FCC RADIO TEST REPORT

Applicant Kaijet Technology International Corporation

8F., No. 109, Zhongcheng Road, Tucheng Address

Dist., New Taipei City, Taiwan R.O.C

Matter Enabled Smart Plug Power Strip With

Report No.: 24050123-DRFCC01

4-Outlets and 4 USB™ Ports

Model No. JSPAC4430

Trade Name j5create

FCC ID. 2AD37JSPAC4430

FCC part 15 Subpart C §15.247 Standard

I HEREBY CERTIFY THAT:

The sample was received on Aug. 14, 2024 and the testing was completed on Aug. 22, 2024 at Cerpass Technology Corp. The test result refers exclusively to the test presented test model / sample. Without written approval of Cerpass Technology Corp., the test report shall not be reproduced except in full.

Approved by:

Equipment

Leevin Li / Supervisor

Cerpass Technology Corp. Issued date : Aug. 23, 2024 Page No. : 1 of 80

CONTENTS

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024

Page No. : 2 of 80

	Summary of Test Procedure and Test Results	
	Applicable Standards	
2. 1	Fest Configuration of Equipment under Test	6
2.1	Feature of Equipment under Test	6
2.2	Carrier Frequency of Channels	7
2.3	Test Mode and Test Software	8
2.4	Power Parameter Value of the test software	9
2.5	Description of Test System	10
2.6	General Information of Test	
2.7	Measurement Uncertainty	
3. 1	Test Equipment and Ancillaries Used for Tests	12
	Antenna Requirements	
4.1	Standard Applicable	14
4.2	Antenna Construction and Directional Gain	14
5. 1	Test of AC Power Line Conducted Emission	15
5.1	Test Limit	15
5.2	Test Procedures	
5.3	Typical Test Setup	16
5.4	Test Result and Data	17
6. T	Test of Spurious Emission (Radiated)	19
6.1	Test Limit	19
6.2	Test Procedures	19
6.3	Typical Test Setup	20
6.4	Test Result and Data (9KHz ~ 30MHz)	21
6.5	Test Result and Data (30MHz ~ 1GHz)	
6.6	Test Result and Data (1GHz ~ 25GHz)	23
6.7	Restricted Bands of Operation	47
	Restrict Band Emission Measurement Data	
7. 1	Test of Conducted Spurious Emission	64
7.1	Test Limit	64
7.2	Test Procedure	64
7.3	Test Setup Layout	64
	Test Result and Data	
8. (On Time, Duty Cycle and Measurement methods	69
	Test Limit	
8.2	Test Procedure	69
8.3	Test Setup Layout	69
	Test Result and Data	
	dB Bandwidth Measurement Data	
9.1	Test Limit	71
9.2	Test Procedures	71
	Test Setup Layout	
	Test Result and Data	
10.1	Maximum Peak Output Power	75

CERPASS TECHNOLOGY CORP.

10.1 Test Limit	75
10.2 Test Procedures	75
10.3 Test Setup Layout	75
10.4 Test Result and Data	76
11. Power Spectral Density	77
11.1 Test Limit	77
11.2 Test Procedures	77
11.3 Test Setup Layout	77
11.4 Test Result and Data	78

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024

Page No. : 3 of 80

History of this test report

Report No.: 24050123-DRFCC01

Version No. Report No		Date	Description
Rev.01	24050123-DRFCC01	Aug. 23, 2024	Initial Issue

Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 4 of 80

1. Summary of Test Procedure and Test Results

1.1 Applicable Standards

ANSI C63.10:2013

FCC Rules and Regulations Part 15 Subpart C §15.247

	<u>- </u>	
FCC Rule	. Description of Test	Result
FCC CFR Title 47 Part 15 Subpart C: Section 15.203/15.247 (b)	. Antenna Requirement	Pass
FCC CFR Title 47 Part 15 Subpart C: Section 15.207	. AC Power Line Conducted Emission	Pass
FCC CFR Title 47 Part 15 Subpart C: Section 15.205/15.209;	. Spurious Emission(Radiated)	Pass
FCC CFR Title 47 Part 15 Subpart C: Section 15.247(d);	. Spurious Emission(Conducted)	Pass
FCC CFR Title 47 Part 15 Subpart C: Section 15.247(a)(2);	. 6dB Bandwidth	Pass
FCC CFR Title 47 Part 15 Subpart C: Section 15.247(b);	. Maximum Peak Output Power	Pass
FCC CFR Title 47 Part 15 Subpart C: Section 15.247(e)	. Power Spectral Density	Pass
Note: Devictions Vos -		

Report No.: 24050123-DRFCC01

Note: Deviations Yes □ No ■

Cerpass Technology Corp. Issued date : Aug. 23, 2024

Page No. : 5 of 80

D-FD-508-0 V1.1

^{*}The lab has reduced the uncertainty risk factor from test equipment, environment and staff technicians which according to the standard on contract. Therefore, the test result will only be determined by standard requirement.

2. Test Configuration of Equipment under Test

2.1 Feature of Equipment under Test

Equipment Matter Enabled Smart Plug Power Strip With 4-Outlets ar Ports				
Model Name	JSPAC4430			
Frequency Range	BLE/WIFI 2.4GHz: 2400MHz-2483.5MHz			
Modulation Type	BLE: GFSK WIFI 2.4GHz: 802.11b: CCK, DQPSK, DBPSK 802.11g/n: BPSK, QPSK, 16QAM, 64QAM			
Data Rate	BLE: GFSK: 1Mbps WIFI 2.4GHz: 802.11b: 1, 2 ,5.5,11Mbps 802.11g: 6,9,12,18,24,36,48,54Mbps 802.11n: MCS0-MCS7, HT20/HT40			
EUT Power Rating:	125V~ 60Hz 15A 1875W max USB-C: PD 5.0V=3.0A(15.0W), 9.0A=3.0A(27.0W), 12.0V=2.5A(30.0W Max) / PPS 5.0-11.0V=2.75A USB-A1: 5.0V=3.0A(15.0W), 9.0A=2.0A(18.0W), 12.0V=1.5A(18.0W Max) USB-A2/A3: 5.0V=2.0A(10.0W Max) USB-C + A1/A2/A3: PD 20.0W/PPS 19.8W + 5.0V=2.0A(10.0W) USB-A1+A2/A3 or A2+A3: 5.0V=2.0A(10.0W) USB-C+(A1+A2/A3) or C+(A2+A3): PD 20.0W/PPS 19.8W + (5.0V=2.0A(10.0W)) USB-A1+A2+A3: 5.0V=2.0A(10.0W) USB-A1+A2+A3: 5.0V=2.0A(10.0W) USB-C+(A1+A2+A3): PD 20.0W/PPS 19.8W + (5.0V=2.0A(10.0W))			
Note: For more data	Total DC Output: 30.0W Max			

Report No.: 24050123-DRFCC01

Note: For more details, please refer to the User's manual of the EUT.

Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 6 of 80

2.2 Carrier Frequency of Channels

802.11b, 802.11g, 802.11n HT 20 (2412MHz~2462MHz)

Channel	Frequency(MHz)	Channel	Frequency(MHz)
*01	2412	07	2442
02	2417	08	2447
03	2422	09	2452
04	2427	10	2457
05	05 2432		2462
*06	*06 2437		

Report No.: 24050123-DRFCC01

802.11n HT40 (2422MHz~2452MHz)

Channel	Frequency(MHz)	Channel	Frequency(MHz)
		07	2442
		08	2447
*03	*03 2422		2452
04	2427		
05	2432		
*06	2437		

Note: Channels remarked * are selected to perform test.

Cerpass Technology Corp. Issued date : Aug. 23, 2024

D-FD-508-0 V1.1 Page No. : 7 of 80

2.3 Test Mode and Test Software

- a. During testing, the interface cables and equipment positions were varied according to ANSI C63.10.
- b. The complete test system included support units and EUT for RF test.
- c. An executive program, "Wifi Test Tool v1.6.5.exe (Ver.: 0.7.7.0)" under Windows 7 system was executed to transmit and receive data via WLAN.

Report No.: 24050123-DRFCC01

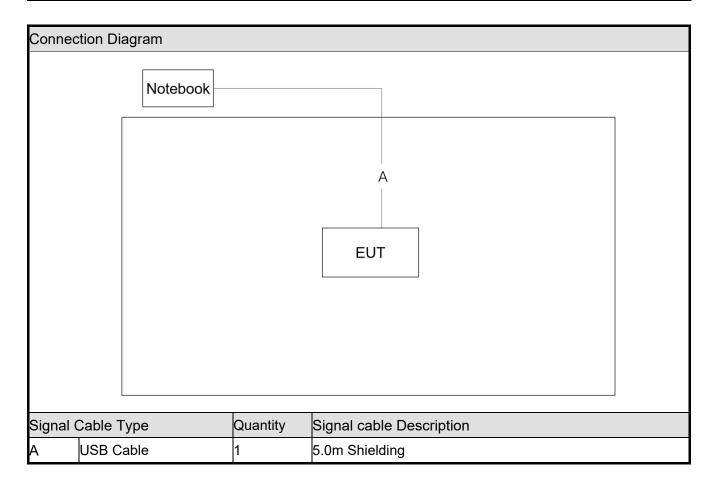
The following t	he following test modes were performed for the test:				
Conducted E	onducted Emissions from the AC mains power ports				
Test Mode	est Mode Operating Description				
1	802.11b (1Mbps) for 120V				
2	802.11g (6Mbps) for 120V				
3	802.11n HT20 (6.5Mbps) for 120V				
4	802.11n HT40 (13.5Mbps) for 120V				
caused "Tes	t Mode 2 at CH01:2412" generated the worst case, it was reported as the final				
data.					
Radiated em	nission (Below 1GHz)				
Test Mode	Operating Description				
1	802.11b (1Mbps)				
2 802.11g (6Mbps)					
3 802.11n HT20 (6.5Mbps)					
4 802.11n HT40 (13.5Mbps)					
caused "Tes	t Mode 2 at CH01:2412" generated the worst case, it was reported as the final				
data.	data.				
Radiated em	Radiated emission (1GHz ~ 25GHz)				
1	802.11b (1Mbps)				
2	802.11g (6Mbps)				
3	802.11n HT20 (6.5Mbps)				
4	802.11n HT40 (13.5Mbps)				

caused "Test Mode 1~4" generated the worst case, it was reported as the final data.

Cerpass Technology Corp. Issued date : Aug. 23, 2024

D-FD-508-0 V1.1 Page No. : 8 of 80

2.4 Power Parameter Value of the test software


Mode	Frequency (MHz)	Setting level
	2412	Default
802.11b	2437	Default
	2462	Default
	2412	Default
802.11g	2437	Default
	2462	Default
900 11m	2412	Default
802.11n	2437	Default
(20MHz)	2462	Default
902.44%	2422	Default
802.11n	2442	Default
(40MHz)	2452	Default

Issued date : Aug. 23, 2024 Page No. : 9 of 80

2.5 Description of Test System

Р	roduct	Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook	SONY	PCG-71811P	27544574 7000251	Non-Shielded, 1.8m

Report No.: 24050123-DRFCC01

2.6 General Information of Test

Test Site	Cerpass Technology Corporation(Cerpass Laboratory) Address: Room 102, No. 5, Xing'an Road, Chang'an Town, Dongguan City, Guangdong Province Tel: +86-769-8547-1212 Fax: +86-769-8547-1912
FCC Designation No.:	CN1288
Frequency Range Investigated:	Conducted: from 150kHz to 30 MHz Radiation: from 9kHz to 25,000MHz
Test Distance:	The test distance of radiated emission from antenna to EUT is 3 M.

Report No.: 24050123-DRFCC01

Test Item	Test Site	Test period	Environmental Conditions	Tested By
RF Conducted	RFCON01-DG	2024/08/20	27°C / 65%	Amos Zhang
Radiated Emissions	3M01-DG	2024/08/17~2024/08/19	24~26°C / 57~58%	Amos Zhang
AC Power Line	CON01-DG	2024/09/22	28°C / 59%	Amas Zhang
Conducted Emission	CON01-DG	2024/08/22	20 (7 39 %	Amos Zhang

2.7 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2).

Measurement Item	Uncertainty
AC Power Line Conduction(150K~30MHz)	±2.52dB
Radiated Spurious Emission(9KHz~30MHz)	±4.10dB
Radiated Spurious Emission(30MHz~1GHz)	±4.51dB
Radiated Spurious Emission(1GHz~18GHz)	±5.49dB
Radiated Spurious Emission(18GHz~40GHz)	±4.41dB
6dB Bandwidth&20dB Bandwidth	±5.2%
Occupied Bandwidth	±4.5%
Peak Output Power(Conducted Power Meter)	±0.90dB
Power Spectral Density	±0.89dB
Dwell Time / Deactivation Time	±3.5%

D-FD-508-0 V1.1 Page No. : 11 of 80 3. Test Equipment and Ancillaries Used for Tests

AC Power Line Conducted Emission					
Test Site	CON01-DG				
Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
Test Receiver	R&S	ESCI	100564	2024/01/03	2025/01/02
LISN	SCHWARZBECK	NSLK 8127	8127749	2024/08/01	2025/07/31
LISN	R&S	ENV216	100024	2024/01/03	2025/01/02
Cable	Aoda	RG214	Cable-06	2024/01/03	2025/01/02
Pulse Limiter with 10dB Attenuation	SCHWARZBECK	VTSD 9561-F	9561-F106	2024/01/03	2025/01/02
Temperature/ Humidity Meter	GEMLEAD	STH200A	N/A	2024/08/02	2025/08/01

