

Report on the Radio Testing

For

Inova Design Solutions Ltd ( Bodytrak)

On a

Bodytrack I

Report no. TRA-054222-47-10B

01 February 2022



Report Number: TRA-054222-47-10B

Issue: E

REPORT ON THE RADIO TESTING OF A
Inova Design Solutions Ltd (Bodytrak)
Bodytrack I
WITH RESPECT TO SELECTED CLAUSES OF SPECIFICATIONS
KDB 996369 D04 v02
(Intermodulation Investigation)

TEST DATE: 2022-01-10 to 2022-01-12

Tested by: M Else

Michael Else

Written by: Radio Test Engineer

Approved by: J Charters
Lab Manager

Date: 01 February 2022

#### Disclaimers:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

Element Materials Technology Warwick Ltd.
Registered in England and Wales. Registered Office: 5 Fleet Place, London, EC4M 7RD Company Reg No. 02536659

## 1 Revision Record

| Issue Number | Issue Date       | Revision History                                                                                                                                                                                        |
|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α            | 01 February 2022 | Original                                                                                                                                                                                                |
| В            | 07/06/2022       | Model number updated, Serial number, revision number updated, Band 2 and 5 corrected to UMTS bands, Band 4 Plot 1.7-3 GHz Scan corrected, Test set-up photo removed due to confidentiality requirement. |

RF980 2.0 Page 3 of 23

# Summary TEST REPORT NUMBER: TRA-054222-47-10B WORKS ORDER NUMBER: TRA-054222-01 **TEST SPECIFICATION:** KDB 996369 D04 v02 BodyTRAK I EQUIPMENT UNDER TEST (EUT): FCC IDENTIFIER: 2A3CVA CONTAINS FCC IDENTIFIER: T7V1326C2 CONTAINS FCC IDENTIFIER: XPY1ELQ24NN MANUFACTURER/AGENT: Inova Design Solutions Ltd (Bodytrak) ADDRESS: Innovation Warehouse 1st Floor 1 East Poultry Avenue London EC2A 4NE United Kingdom **CLIENT CONTACT: Dmitry lakovlev \*** +44 (0)203 432 5439 ⊠ dmitry.iakovlev@bodytrak.co

ORDER NUMBER: PO-2020AA0085

TEST DATE: 2022-01-10 to 2022-01-12

TESTED BY: M.Else

Element

RF980 2.0 Page 4 of 23

### 1.1 Test Summary

| Test Method and Description                   | Applicable to this equipment | Result / Note |
|-----------------------------------------------|------------------------------|---------------|
| Spurious Emissions<br>dulation Investigation) |                              | Pass          |

### Notes:

Only limited testing was performed to check the intermodulation emissions.

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF980 2.0 Page 5 of 23

## 2 Contents

| 1  | Rev   | vision Record                                    | 3  |
|----|-------|--------------------------------------------------|----|
| •  | 1.1   | Test Summary                                     | 5  |
| 2  | Cor   | ntents                                           | 6  |
| 3  | Intro | oduction                                         | 7  |
| 4  | Tes   | st Specifications                                | 8  |
| 4  | 4.1   | Normative References                             | 8  |
| 2  | 4.2   | Deviations from Test Standards                   | 8  |
| 5  | Glos  | ssary of Terms                                   | 9  |
| 6  | Equ   | uipment under Test                               | 10 |
| 6  | 3.1 · | EUT Identification                               | 10 |
| 6  | 3.2   | Pre-approved module identification               | 10 |
| 6  | 3.3   | System Equipment                                 | 10 |
| 6  | 3.4   | EUT Mode of Operation                            | 10 |
| 6  | 3.5   | EUT Radio Parameters                             | 11 |
| 6  | 6.6   | EUT Description                                  | 11 |
| 7  | Mod   | difications                                      | 12 |
| 8  | EUT   | T Test Setup                                     | 13 |
| 8  | 3.1   | Block Diagram                                    |    |
| 8  | 3.2   | General Set-up Photograph                        | 14 |
| 9  | Ger   | neral Technical Parameters                       | 14 |
|    | 9.1   | Normal Conditions                                |    |
| 10 | Rad   | diated emissions, Intermodulation products (FCC) | 15 |
| •  | 10.1  | Definitions                                      |    |
| •  | 10.2  | Test Parameters                                  | 15 |
| •  | 10.3  | Test Limit                                       | 16 |
| •  | 10.4  | Test Method                                      | 17 |
| •  | 10.5  | Test Equipment                                   | 17 |
| •  | 10.6  | Test Results                                     | 18 |
| 11 | Mea   | asurement Uncertainty                            | 22 |

Report Number: TRA-054222-47-10B

### 3 Introduction

This report TRA-054222-47-10B presents the results of the Radio testing on a Inova Design Solutions Ltd (Bodytrak), Bodytrak I to selected clauses of specifications KDB 996369 D04 Module Integration Guide v02 - Modular transmitter integration guide -Guidance for host product manufacturers.

