
3. Block Diagram

- $\underline{\mathbf{A}} = 8.000 \text{ MHz}$ local oscillator
- $\overline{\mathbf{B}}$ = 125 KHz output from microcontroller's PWM
- $\overline{\mathbf{C}}$ = 125 KHz signal with inductively coupled RFID code
- $\overline{\mathbf{D}}$ = Raw demodulated RFID signal
- **E** = Filtered data at 3.9 KBaud
- $\overline{\mathbf{F}}$ = Digital data at 3.9 KBaud
- $\overline{\mathbf{G}}$ = Microcontroller generated 3 KHz square wave
- $\overline{\mathbf{H}}$ = Data output at 4800 Baud
- $\overline{\mathbf{J}}$ = Data output at 4800 Baud

Power and Ground

Common 0v to all modules Input Vcc of 18V, linearly regulated to:

- * 10v for series LC driver and analogue,
- # 5v for microcontroller and logic

10v to push-pull driver stage is RC filtered to reduce conducted disturbance

Note: the PCB design supports the audio sounder shown above, but this is not fitted for current production units.