

EMC Technologies (NZ) Ltd
47 Mackelvie St, Grey Lynn
Auckland 1021
New Zealand
Phone 09 360 0862
Fax 09 360 0861
E-Mail Address: aucklab@emctech.co.nz
Web Site: www.emctech.co.nz

TEST REPORT

ICT 626-SC Motorized Deadbolt (MDB) Wireless Lock

tested to

47 Code of Federal Regulations

Part 15 - Radio Frequency Devices Subpart C – Intentional Radiators

Section 15.209

Section 15.225 Operation within the band 13.110 -14.010 MHz

Section 15.249 Operation in the band 2400 – 2483.5 MHz

for

Integrated Control Technology

This Test Report is issued with the authority of:

Andrew Cutler- General Manager

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Table of Contents

1.	STATEMENT OF COMPLIANCE	3
2.	RESULTS SUMMARY	3
3.	INTRODUCTION	4
4.	CLIENT INFORMATION	5
5.	DESCRIPTION OF TEST SAMPLE	5
6.	SETUPS AND PROCEDURES	6
7.	TEST EQUIPMENT USED	25
8.	ACCREDITATIONS	25
9.	PHOTOGRAPHS Technologies	26

Global Product Certification

Page 2 of 32 Test Report No 230307.2 3rd August 2023

1. STATEMENT OF COMPLIANCE

The ICT 626-S Motorized Deadbolt (MDB) Wireless Lock complies with FCC Part 15 Subpart C Sections 15.209, 15.225 and 15.249 as an Intentional Radiator when the methods as described in ANSI C63.10 - 2013 are applied.

2. RESULTS SUMMARY

The results from testing carried out on between Monday July 31st 2023 and Thursday August 3rd 2023 are summarised in the following table:

Clause	Parameter	Result
15.201	Equipment authorisation	Certification required.
	requirement	
15.203	Antenna requirement	Complies. Antennas internal to the device.
15.204	External PA and antenna	Net and the New terms I leader
15.204	modifications	Not applicable. No external devices.
	modifications	
15.205	Restricted bands of operation	Complies.
15.207	Conducted limit	Not applicable. Internal battery powered
	T I	device.
15 200	Radiated emission limits -	MINGIES
15.209	Emissions < 30 MHz	Complies.
	Emissions < 30 MHz	
15.209	Radiated emission limits –	Complies.
	Emissions > 30 MHz	1 10 110 11
	Clobal	roduct Certification
15.225	Radiated emission limits -	Complies.
	Fundamental	
15.225	Frequency stability	Complies.
13.223	1 requeitey stability	Compiles.
15.249 (a)	Field strength of fundamental	Complies.
15.249 (a)	Field strength of harmonics	Complies.
15.249 (b)	Fixed, point to point operations	Not applicable.
15.249 (c)	3 metre measurement distance	Noted
15.249 (d)	Spurious emission levels except	Complies.
15 240 (-)	harmonics Detectors above 1000 MHz	Noted.
15.249 (e)		
15.249 (f)	Reference to section 15.37(d)	Noted.

3. INTRODUCTION

This report describes the tests and measurements performed for the purpose of determining compliance with the specification with the following conditions:

The client selected the test sample.

The report relates only to the sample tested.

This report does not contain corrections or erasures.

Measurement uncertainties with statistical confidence intervals of 95% are shown below test results. Both Class A and Class B uncertainties have been accounted for, as well as influence uncertainties where appropriate.

All compliance statements have been made with respect of the specification limit with no reference to the measurement uncertainty.

All testing was carried out as per the standard in the worst-case configuration with no deviations being applied.

In addition this equipment has been tested in accordance with the requirements contained in the appropriate Commission regulations.

To the best of my knowledge, these tests were performed using measurement procedures that are consistent with industry or Commission standards and demonstrate that the equipment complies with the appropriate standards.

I further certify that the necessary measurements were made by EMC Technologies NZ Ltd, 47 MacKelvie Street, Grey Lynn, Auckland, New Zealand.