The testing was carried out for System Loco Ltd, by Element, at the address detailed below.

 $\Box$  $\boxtimes$ Element Skelmersdale Element Hull Unit F Unit 1 South Orbital Trading Park Pendle Place Hedon Road Skelmersdale Hull West Lancashire HU9 1NJ WN8 9PN UK UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

The test laboratory is accredited for the above sites under the US-UK MRA,

Designation number(s):

Element Hull UK2007 Element Skelmersdale UK2020

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF980 2.0 Page 7 of 23

## 4 Test Specifications

### 4.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- FCC 47 CFR Ch. I Part 22 Public Mobile Services.
- FCC 47 CFR Ch. I Part 24 Personal Communications Services.
- FCC 47 CFR Ch. I Part 27 Miscellaneous Wireless Communications Services.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- KDB 996369 D04 Module Integration Guide v02 Modular transmitter integration guide -Guidance for host product manufacturers.

•

### 4.2 Deviations from Test Standards

Only limited testing was performed to check the intermodulation emissions.

RF980 2.0 Page 8 of 23

## 5 Glossary of Terms

§ denotes a section reference from the standard, not this document

AC Alternating Current
ACK Acknowledgement signal
AFH Adaptive Frequency Hopping

BTC Bluetooth Classic Bluetooth Low Energy

BW bandwidth C Celsius

CCA Clear Channel Assessment COT Channel Occupancy Time

**CW** Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt
DAA Detect And Avoid
DC Direct Current

**EIRP** Equivalent Isotropically Radiated Power

**EN** European Normative document

**EUT** Equipment Under Test

FCC Federal Communications Commission FHSS Frequency Hopping Spread Spectrum

**Hz** hertz

IC Industry Canada

ITU International Telecommunication Union

**LBT** Listen Before Talk

m metre
max maximum
min minimum
N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format

**R&TTE** Radio and Telecommunications Terminal Equipment

RE Radio Equipment
RF Radio Frequency
RH Relative Humidity
RMS Root Mean Square

Rx receiver s second Tx transmitter

**UKAS** United Kingdom Accreditation Service

 $\begin{array}{ll} \textbf{V} & \text{volt} \\ \textbf{W} & \text{watt} \\ \textbf{\Omega} & \text{ohm} \end{array}$ 

RF980 2.0 Page 9 of 23

### 6 Equipment under Test

### 6.1 EUT Identification

Name: : Bodytrack IModel Number: BCP1N

Serial Number: BTCP1-B0045Software Revision: 4118

• Build Level / Revision Number: Not Applicable

### 6.2 Pre-approved module identification

#### **Bluetooth Module Information**

Manufacturer: Panasonic Industrial Devices Europe GmbH

Model: 1326C2

CONTAINS FCC ID: T7V1326C2
 CONTAINS ISED ID: 216Q-1326C2

### **Cellular Module information**

Manufacturer: uBLOXModel: LARA-R202

CONTAINS FCC ID: XPY1ELQ24NN
CONTAINS ISED ID: 8595A-1ELQ24NN

### 6.3 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Not Applicable – No support/monitoring equipment required.

### 6.4 EUT Mode of Operation

The mode of operation for transmitter tests was as follows:

Radios were set to transmit permanently in various combinations, the spectrum was checked to determine if any intermodulation products were generated due to multiple radios operating simultaneously. The worst case emission plots are shown in this document.

EUT was operated with worst case modes of operation for each radio device.