Report No.: 24050123-DRFCC01

Radiated Emissions					
Test Site	3M01-DG	_			
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
EMI Test Receiver	R&S	ESCI	100565	2024/08/01	2025/07/31
Amplifier	EMCI	EMC330	980082	2024/01/03	2025/01/02
Loop Antenna	R&S	HFH2-Z2	100150	2024/01/03	2026/01/02
Bilog Antenna	Sunol Science	JB1	A072414-3	2023/06/18	2025/06/17
Preamplifier	Agilent	8449B	3008A02342	2024/08/01	2025/07/31
Preamplifier	COM-POWER	PA-840	711885	2024/01/03	2025/01/02
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120 D	9120D-619	2024/01/03	2026/01/02
Standard Gain Horn Antenna	TRC	HA-2640	18050	2024/01/03	2026/01/02
Standard Gain Horn Antenna	TRC	HA-1726	18051	2024/01/03	2026/01/02
FSQ Signal Analyzer	R&S	FSQ40	200012	2024/01/03	2025/01/02
Cable	EMCI	EM104-NM SM-8.5M	Cable-03	2024/08/01	2025/07/31
Cable	Jiuzhoubona	T-SMA	SMA48AL-70 00	2024/08/01	2025/07/31
Cable	CH-CoDesigh	CCXA81-S MAMNM-1 M	Cable-05	2024/08/01	2025/07/31
Cable	CH-CoDesigh	CCXA40-2. 92-2.92-1M	21071954	2024/08/02	2025/08/01
Cable	CH-CoDesigh	CCX40-2.92 M-2.92M-9 M	21070892	2024/08/02	2025/08/01
Temperature/ Humidity Meter	GEMLEAD	STH200A	N/A	2024/08/02	2025/08/01

Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 12 of 80

CERPASS TECHNOLOGY CORP.

RF Conducted					
Test Site	RFCON01-DG				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
MXA Signal Analyzer	KEYSIGHT	N9020A	US46220290	2024/01/03	2025/01/02
EXA Signal Analyzer	KEYSIGHT	N9010A	MY53400169	2024/01/03	2025/01/02
ESG VECTOR SIGNAL GENERATOR	Agilent	E4438C	MY45092582	2024/01/03	2025/01/02
MXG VECTOR SIGNAL GENERATOR	Agilent	N5182B	MY53050127	2024/01/03	2025/01/02
USB Wideband Power Sensor	Boonton	55006	9778	2024/08/02	2025/08/01
Temperature/ Humidity Meter	mingle	ETH529	N/A	2024/01/03	2025/01/02

Report No.: 24050123-DRFCC01

Cerpass Technology Corp. Issued date : Aug. 23, 2024
D-FD-508-0 V1.1 Page No. : 13 of 80

4. Antenna Requirements

4.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Report No.: 24050123-DRFCC01

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.2 Antenna Construction and Directional Gain

WIFI 2.4G:

Antenna Type	PCB
Antenna Gain	-1.3dBi

(Non-Beamforming)

Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 14 of 80

5. Test of AC Power Line Conducted Emission

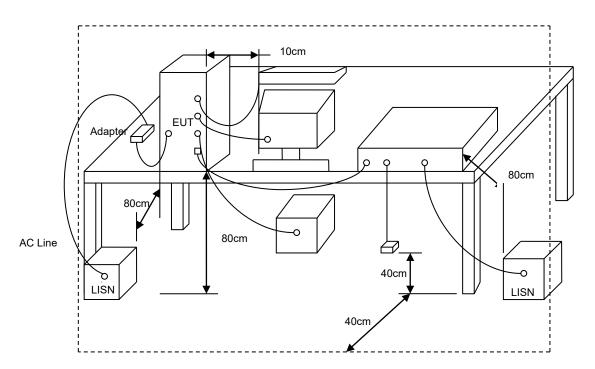
5.1 Test Limit

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 120 VAC power and return leads of the EUT according to the methods defined in ANSI C63.10-2013. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 6.2.2. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

Report No.: 24050123-DRFCC01

Frequency (MHz)	Quasi Peak (dB µ V)	Average (dB μ V)
0.15 – 0.5	66-56*	56-46*
0.5 - 5.0	56	46
5.0 – 30.0	60	50

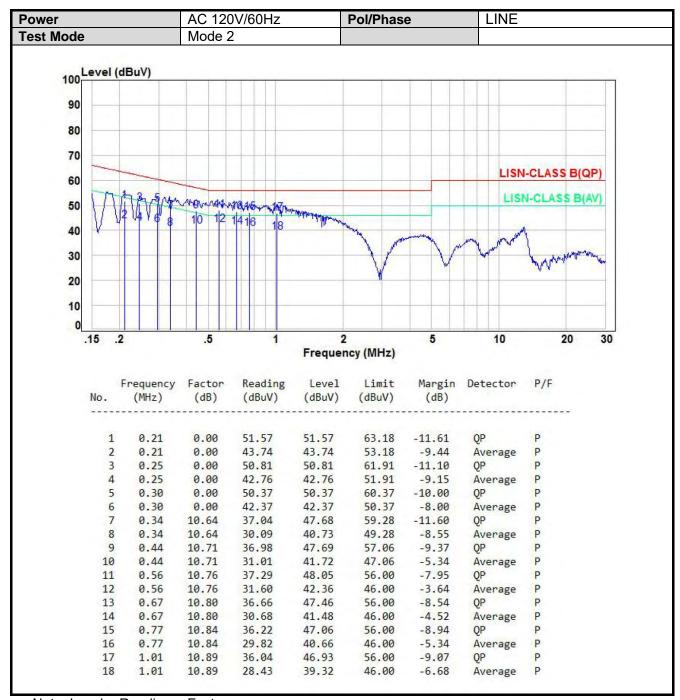
^{*}Decreases with the logarithm of the frequency.


5.2 Test Procedures

The EUT was setup according to ANSI C63.10, 2013 and tested according to DTS test procedure of Oct 2014 KDB558074 for compliance to FCC 47CFR 15.247 requirements. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs) Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

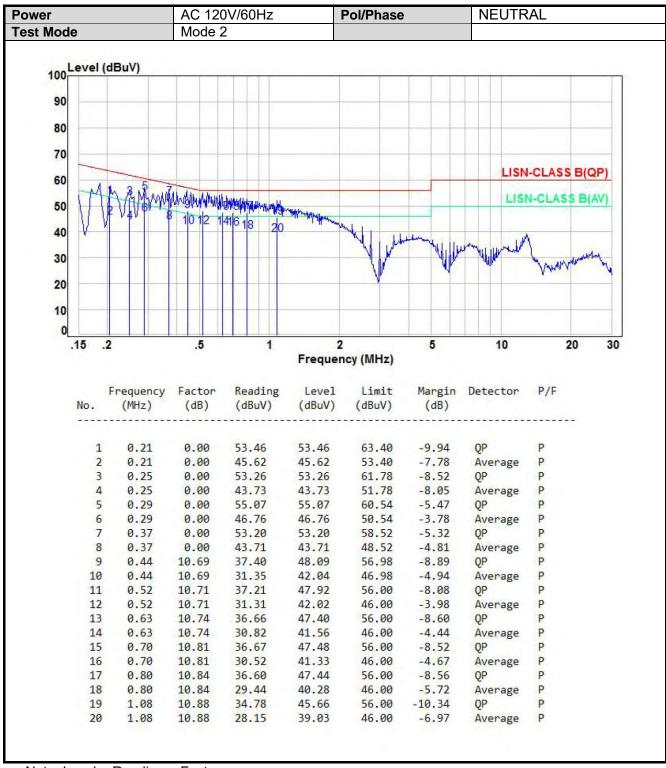
Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 15 of 80