'Global Product Certification

Andrew Cutler General Manager

EMC Technologies NZ Ltd

4. CLIENT INFORMATION

Company Name Integrated Control Technology

Address 4 John Glenn Avenue, Rosedale

City Auckland 6032

Country New Zealand

Contact Gary Fleming

5. DESCRIPTION OF TEST SAMPLE

Brand Name ICT

Model Number 626-SC

Product Motorised Deadbolt (MDB) Wireless Lock

Manufacturer Integrated Control Technology Ltd. (ICT)

Country of Origin New Zealand

Serial Number Sample not serialised

FCC ID UAUWIRELESSMDB

Product Description:

The device that was tested is a Wireless Door Lock device which is triggered using an access card that operates on 13.560 MHz

Specifically this device is a Motorised Dead Bolt

The device also contains a Bluetooth device.

The product is powered using a 6.0 Vdc internal battery supply (4 x 1.5 Vdc dry cell batteries) this is replaced every two or three years.

6. SETUPS AND PROCEDURES

Standard

The sample was tested in accordance with 47 CFR Part 15 Subpart C.

Methods and Procedures

The measurement methods and procedures as described in ANSI C63.10 - 2013 were used.

Section 15.201: Equipment authorisation requirement

Certification as detailed in Subpart J of Part 2 is required for this device.

Section 15.203: Antenna requirement

This device has an internal antenna for the 13.560 MHz transmitter.

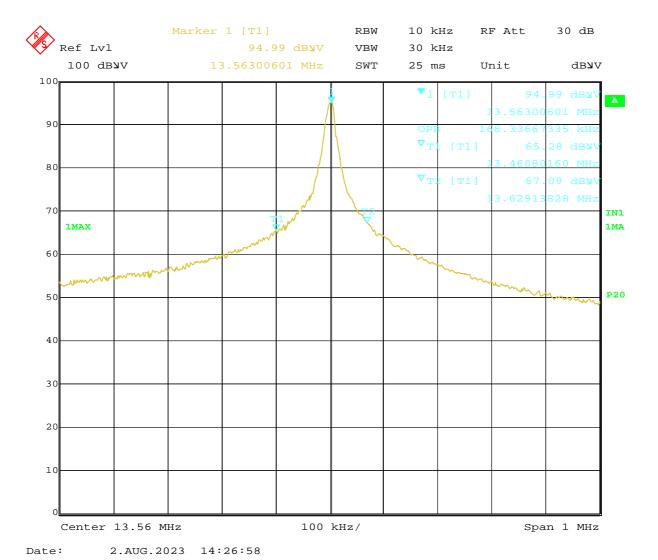
This device has an internal antenna for the 2.4 GHz Bluetooth transmitter.

Result: Complies.

Section 15.204: External radio frequency power amplifiers and antenna modifications

It is not possible to attach an external power amplifier to this transmitter.

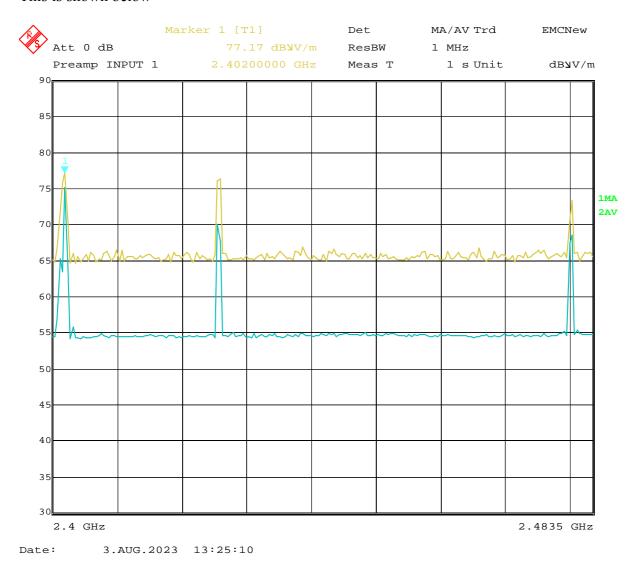
Result: Complies.