RF980 2.0 Page 10 of 23

## 6.5 EUT Radio Parameters

| Modes of operation:       | Bluetooth Classic             | Wi-Fi                         |  |
|---------------------------|-------------------------------|-------------------------------|--|
| Frequencies of operation: | 2402 MHz to 2480 MHz          | 2412 MHz to 2462 MHz          |  |
| Modulation type(s)        | GFSK                          | DSSS / OFDM                   |  |
| Nominal Supply Voltage:   | 3.7 V DC Rechargeable Battery | 3.7 V DC Rechargeable Battery |  |

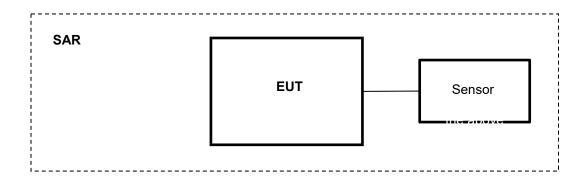
| Mode of operation:                | Cellular                                                                                            |
|-----------------------------------|-----------------------------------------------------------------------------------------------------|
| Bands / Frequencies of operation: | UMTS Band 2: 1880 MHz<br>UMTS Band 5: 836.4 MHz<br>LTE Band 4: 1732.4 MHz<br>LTE Band 12: 707.5 MHz |

## 6.6 EUT Description

The EUT is a personal wearable device and is comprised of a miniature earpiece with integrated sensors connected to a torso-worn communication pack. The normal power source applied was 3.7 Vdc from internal Li-Po Rechargeable battery.

RF980 2.0 Page 11 of 23

## 7 Modifications


No modifications were performed during this assessment.

RF980 2.0 Page 12 of 23

# 8 EUT Test Setup

## 8.1 Block Diagram

The following diagram shows basic EUT Test set up.



RF980 2.0 Page 13 of 23

## 8.2 General Set-up Photograph

The following photographs shows basic EUT radiated set-up for FCC testing:

No Photograph requested due to confidentiality requirement.

## 9 General Technical Parameters

### 9.1 Normal Conditions

The EUT was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was 3.7 Vdc from internal Li-Po Rechargeable battery.

RF980 2.0 Page 14 of 23

## 10 Radiated emissions, Intermodulation products (FCC)

### 10.1 Definitions

### Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

### Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

### 10.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: SK01 Radio Chamber

Test Standard and Clause: TIA 603-D, clause 2.2.12

Deviations from Standard: None

Measurement BW: 30 MHz to 1 GHz: 120 kHz; Above 1 GHz: 1 MHz

Measurement Detector: Up to 1 GHz: Peak
Above 1 GHz: Peak

### **Environmental Conditions (Normal Environment)**

Temperature: 15.9 °C Standard Requirement: +15 °C to +35 °C Humidity: 45 % RH Standard Requirement: 20 % RH to 75 % RH

RF980 2.0 Page 15 of 23

Report Number: TRA-054222-47-10B

### 10.3 Test Limit

## Part 15

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

## General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

| Frequency<br>(MHz) | Field Strength<br>(μV/m at 3 m) |
|--------------------|---------------------------------|
| 30 to 88           | 100                             |
| 88 to 216          | 150                             |
| 216 to 960         | 200                             |
| Above 960          | 500                             |

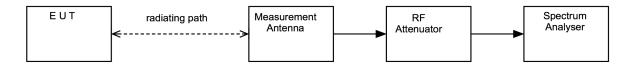
Part 22, Part 24 & Part 27

At least 43 + 10 log P dB

 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$ 

RF980 2.0 Page 16 of 23

### 10.4 Test Method


With the EUT setup as per section 9 of this report and connected as per Figure viii the emissions from the EUT were measured on a spectrum analyzer / EMI receiver. The EUT was rotated in three orthogonal planes and the measurement antenna height scanned (below 1GHz, from 1 to 4 m; above 1GHz as necessary) in order to maximise emissions.

The measurements were performed with EUT set at its maximum gain. All modulation schemes, data rates and power settings were used to observe the worst-case configuration at each frequency.

The EUT was substituted with a known generator and antenna and for the same level achieved at the analyser, the effective radiated power was recorded.

Pre-scan plots are shown with a peak detector and 100kHz RBW.