5.3 Typical Test Setup


Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024

Page No. : 16 of 80


Test Result and Data

Note: Level = Reading + Factor Margin = Level - Limit

Factor = (LISN or ISN or PLC or Current Probe) Factor + Cable Loss + Attenuator

Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 17 of 80

Note: Level = Reading + Factor Margin = Level – Limit

Factor = (LISN or ISN or PLC or Current Probe) Factor + Cable Loss + Attenuator

6. Test of Spurious Emission (Radiated)

6.1 Test Limit

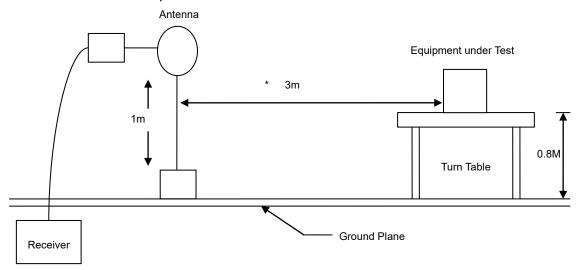
In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter measurement is based on the maximum conducted output power, the attenuation required under this paragraph shall be 30dB instead of 20dB. In addition, radiated emissions which fall in section 15.205(a) the restricted bands must also comply with the radiated emission limit specified in section 15.209(a).

Report No.: 24050123-DRFCC01

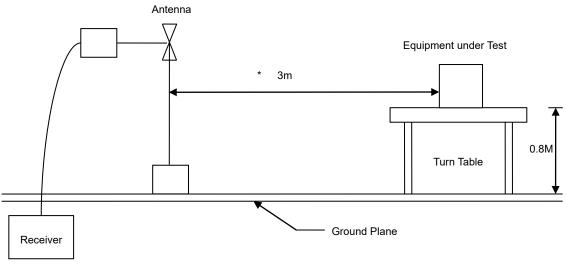
\				
FREQUENCIES(MHz)	FIELD STRENGTH	MEASUREMENT		
	(microvolts/meter)	DISTANCE(meters)		
0.009~0.490	2400/F(kHz)	300		
0.490~1.705	24000/F(kHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

6.2 Test Procedures

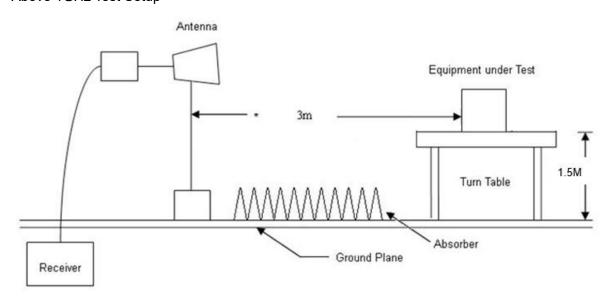
- a. The EUT was placed on a rotatable table top 0.8 meter for frequency below 1GHz and 1.5meter for frequency above 1GHz above ground.
- b. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a broadband antenna and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- h. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than AVG limit (that means the emission level in peak mode also complies with the limit in AVG mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in AVG mode again and reported.
- i. "Cone of radiation" has been considered to be 3dB bandwidth of the measurement antenna. Note: The supporting fixture shall permit orientation of the EUT in each of three orthogonal axis positions sch that emissions from the EUT are maximized.


(X-AXIS is the worst.)

Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 19 of 80


6.3 Typical Test Setup

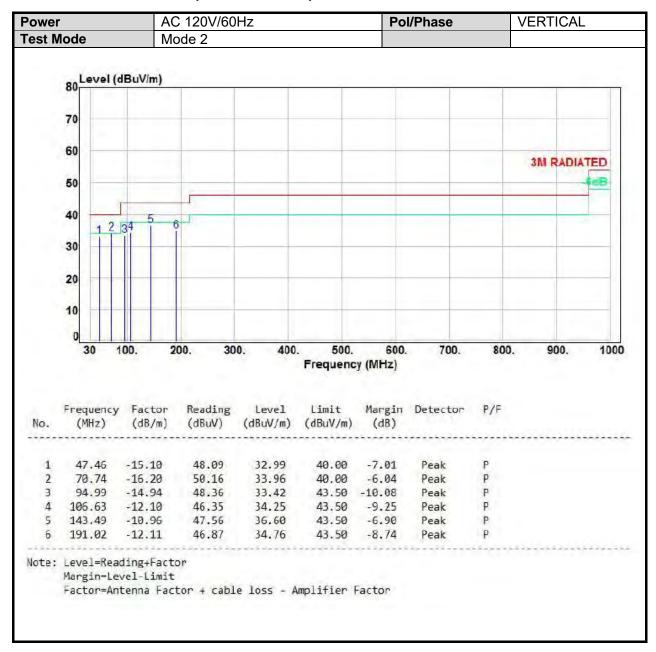
Below 30MHz test setup



Report No.: 24050123-DRFCC01

30MHz- 1GHz Test Setup

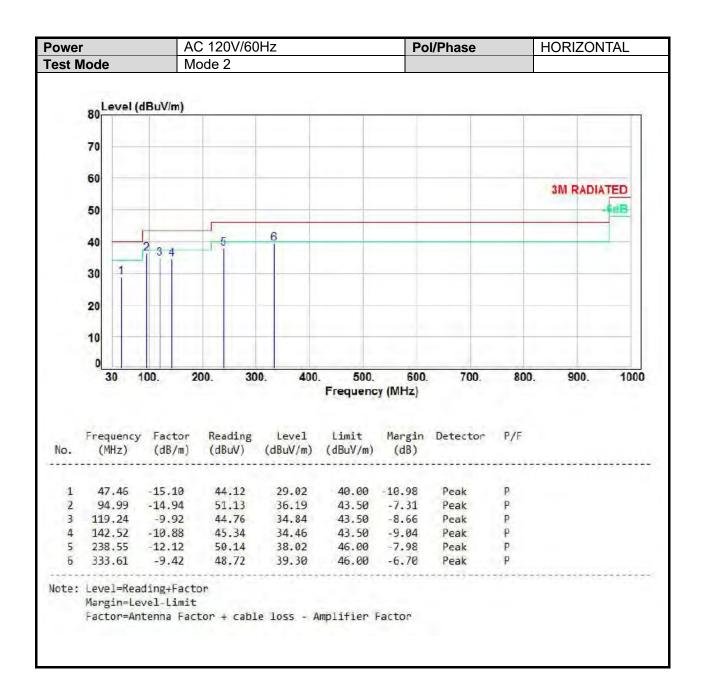
Above 1GHz Test Setup


Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 20 of 80

6.4 Test Result and Data (9KHz ~ 30MHz)

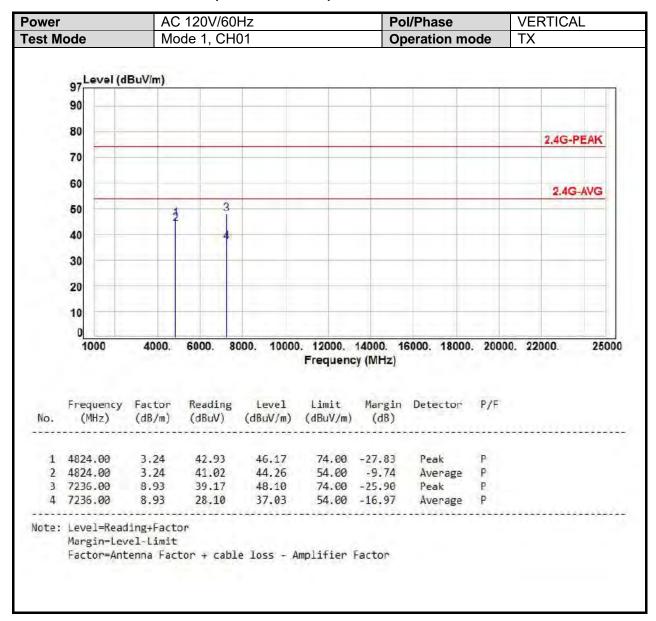
The 9kHz-30MHz spurious emission is under limit 20dB more.

6.5 Test Result and Data (30MHz ~ 1GHz)


Cerpass Technology Corp. D-FD-508-0 V1.1

Issued date : Aug. 23, 2024

Report No.: 24050123-DRFCC01

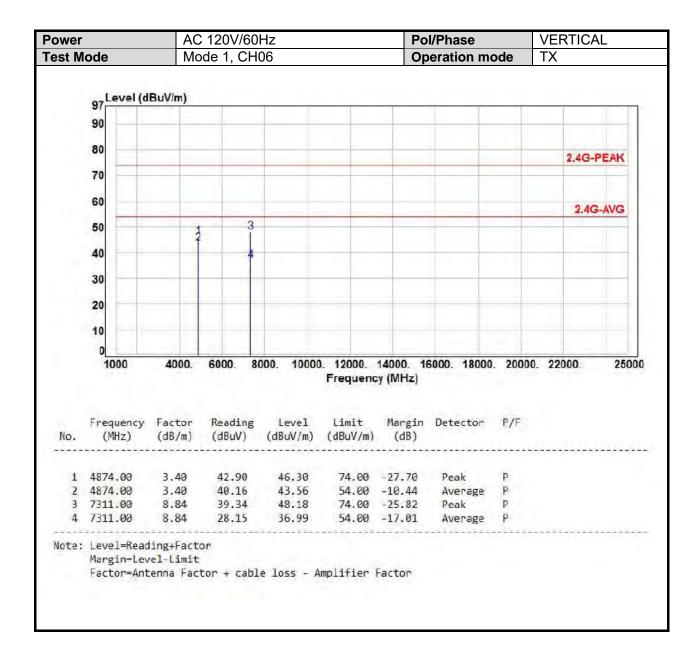

Page No. : 21 of 80

6.6 Test Result and Data (1GHz ~ 25GHz)

Issued date : Aug. 23, 2024

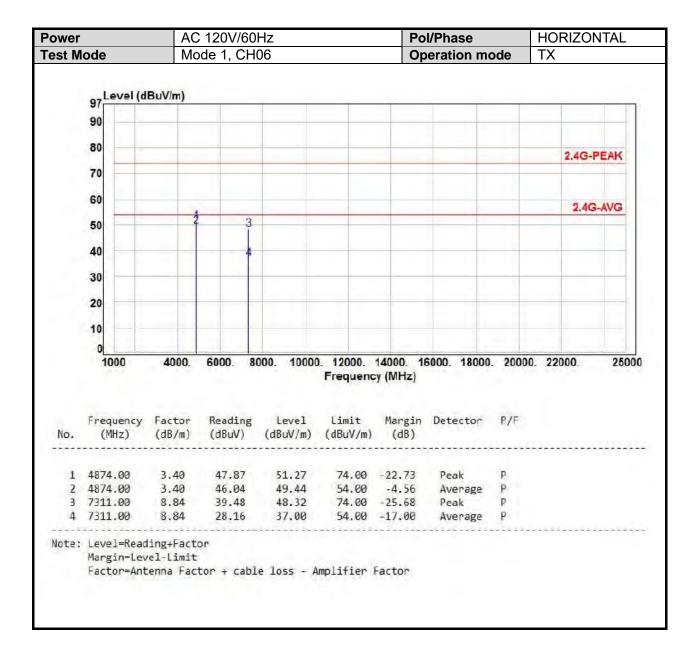
Page No. : 23 of 80

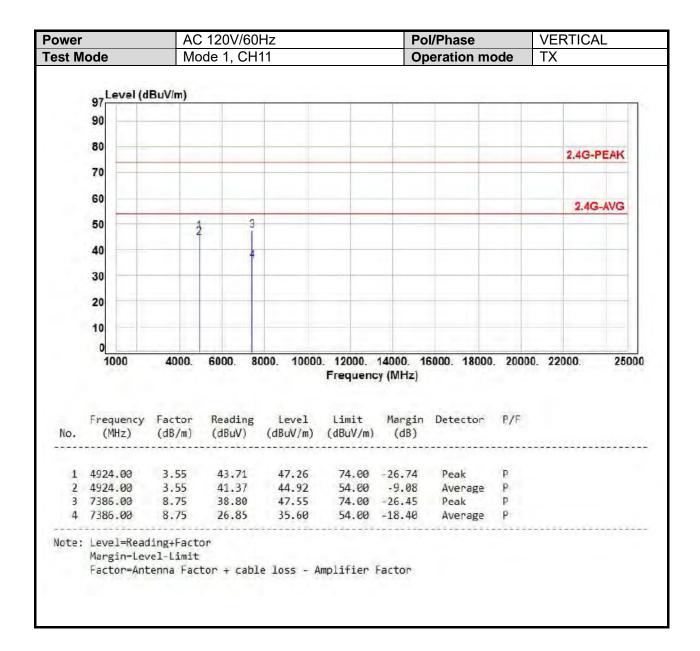
Power AC 120V/60Hz Pol/Phase HORIZONTAL Mode 1, CH01 **Test Mode Operation mode** TX 97 Level (dBuV/m) 90 80 2.4G-PEAK 70 60 2.4G-AVG 50 40 30 20 10 6000. 8000. 10000. 12000. 14000. 16000. 18000. 20000. 22000. 4000. 25000 1000 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F No. (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)1 4824.00 3.24 47.35 50.59 74.00 -23.41 Peak P 2 4824.00 3.24 46.91 50.15 54.00 -3.85 Average P 3 7236.00 8.93 39.48 48.41 74.00 -25.59 Peak P 4 7236.00 8.93 28.58 37.51 54.00 -16.49 Average P