Section 15.205: Restricted bands of operation

The transmitter transmits on 13.560 MHz.

This device would therefore fall into the band of 13.110 - 14.010 MHz that is covered by Section 15.225.

Measurements were made at the test site using a spectrum analyser.


The plot below shows a 99% occupied bandwidth of 168.3366 kHz.

The Bluetooth transmitter was observed transmitting on 2402, 2426 and 2480 MHz.

This device would therefore fall into the band of 2400.0 – 2483.5 MHz band that is covered by Section 15.249.

This is shown below

Result: Complies

Section 15.207: Conducted emissions testing

Testing not applicable as this device is powered using an internal battery supply at 6.0 Vdc (4 x 1.5 Vdc dry cell batteries) that is removed when voltage decreases.

No provisions have been made for the attachment of a charger.

Device cannot be directly or in-directly connected to the public AC mains supply.

Result: Not applicable

Section 15.209: Radiated Emission Limits, General Requirements

Radiated emissions testing was carried out over the frequency range of 100 kHz to 25,000 MHz as the device contains a Bluetooth Transmitter.

Testing was carried out at the laboratory's open area test site - located at Driving Creek, Orere Point, Auckland, New Zealand.

An enclosure containing absorber material, Panashield HYB-NF-12, has been placed between the turntable and the measurement antenna for when measurements are made above 1 GHz.

This material has no absorbing affect below 1 GHz with site verification measurements confirming this.

Testing carried out when the device was placed in the centre of the table standing upright.

Below 1000 MHz the top of the test table was 80 cm above the test site ground plane.

Above 1000 MHz the top of the test table was 150 cm above the test site ground plane

Device tested has a 13.560 MHz card reader that was operating continuously.

The device also supports Bluetooth functionality in the 2.4 GHz band which was active during the test.

Device was tested when powered using an internal 6.0 Vdc battery supply.

The lock was periodically activated using a supplied swipe card which caused the lock to open and close which confirmed continuing correct operations.

When an emission is located, it is positively identified and its maximum level is found by rotating the automated turntable, and by varying the antenna height, where appropriate, with an automated antenna tower.

Below 30 MHz a magnetic loop is used with the centre of the loop being 1 metre above the ground with a test distance of 10 metres being used.

Between 100 – 490 kHz a Peak and an Average detector with a bandwidth of 9 kHz was used

Between 490 kHz – 30 MHz a Quasi Peak detector with a bandwidth of 9 kHz was used.

Above 30 MHz the emission is measured in both vertical and horizontal antenna polarisations, where appropriate at a test distance of 3 metres.

A quasi peak detector with a 120 kHz bandwidth was used between 30 – 1000 MHz

Above 1000 MHz an Average and a Peak detector were used which used a bandwidth of 1 MHz

Section 15.209: Radiated Emission Limits, General Requirements cont.

The emission level was determined in field strength by taking the following into consideration:

Level $(dB\mu V/m)$ = Receiver Reading $(dB\mu V)$ + Antenna Factor (dB/m) + Coax Loss (dB)

For example, if an emission of 30 dBµV was observed at 30 MHz.

 $45.5 \text{ dB}\mu\text{V/m} = 30.0 \text{ dB}\mu\text{V} + 14 \text{ dB/m} + 1.5 \text{ dB}$

Result: Complies

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests

 $(30 - 25000 \text{ MHz}) \pm 4.1 \text{ dB}$

- Free radiation tests

 $(100 \text{ kHz} - 30 \text{ MHz}) \pm 4.8 \text{ dB}$

Global Product Certification

Section 15.209: 13.560 MHz Transmitter below 30 MHz Spurious Emissions Measurements

Frequency	Level	Limit	Margin
(MHz)	(dBμV/m)	(dBµV/m)	(dB)
27.120	15.5	48.6	33.1

Testing was carried out when the device was transmitting continuously.