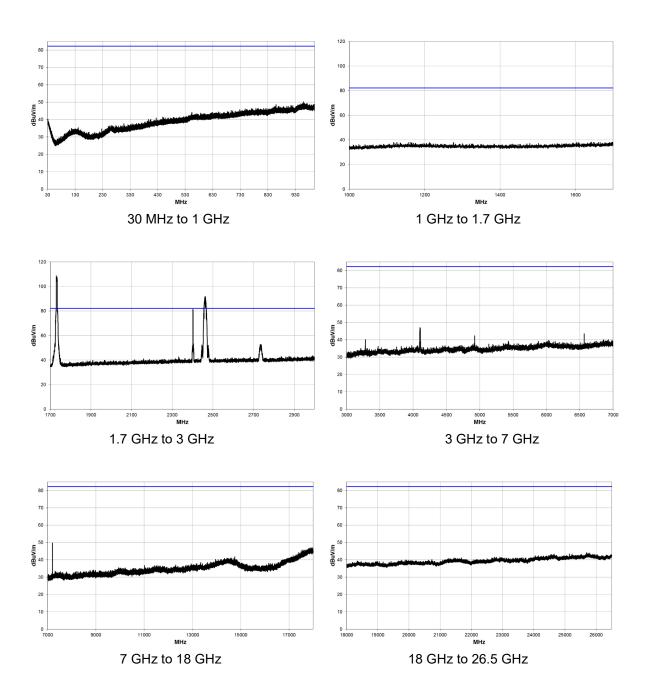
### Figure i Test Setup



### 10.5 Test Equipment

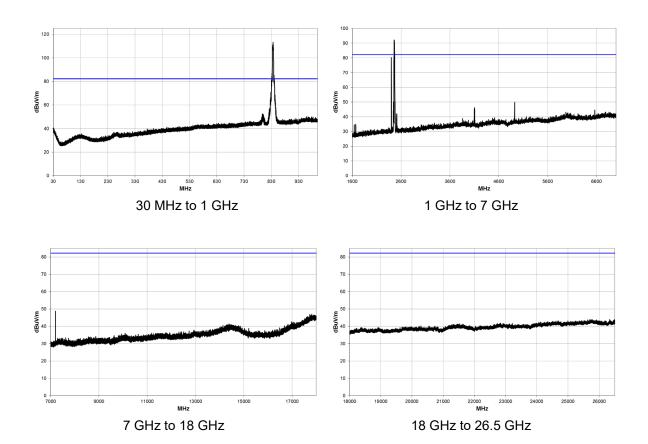
| Equipment              |                       | Equipment    | Element | Due For          |
|------------------------|-----------------------|--------------|---------|------------------|
| Description            | Manufacturer          | Туре         | No      | Calibration      |
| Chamber 1              | Rainford EMC          | ATS          | U387    | 2023-10-24       |
| Radiated Test Software | Element               | Emissions R5 | REF9000 | Cal not required |
| Spectrum Analyser      | R&S                   | FSU46        | REF910  | 2022-12-22       |
| Pre Amp                | AMETEK                | LNA6901      | U711    | 2022-02-03       |
| High Pass Filter       | Atlantic<br>Microwave | AFH-07000    | U558    | 2022-01-30       |
| 1-18GHz Horn           | EMCO                  | 3115         | L139    | 2023-07-27       |
| PreAmp                 | Watkins Johnson       | 6201-69      | U372    | 2022-03-01       |
| Pre Amp                | Agilent               | 8449B        | L572    | 2022-10-29       |
| Bilog                  | Chase                 | CBL611/B     | U573    | 2023-01-28       |
| High Pass Filter       | MiniCircuits          | VHF-1500+    | U519    | 2022-01-30       |
| High Pass Filter       | BSC                   | SH4141       | REF977  | 2022-01-30       |
| Horn 18-26GHz (&U330)  | Flann                 | 20240-20     | L300    | 2022-04-23       |

RF980 2.0 Page 17 of 23


### 10.6 Test Results

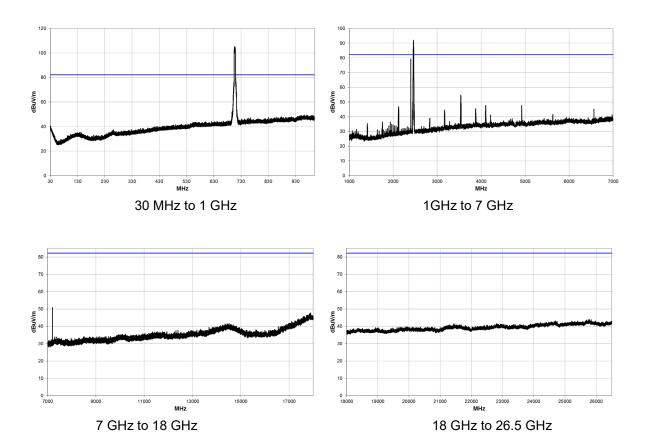
| Radio 1: Bluetooth ; Frequency: 2402 MHz; Power Setting: -3 dBm; Data Rate: 1 Mbps  |                    |                |                |                |        |  |  |
|-------------------------------------------------------------------------------------|--------------------|----------------|----------------|----------------|--------|--|--|
| Radio 2: 2.4 GHz WiFi; Frequency: 2462 MHz; Power Setting: Fixed; Data Rate:11b 1M; |                    |                |                |                |        |  |  |
| Radio 3: UMTS Band 2; ARFCN: 9400; Frequency: 1880 MHz; Power Setting: High;        |                    |                |                |                |        |  |  |
| Emission                                                                            | Frequency<br>(MHz) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result |  |  |
| No Intermodulation emissions were detected within 10 dB of the limit.               |                    |                |                |                |        |  |  |




