SOURCE OFF	ALIGN OFF	06:44:21 PM 3	an 14, 2019	Manthan
Marker :	5 1.38	3406 s				Avg	Type: Log-Pwr	TRACE	123456	warker
				PNO: Fast	Trig: Free R	Run		TYPE	N N N N N N	
	_			IFGain:Low	Atten: 10 d	8		DET		Select Marker
								Mkr5.1	384 s	
	_							47.0	dDm	3
10 dB/div	Re	f 0.00 d	Bm					-17.23) ubiii	
Log		-								
-10.0	1	<mark>∖</mark> ⊃								
-20.0	X2111	Y								Normai
20.0										
-30.0										
-40.0										
40.0										Delta
-50.0										Della
.60.0	_∧3								42	
	NAME	la contrast dint	h den le de de	athutul sheatdles	iten des des substatues ber	und attender in del del de la del de la del	during along strate is day	it is a first on the star of the	and the second second second	
-70.0										
-80.0										Fixed
										TINCUP
-90.0										
Center 5	.5300	00000	GHz					Sp	an 0 Hz	
Res BW	3.0 M	Hz		#VE	3W 3.0 MHz		Sweep 1	2.00 s (300	000 pts)	Off
										•
MKR MODE	TRC SCL		×		Y	FUNCTION	FUNCTION WIDTH	FUNCTION	VALUE 🔺	a second s
1 42	1 t	(<u>(</u>)		10.00 s (/	Δ) <u>-48.73 d</u> E	3				
2 F	1 t			692.9 ms	-16.25 dBn	1				
J	1 t			892.9 ms	-64.39 aBr	1				Properties >
5 N	1 +			1 384 s	-17 25 dBm	n			-	
6	<u> </u>			1.0040	11.20 421					
7										
8										More
9										More
10									00	1 of 2
_		_			1 817				×	
							-4	-		
MSG 🔀 Que	ery INT	ERRUPT	ED				STATUS			

Channel Move Time & Channel Closing Transmission Time

Non-occupancy period

Agilent	Spectru	ım An	alyzer	- Swept SA	1								
LXI RL		RF	5	50 Ω DC			SENSE	INT SOURCE (DFF /	ALIGN OFF	07:20:47 F	M Jan 14, 2019	Marker
Mark	er 1	Δ1.	800	00 ks		т	ria: Free P	un i	AVg Type	e: Log-Pwr	TRA		markor
					PNO: Fast IEGain:Lov		tten: 10 dE	3				ET N N N N N N	Coloot Morter
	_	_			Sam.Eov						A 8 4 1		Select Marker
												.800 KS	1
10 dB/	div	Re	f 0.00) dBm							-4	1.91 dB	
-10.0	/												Normal
-20.0 🖊	\ <u>2</u>												Norma
-30.0													
-58.0													
-40.0 -													
-50.0												142	Delta
-60.0													
								di Konkilla, Iduae					
-70.0													
-80.0													Fixed⊳
-90 N													
Cente	er 5.5	300	0000	0 GHz							5	span 0 Hz	
Res E	3W 3.	0 M	Hz		#V	'BW 3.0	0 MHz			Sweep 2	.000 ks (3	0000 pts)	Off
					,		V.	FUNCTIO			L FUNCTI		
		L SUL	(A)		1 900 ke	(A)	11 01 dB	FUNCTIO	N FUI	NCTION WIDTH	FUNCT	UN VALUE	
2	- 1	t	(12)		16.13 s	-1	5.90 dBm						
3													Properties >
4													Fiopenies
6													
7													
8													More
10													1 of 2
11												~	1012
<							IIII					>	
MSG										STATU:	s		
	_	_	_						_				

5. EQUIPMENT LIST

est

Equipment	3M Chamber & Accessory Equipment	Receiver	Loop Antenna
Equipment No	UTTL-E010	UTTL-E026	UTTL-E013
Manufacturer	ETS-LINDGREN	R&S	ETS-LINDGREN
Model No.	3M	ESIB26	6502
Calibration Date	December 03, 2018	November 24, 2018	December 03, 2018
Calibration Due Date	December 03, 2021	November 24, 2019	December 03, 2019

Equipment	Broadband Antenna	6dB Attenuator	Preamplifier
Equipment No	UTTL-E014	UTTL-E056	UTTL-E043
Manufacturer	ETS-LINDGREN	Talent	HP
Model No.	3142E	RA6A5-N-18	8447F
Calibration Date	December 08, 2018	December 08, 2018	November 24, 2018
Calibration Due Date	December 08, 2019	December 08, 2019	November 24, 2019

Equipment	Horn Antenna (Pre-amplifier)	Multi device Controller	Band Rejection Filter (5150MHz~5880MHz)
Equipment No	UTTL-E017	UTTL-EN002	UTTL-E045
Manufacturer	ETS-LINDGREN	ETS-LINDGREN	Micro-Tronics
Model No.	3117-PA	7006-001	BRM50716
Calibration Date	May 22, 2018	N/A	June 06, 2018
Calibration Due Date	May 22, 2019	N/A	June 06, 2019

Equipment	Test Software	EXA Spectrum Analyzer	
Equipment No	N/A	UTTL-E032	
Manufacturer	Audix	KEYSIGHT	
Model No.	E3	N9010A	
Calibration Date	Software Version:	November 24, 2018	
Calibration Due Date	9.160333	November 24, 2019	

2) Conducted Emissions Test

Equipment	Receiver	Pulse Limiter	LISN
Equipment No	UTTL-E005	UTTL-E007	UTTL-E003
Manufacturer	R&S	R&S	R&S
Model No.	ESR7	ESH3-Z2	ESH2-Z5
Calibration Date	November 24, 2018	November 24, 2018	November 24, 2018
Calibration Due Date	November 24, 2019	November 24, 2019	November 24, 2019

Equipment	Test Software		
Equipment No	N/A		
Manufacturer	Audix		
Model No.	E3		
Calibration Date	Software Version:		
Calibration Due Date	9.160333		

3) Conductive Measurement Test

Equipment	EXA Spectrum Analyzer	USB Wideband Power Sensor	MXG X-Series RF Vector Signal Generator
Equipment No.	UTTL-E032	UTTL-E033	UTTL-E031
Manufacturer	KEYSIGHT	KEYSIGHT	KEYSIGHT
Model No.	N9010A	U2021XA	N5182B
Calibration Date	November 24, 2018	November 24, 2018	November 24, 2018
Calibration Due Date	November 24, 2019	November 24, 2019	November 24, 2019

END OF TEST REPORT