Magnetic loop measurements were attempted at a distance of 10 metres.

A receiver using a Quasi Peak detector with a 9 kHz bandwidth was used between 490 kHz – 30.0 MHz.

The 30 metre limit between 1.705 MHz – 30 MHz has been scaled by a factor of 40 dB per decade, as per section 15.31 (f) (2).

The limit at 27.120 MHz when measured at 30 metres is 30 uV/m or 29.54 dBuV/m.

Therefore when scaled the limit at 10 metres will be 48.6 dBuV/m as detailed below.

- $= 29.54 \text{ dBuV/m} + -40 \text{ dB/decade} * (\log (10) \log (30))$
- $= 29.54 \, dBuV/m + -40 \, dB/decade * (1.000 1.477)$
- = 29.54 dBuV/m + -40 dB/decade * 0.477
- = 29.54 dBuV/m + 19.08
- $=48.6 \, \mathrm{dBuV/m}$

The spurious emission observed does not exceed the level of the fundament emission

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(100 \text{ kHz} - 30 \text{ MHz}) \pm 4.8 \text{ dB}$

Section 15.209: Spurious Emissions (above 30 MHz)

Measurements between 30 – 25000 MHz have been made at a distance of 3 metres.

A receiver using a Quasi Peak detector with a 120 kHz bandwidth was used between 30 – 1000 MHz

Above 1000 MHz a Peak detector and an Average detector with a 1 MHz bandwidth was used

The limits as described in Section 15.209 have been applied.

Frequency (MHz)	Vertical (dBµV/m)	Horizontal (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna Pol	Detector	BW (kHz)
40.680	38.8	24.1	40.0	1.2	Vertical	QP	120
54.240	25.9		40.0	14.1	Vertical	QP	120
67.800	34.4	28.1	40.0	5.6	Vertical	QP	120
81.300	15.1	17.2	40.0	22.8	Horizontal	QP	120
108.480		21.5	43.5	22.0	Horizontal	QP	120
122.040	20.1	26.2	43.5	17.3	Horizontal	QP	120
149.160		22.5	43.5	21.0	Horizontal	QP	120
366.120	33.1	28.0	46.0	12.9	Vertical	QP	120

Above 1000 MHz the only emissions observed were from the Bluetooth transmitter that was observed advertising on 2402, 2426 and 2480 MHz.

All other emissions observed had a margin to the limit that exceeded 15 dB when measurements were made between 30 - 25000 MHz using both vertical and horizontal polarisations.

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

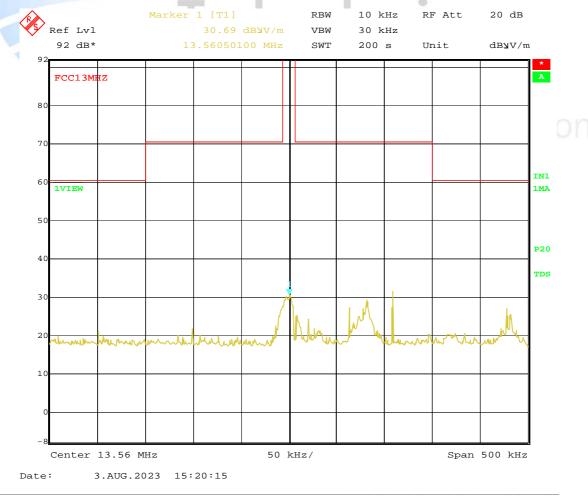
- Free radiation tests $(30 \text{ MHz} - 25000 \text{ MHz}) \pm 4.1 \text{ dB}$

Section 15.225: Fundamental Emission:

Measurements were made using a magnetic loop antenna and a receiver using a Quasi Peak detector using a 9 kHz bandwidth