RF980 2.0 Page 18 of 23

| Radio 1: Bluetooth ; Frequency: 2402 MHz; Power Setting: -3 dBm; Data Rate: 1 Mbps  |                                                                                 |       |       |        |        |  |  |  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------|-------|--------|--------|--|--|--|
| Radio 2: 2.4 GHz WiFi; Frequency: 2462 MHz; Power Setting: Fixed; Data Rate:11b 1M; |                                                                                 |       |       |        |        |  |  |  |
| Radio                                                                               | Radio 3: LTE Band 4; ARFCN: 120174; Frequency: 1732.4 MHz; Power Setting: High; |       |       |        |        |  |  |  |
| Emission                                                                            | Frequency                                                                       | Level | Limit | Margin | Result |  |  |  |
| Limosion                                                                            | (MHz)                                                                           | (dBm) | (dBm) | (dB)   | Nesun  |  |  |  |




RF980 2.0 Page 19 of 23

| Radio 1: Bluetooth ; Frequency: 2402 MHz; Power Setting: -3 dBm; Data Rate: 1 Mbps  |                                                                               |       |       |        |        |  |  |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------|-------|--------|--------|--|--|--|
| Radio 2: 2.4 GHz WiFi; Frequency: 2462 MHz; Power Setting: Fixed; Data Rate:11b 1M; |                                                                               |       |       |        |        |  |  |  |
| Radio                                                                               | Radio 3: UMTS Band 5; ARFCN: 4182; Frequency: 836.4 MHz; Power Setting: High; |       |       |        |        |  |  |  |
|                                                                                     | Frequency                                                                     | Level | Limit | Margin | D14    |  |  |  |
| Emission                                                                            | (MHz)                                                                         | (dBm) | (dBm) | (dB)   | Result |  |  |  |



RF980 2.0 Page 20 of 23

| Radio 1: Bluetooth LE; Frequency: 2480 MHz; Power Setting: 0 dBm; Data Rate: 1 Mbps |           |       |       |        |        |  |  |
|-------------------------------------------------------------------------------------|-----------|-------|-------|--------|--------|--|--|
| Radio 2: 2.4 GHz WiFi; Frequency: 2412 MHz; Power Setting: Fixed; Data Rate:11b 1M; |           |       |       |        |        |  |  |
| Radio 3:Band 12; ARFCN: 123095; Frequency: 707.5 MHz; Power Setting: High;          |           |       |       |        |        |  |  |
|                                                                                     | Frequency | Level | Limit | Margin | Result |  |  |
| Emission                                                                            | (MHz)     | (dBm) | (dBm) | (dB)   | Result |  |  |