Report No.: 24050123-DRFCC01

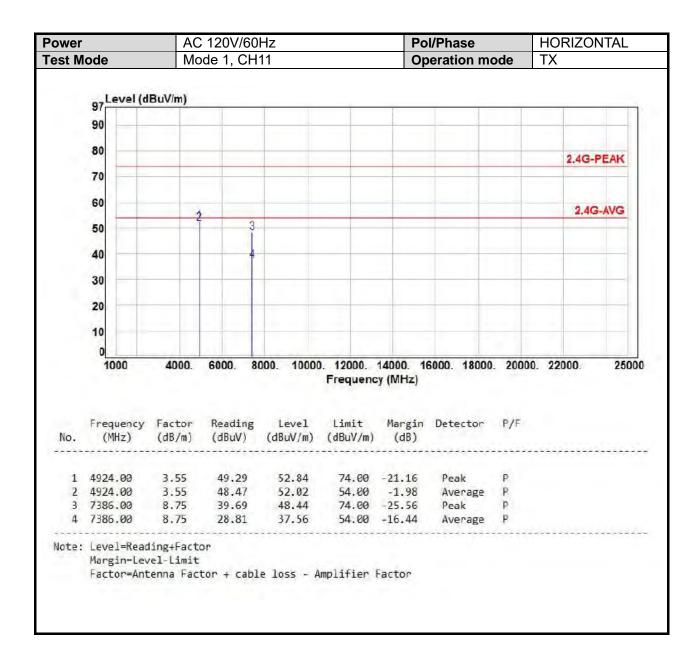
Issued date : Aug. 23, 2024

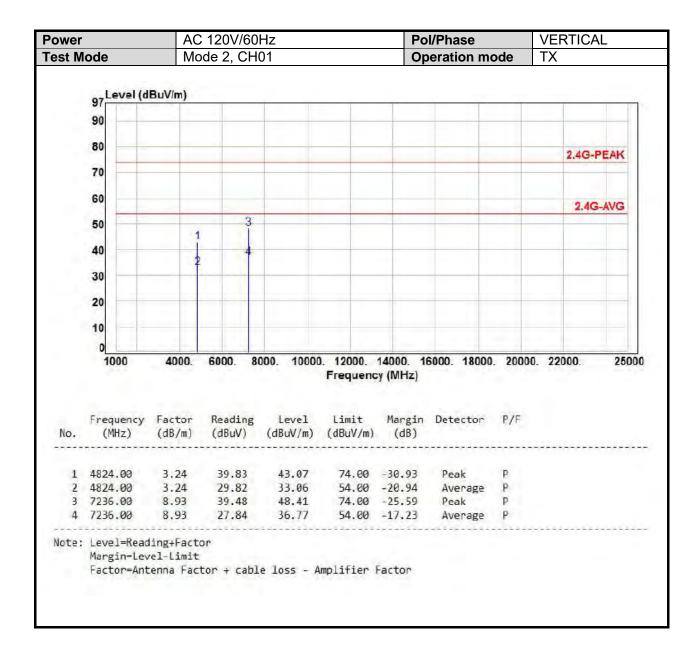
Page No. : 24 of 80


Note: Level=Reading+Factor Margin-Level-Limit

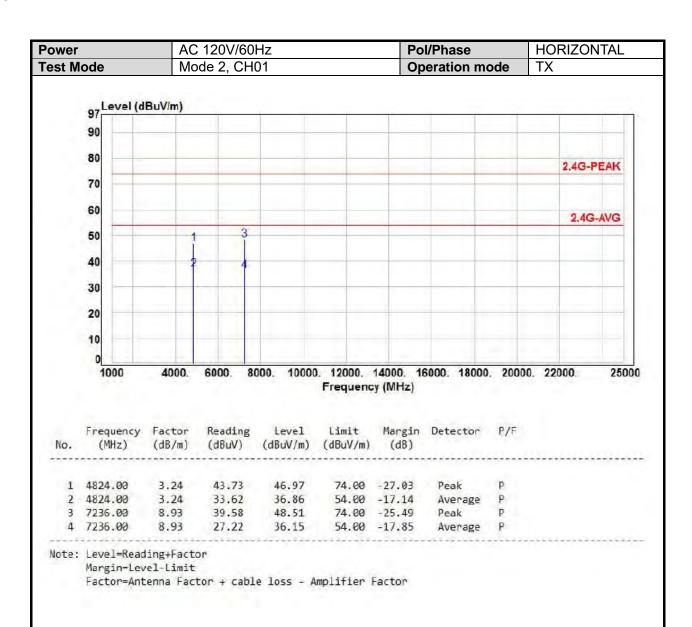

Factor=Antenna Factor + cable loss - Amplifier Factor

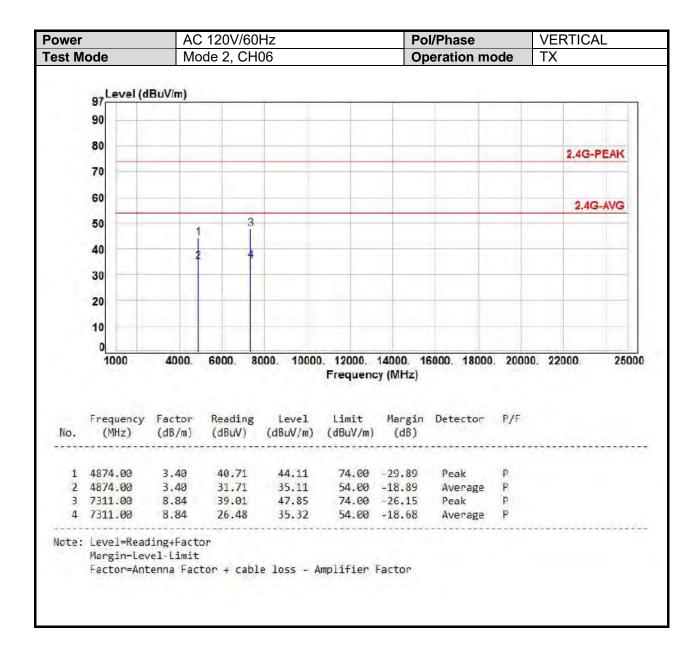
D-FD-508-0 V1.1 Page No. : 25 of 80


Issued date : Aug. 23, 2024



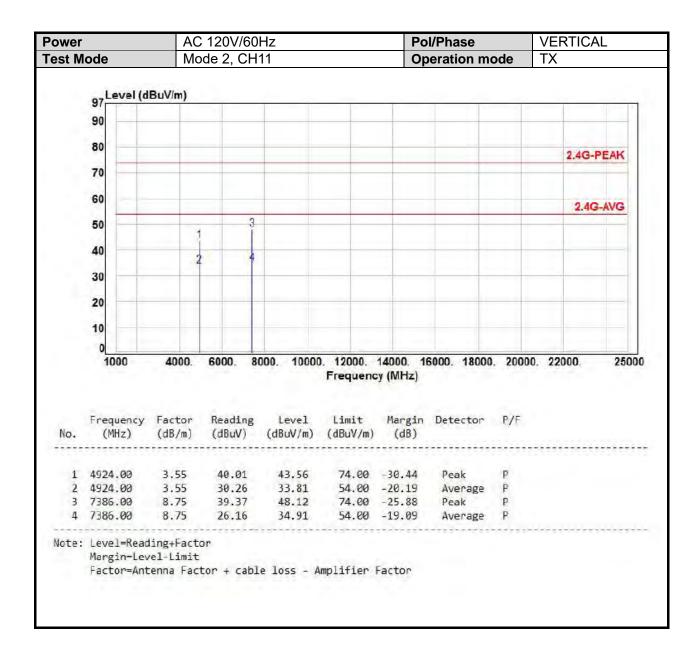
D-FD-508-0 V1.1 Page No. : 27 of 80


Issued date : Aug. 23, 2024



Issued date : Aug. 23, 2024

Page No. : 29 of 80


Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024

Page No. : 31 of 80

Issued date : Aug. 23, 2024

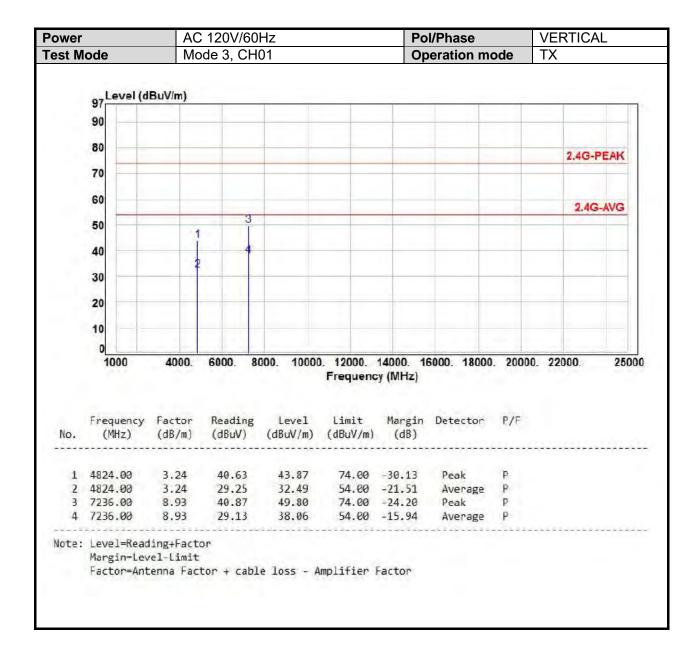
Page No. : 33 of 80