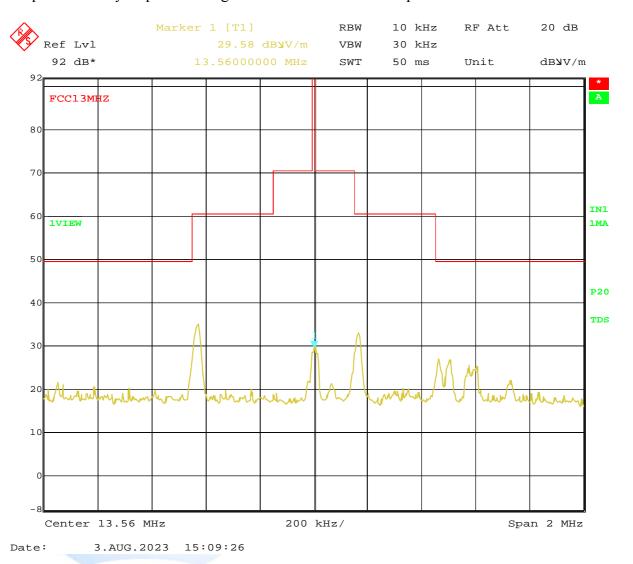
Measurements were made at a distance of 10 metres with the limit being determined by using the extrapolation factor of 40 dB per decade limit, as detailed in section 15.31 f (2).

The limit at 30 m at 13.560 MHz is 15,848 uV/m or 84.0 dBuV/m.


Applying the extrapolation factor of 40 dB/ per decade, the limit is 103.1 dBuV/m.

- $= 84.0 \text{ dBuV/m} + -40 \text{ dB/decade} * (\log (10) \log (30))$
- = 84.0 dBuV/m + 19.08
- $= 103.1 \, dBuV/m$

As a worst case testing was also carried out when the device was transmitting continuously when the 6.0 Vdc supply to the device was varied by +/- 15%.


Frequency (MHz)	Level (dBuV/m)	Distance (metres)	Limit (dBuV/m)	Voltage (Vdc)	Margin (dB)
13.560	30.1	10.0	103.1	5.1	73.0
13.560	30.1	10.0	103.1	6.0	73.0
13.560	30.1	10.0	103.1	6.9	73.0

A spectrum analyser plot showing the carrier and modulation peaks within +/- 250 kHz.

Page 14 of 32 Test Report No 230307.2 3rd August 2023
This report may not be reproduced except in full.

A spectrum analyser plot showing the carrier and modulation peaks within +/- 1000 kHz.

Measurement was made at the test site and due to the time of day a number of ambient emissions can be seen which are not from the device under test

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(100 \text{ kHz} - 30 \text{ MHz}) \pm 4.8 \text{ dB}$

Section 15.225: Frequency Tolerance:

The frequency tolerance of the carrier is required to be \pm 0.01% of operating frequency when the temperature is varied between -20 degrees C and \pm 50 degrees C.

The device operates nominally on 13.560 MHz which gives a frequency tolerance of +/- 1,356.0 Hz.

Temperature	Frequency	Difference
(°C)	(MHz)	(Hz)
50.0	13.559 400	-600
40.0	13.560 100	+100
30.0	13.560 000	+000
20.0	13.560 300	+300
10.0	13.559 900	-100
0.0	13.560 000	+000
-10.0	13.560 100	+100
-20.0	13.560 200	+200

The 6.0 Vdc supply voltage was varied by +/- 15% at 20 degrees C (ambient).

Voltage	Frequency	Difference	
(Vdc)	(MHz)	(Hz)	
5.1	13.560 000	+000	
6.0	13.560 300	+300	
6.9	13.559 700	-300	
			zies

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

Frequency tolerance \pm 50 Hz

Section 15.249 (a) – Field Strength of the Fundamental and Harmonics

Radiated emission measurements were carried out with the limits as per section 15.249 (a) being applied to the Fundamental and Harmonics of each transmitter.

Testing was carried out at EMC Technologies (NZ) Ltd Open Area Test Site, which is located at Driving Creek, Orere Point, Auckland.

An enclosure containing absorber material, Panashield HYB-NF-12, has been placed between the turntable and the measurement antenna for when measurements are made above 1 GHz.