RF980 2.0 Page 21 of 23

## 11 Measurement Uncertainty

## Radio Testing - General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence where no required test level exists.

| Test/Measurement                                                       | Budget Number | MU         |
|------------------------------------------------------------------------|---------------|------------|
| Conducted RF Power, Power Spectral Density, Adjacent Channel Power and |               |            |
| Spurious emissions                                                     |               |            |
| Absolute RF power (via antenna connecter) Dare RPR3006W Power Head     | MU4001        | 0.9 dB     |
| Carrier Power and PSD - Spectrum Analysers                             | MU4004        | 0.9 dB     |
| Adjacent Channel Power                                                 | MU4002        | 1.9 dB     |
| Transmitter conducted spurious emissions                               | MU4041        | 0.9 dB     |
| Conducted power and spurious emissions 40 GHz to 50 GHz                | MU4042        | 2.4 dB     |
| Conducted power and spurious emissions 50 GHz to 75 GHz                | MU4043        | 2.5 dB     |
| Conducted power and spurious emissions 75 GHz to 110 GHz               | MU4044        | 2.4 dB     |
| Radiated RF Power and Spurious emissions ERP and EIRP                  |               |            |
| Effective Radiated Power Reverb Chamber                                | MU4020        | 3.7 dB     |
| Effective Radiated Power                                               | MU4021        | 4.7 dB     |
| TRP Emissions 30 MHz to 1 GHz using CBL6111 or CBL6112 Bilog Antenna   | MU4046        | 5.3 dB     |
| TRP Emissions 1 GHz to 18 GHz using HL050 Log Periodic Antenna         | MU4047        | 5.1 dB     |
| TRP Emissions 18 GHz to 26.5 GHz using Standard Gain Horn              | MU4048        | 2.7 dB     |
| TRP Emissions 26.5 GHz to 40 GHz using Standard Gain Horn              | MU4049        | 2.7 dB     |
| Spurious Emissions Electric and Magnetic Field                         |               |            |
| Radiated Spurious Emissions 30 MHz to 1 GHz                            | MU4037        | 4.7 dB     |
| Radiated Spurious Emissions 1-18 GHz                                   | MU4032        | 4.5 dB     |
| E Field Emissions 18GHz to 26 GHz                                      | MU4024        | 3.2 dB     |
| E Field Emissions 26GHz to 40 GHz                                      | MU4025        | 3.3 dB     |
| E Field Emissions 40GHz to 50 GHz                                      | MU4026        | 3.5 dB     |
| E Field Emissions 50GHz to 75 GHz                                      | MU4027        | 3.6 dB     |
| E Field Emissions 75GHz to 110 GHz                                     | MU4028        | 3.6 dB     |
| Radiated Magnetic Field Emissions                                      | MU4031        | 2.3 dB     |
| Frequency Measurements                                                 |               |            |
| Frequency Deviation                                                    | MU4022        | 0.316 kHz  |
| Frequency error using CMTA test set                                    | MU4023        | 113.441 Hz |
| Frequency error using GPS locked frequency source                      | MU4045        | 0.0413 ppm |
| Bandwidth/Spectral Mask Measurements                                   |               |            |
| Channel Bandwidth                                                      | MU4005        | 3.87 %     |
| Transmitter Mask Amplitude                                             | MU4039        | 1.3 dB     |
| Transmitter Mask Frequency                                             | MU4040        | 2.59 %     |
| Time Domain Measurements                                               |               |            |
| Transmission Time                                                      | MU4038        | 4.40 %     |
| Transmission file                                                      | 1004030       | 4.40 /0    |
| Dynamic Frequency Selection (DFS) Parameters)                          | NUL 1000      | 070        |
| DFS Analyser - Measurement Time                                        | MU4006        | 679 µs     |
| DFS Generator - Frequency Error                                        | MU4007        | 92 Hz      |
| DFS Threshold Conducted                                                | MU4008        | 1.3 dB     |
| DFS Threshold Radiated                                                 | MU4009        | 3.2 dB     |
|                                                                        | 1             |            |

RF980 2.0 Page 22 of 23

| Test/Measurement                                         | Budget Number | MU     |
|----------------------------------------------------------|---------------|--------|
| Receiver Parameters                                      |               |        |
| EN300328 Receiver Blocking                               | MU4010        | 1.1 dB |
| EN301893 Receiver Blocking                               | MU4011        | 1.1 dB |
| EN303340 Adjacent Channel Selectivity                    | MU4012        | 1.1 dB |
| EN303340 Overloading                                     | MU4013        | 1.1 dB |
| EN303340 Receiver Blocking                               | MU4014        | 1.1 dB |
| EN303340 Receiver Sensitivity                            | MU4015        | 0.9 dB |
| EN303372-1 Image Rejection                               | MU4016        | 1.4 dB |
| EN303372-1 Receiver Blocking                             | MU4017        | 1.1 dB |
| EN303372-2 Adjacent Channel Selectivity                  | MU4018        | 1.1 dB |
| EN303372-2 Dynamic Range                                 | MU4019        | 0.9 dB |
| Receiver Blocking Talk Mode Conducted                    | MU4033        | 1.2 dB |
| Receiver Blocking Talk Mode- radiated                    | MU4034        | 3.4 dB |
| Rx Blocking, listen mode, blocking level                 | MU4035        | 3.2 dB |
| Rx Blocking, listen mode, radiated Threshold Measurement | MU4036        | 3.4 dB |
| Adjacent Sub Band Selectivity                            | MU4003        | 4.2 dB |

RF980 2.0 Page 23 of 23