Power AC 120V/60Hz Pol/Phase HORIZONTAL Mode 2, CH11 **Test Mode Operation mode** TX 97 Level (dBuV/m) 90 80 2.4G-PEAK 70 60 2.4G-AVG 50 3 40 30 20 10 6000. 8000. 10000. 12000. 14000. 16000. 18000. 20000. 22000. 4000. 25000 1000 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F No. (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)
 1
 4924.00
 3.55
 40.93
 44.48
 74.00
 -29.52
 Peak
 P

 2
 4924.00
 3.55
 31.86
 35.41
 54.00
 -18.59
 Average
 P

 3
 7386.00
 8.75
 38.43
 47.18
 74.00
 -26.82
 Peak
 P

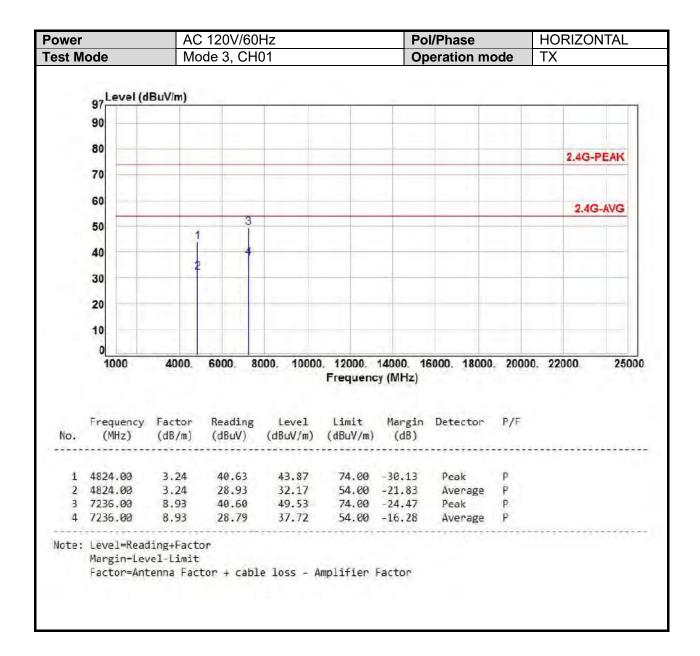
 4
 7386.00
 8.75
 26.23
 34.98
 54.00
 -19.02
 Average
 P
 Note: Level=Reading+Factor


Margin-Level-Limit

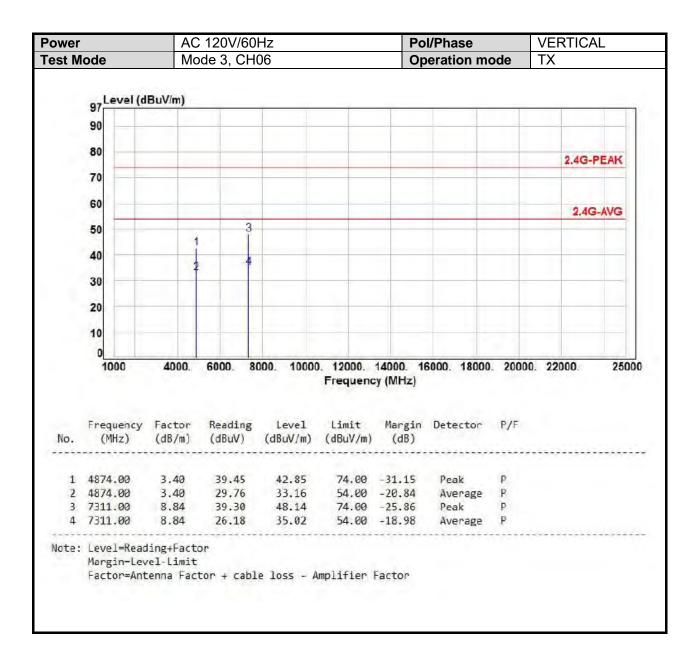
Factor=Antenna Factor + cable loss - Amplifier Factor