This material has no absorbing affect below 1 GHz with site verification measurements.

Below 1000 MHz the transmitter was placed on the test table top which was a total of 0.8 m above the test site ground plane.

Above 1000 MHz the transmitter was placed on the test table top which was a total of 1.5 m above the test site ground plane.

Measurements of the radiated field were made 3 metres from the transmitting antenna.

Measurements below 1000 MHz were made using a Quasi Peak Detector with a bandwidth of 120 kHz.

Measurements above 1000 MHz were made using an average detector with a bandwidth of 1.0 MHz and also a peak detector with a bandwidth of 1.0 MHz.

When an emission is located, it is positively identified and its maximum level is found by rotating the automated turntable, and by varying the antenna height with an automated antenna tower.

All emissions were measured in both vertical and horizontal antenna polarisations.

The emission is measured in both vertical and horizontal antenna polarisations with no measurements were made above the 10th harmonic.

Testing was carried out when the device was powered using a 6.0 Vdc internal battery supply.

Testing was carried out with the device being placed in the centre of the test table standing vertically upright.

The device was tested when transmitting continuously on 2402, 2426 and 2480 MHz

The emission level is determined in field strength by taking the following into consideration:

Level ($dB\mu V/m$) = Receiver Reading ($dB\mu V$) + Antenna Factor (dB/m) + Coax Loss (dB) – Amplifier Gain (dB)

Fundamental Emission

Testing was carried out as detailed below

Frequency	Vertical	Horizontal	Limit	Margin	Antenna	Detector	\mathbf{BW}
(MHz)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Pol.		
2402.000	79.5	79.7	114.0	34.3	Horizontal	Peak	1 MHz
2402.000	53.5	52.4	94.0	40.5	Vertical	Average	1 MHz
-						-	-
2426.000	76.6	78.6	114.0	35.4	Horizontal	Peak	1 MHz
2426.000	53.4	53.0	94.0	40.6	Vertical	Average	1 MHz
-						-	-
2480.000	75.6	74.9	114.0	38.4	Vertical	Peak	1 MHz
2480.000	53.4	52.7	94.0	40.6	Vertical	Average	1 MHz

Section 15.249 specifies a limit of 50 mV/m (94 dBuV/m) when an average detector is used for devices operating in the band of 2400 - 2483.5 MHz.

A peak limit of 114 dBuV/m has also been applied.

This limit has been converted to dBuV/m using the formula 20 * (log 0.050 / 0.000001)

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(30-25,000 \text{ MHz}) \pm 4.1 \text{ dB}$

Global Product Certification

Spurious Emissions

Transmitting on 2402 MHz

Frequency	Vertical	Horizontal	Limit	Margin	Detector	Antenna	\mathbf{BW}
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)			
4804.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
4804.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	-	-	-	1	-	-
7206.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
7206.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	-	-	-	ı	-	-
9608.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
9608.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	-	-	-	ı	-	-
12010.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
12010.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	-	-	-	-	-	-
14413.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
14413.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	_	_	-	-	-	-	-
16814.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
16814.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	_	-	-	-	-	-	=.
19216.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
19216.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	_		-	-	-	-	-
21618.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
21618.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	_	-	-	-	-	-
24020.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
24020.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz

Spurious Emissions

Transmitting on 2426 MHz

Frequency	Vertical	Horizontal	Limit	Margin	Detector	Antenna	\mathbf{BW}
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)			
4852.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
4852.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	-	1	1	-	-	-
7278.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
7278.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	-	•	ı	-	-	-
9704.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
9704.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	-	ı	ı	-	-	-
12130.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
12130.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	-	ı	ı	-	-	-
14556.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
14556.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-		-	-	-	-	-	-
16982.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
16982.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	<u>-</u>	_	1	1	-	-	-
19408.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
19408.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-		•	ı	-	-	-
21834.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
21834.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
_		-	-	-	-	-	-
24260.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
24260.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz

Spurious Emissions

Transmitting on 2480 MHz

Frequency	Vertical	Horizontal	Limit	Margin	Detector	Antenna	\mathbf{BW}
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)			
4960.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
4960.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	-	1	-	-	-	-
7440.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
7440.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	-	-	-	-	-	-
9920.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
9920.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	-	-	-	-	-	-
12400.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
12400.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	-	-	-	-	-	-
14880.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
14880.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	_	_	-	-	-	-	-
17360.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
17360.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	_	_	-	-	-	-	-
19840.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
19840.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	-	-	-	-	-	-
22320.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
22320.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz
-	-	_	-	-	_	-	-
24800.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz
24800.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz

Measurements were performed at a distance of 3 metres using vertical and horizontal polarisations with a peak and an average detector with a 1 MHz bandwidth being used.

As per section 15.249 a limit of 500 uV/m applies to the harmonic emissions when an average detector is used.

This limit has been converted to dBuV/m using the formula 20 * (log 500) with a factor of + 20 dB being added to determine the peak limit.

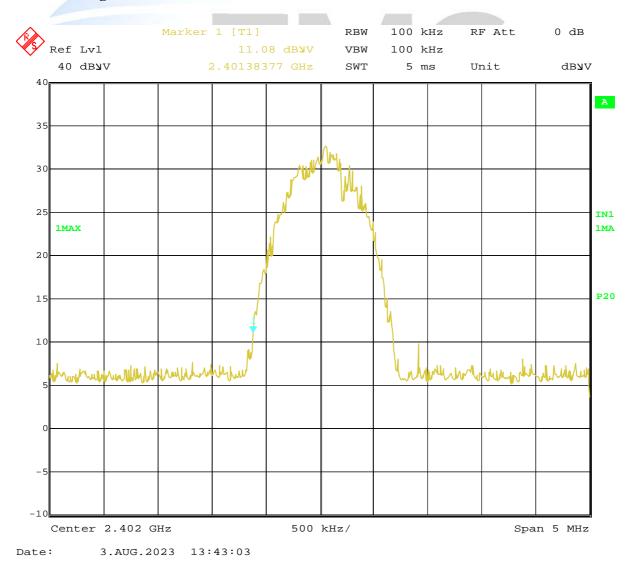
Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(30-25,000 \text{ MHz}) \pm 4.1 \text{ dB}$

Section 15.215 (c) - Additional Provisions to the General Radiated Emissions Limitations

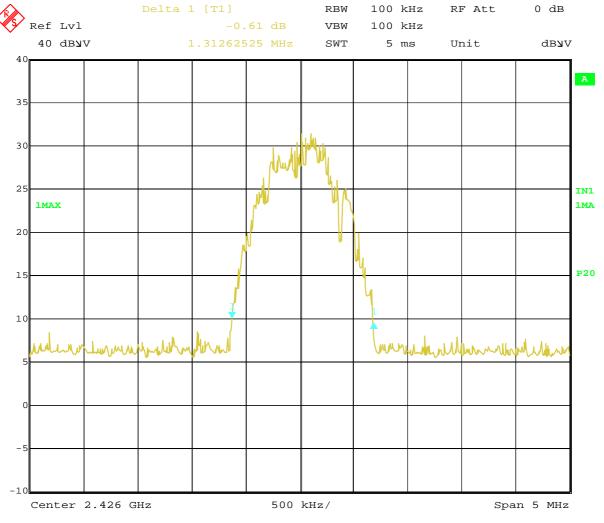
The device operates in the 2400 - 2483.5 MHz band.


Relative spectrum mask measurements have been made when the device was operating on 2402 MHz, 2426 MHz and 2480 MHz

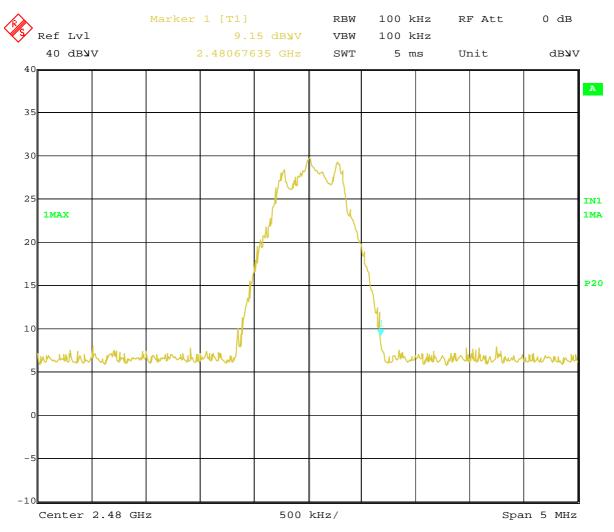
Measurements made at the -20 dB points.

Frequency (MHz)	F low (MHz)	F high (MHz)
2402.000	2401.38377	-
2480.000	-	2480.67635

The device can be seen to stay within the band of 2400 – 2483.5 MHz at the -20 dB points


Transmitting on 2402 MHz

Test Report No 230307.2 3rd August 2023


Transmitting on 2426 MHz.

20 dB bandwidth = 1.3126 MHz

Date: 3.AUG.2023 13:51:21 GIODALLIOUNEL CULLILICATION

Transmitting on 2480 MHz

Date: 3.AUG.2023 14:37:49

Result: Complies.

Page 24 of 32 Test Report No 230307.2 3rd August 2023

7. TEST EQUIPMENT USED

Instrument	Manufacturer	Model	Serial No	Asset Ref	Cal Due	Period
Aerial Controller	EMCO	1090	9112-1062	RFS 3710	Not applic	N/a
Aerial Mast	EMCO	1070-1	9203-1661	RFS 3708	Not applic	N/a
VHF Balun	Schwarzbeck	VHA 9103	11042021A	3696	23 Nov 2024	3 years
Biconical Antenna	Schwarzbeck	BBA 9106	11042021A	3697	23 Nov 2024	3 years
Horn Antenna	EMCO	3115	9511-4629	E1526	3 April 2025	3 years
Log Periodic	Schwarzbeck	VUSLP 9111B	112+11042021B	4025	16 Nov 2024	3 years
Loop Antenna	EMCO	6502	9003-2485	3798	7 March 2025	3 years
Receiver	R & S	ESIB 40	100295	4030	6 Oct 2024	2 years
Turntable	EMCO	1080-1-2.1	9109-1578	RFS 3709	Not applic	N/a
Heliax cable	Andrews	L6PNM-RPD	22869	Oats Cable	30 Dec 2023	1 year
Thermal chamber	Contherm	M180F	86025	N/a	N/a	N/a
Thermometer	DSIR	RT200	35	EMC4029	21 April 2027	5 years

At the time of testing all equipment was within calibration.

8. ACCREDITATIONS

Testing was carried out in accordance with EMC Technologies NZ Ltd designation as a FCC Accredited Laboratory by International Accreditation New Zealand, designation number: NZ0002 under the APEC TEL MRA.

All testing was carried out in accordance with the terms of EMC Technologies (NZ) Ltd International Accreditation New Zealand (IANZ) Accreditation to NZS/ISO/IEC 17025.

All measurement equipment has been calibrated in accordance with the terms of the EMC Technologies (NZ) Ltd International Accreditation New Zealand (IANZ) Accreditation to NZS/ISO/IEC 17025.

International Accreditation New Zealand has International Laboratory Accreditation Council (ILAC) Mutual Recognition Arrangements for testing and calibration with various accreditation bodies in a number of economies.

This includes NATA (Australia), UKAS (UK), SANAS (South Africa), NVLAP (USA), A2LA (USA), SWEDAC (Sweden).

Further details can be supplied on request.

9. PHOTOGRAPHS

Device Under - Test External Views


Test Report No 230307.2

This report may not be reproduced except in full.

Test Report No 230307.2 3rd August 2023

Test Set Up

Test Report No 230307.2

This report may not be reproduced except in full.

3rd August 2023

Page 31 of 32