D-FD-508-0 V1.1 Page No. : 34 of 80

Issued date : Aug. 23, 2024



Issued date : Aug. 23, 2024

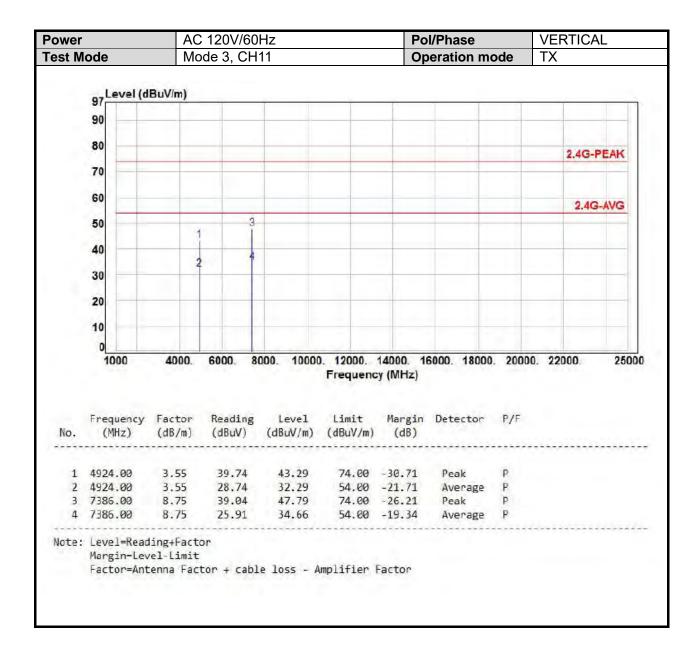

Page No. : 35 of 80

Issued date : Aug. 23, 2024

Page No. : 36 of 80

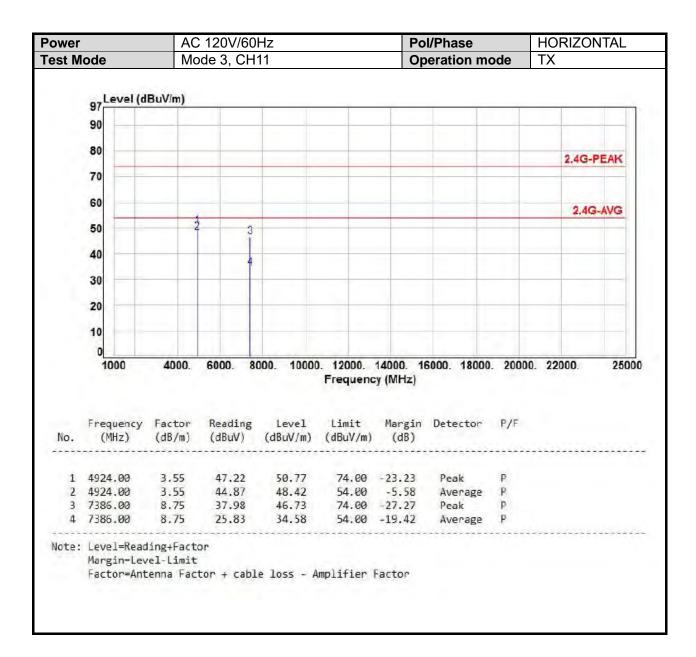
D-FD-508-0 V1.1 Page No. : 37 of 80

Power AC 120V/60Hz Pol/Phase HORIZONTAL Mode 3, CH06 **Test Mode Operation mode** TX 97 Level (dBuV/m) 90 80 2.4G-PEAK 70 60 2.4G-AVG 50 40 30 20 10 8000. 10000. 12000. 14000. 16000. 18000. 20000. 22000. 4000. 6000. 25000 1000 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)No.
 1
 4864.00
 3.37
 44.08
 47.45
 74.00
 -26.55
 Peak
 P

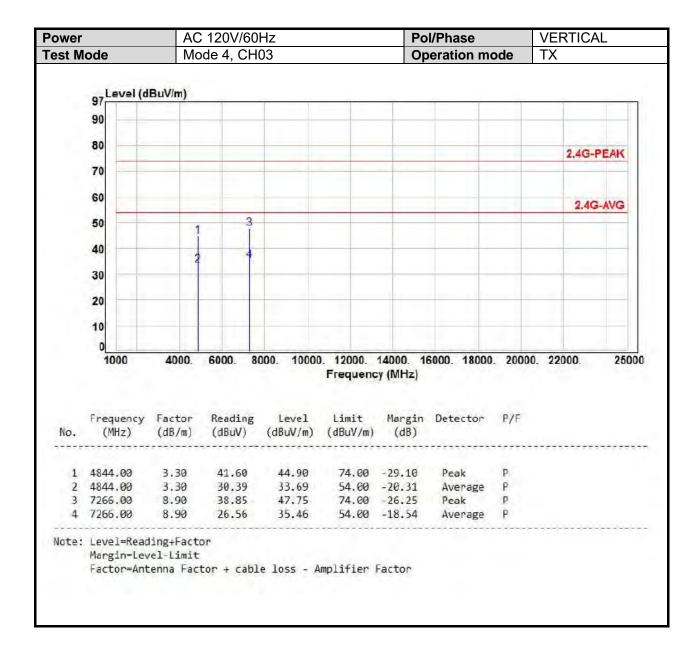

 2
 4864.00
 3.37
 35.49
 38.86
 54.00
 -15.14
 Average
 P

 3
 7312.00
 8.84
 39.13
 47.97
 74.00
 -26.03
 Peak
 P

 4
 7312.00
 8.84
 27.16
 36.00
 54.00
 -18.00
 Average
 P
 Note: Level=Reading+Factor Margin-Level-Limit Factor=Antenna Factor + cable loss - Amplifier Factor

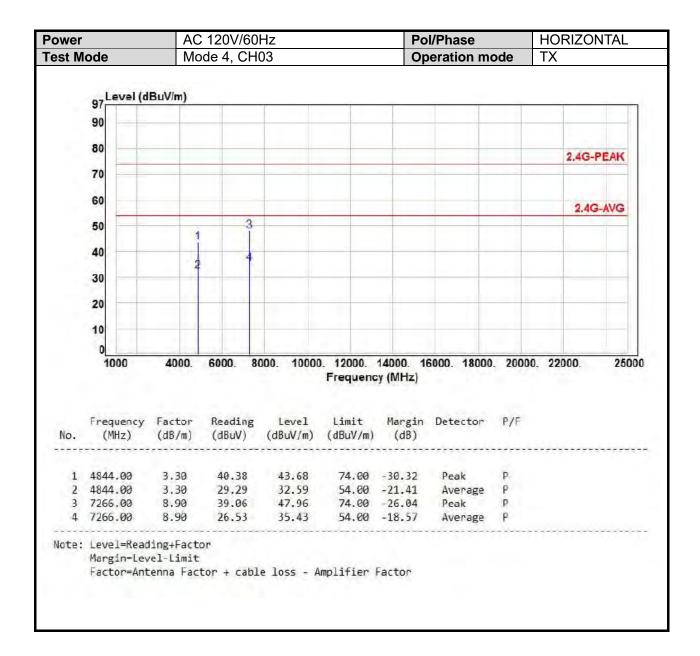

Issued date : Aug. 23, 2024

Page No. : 38 of 80

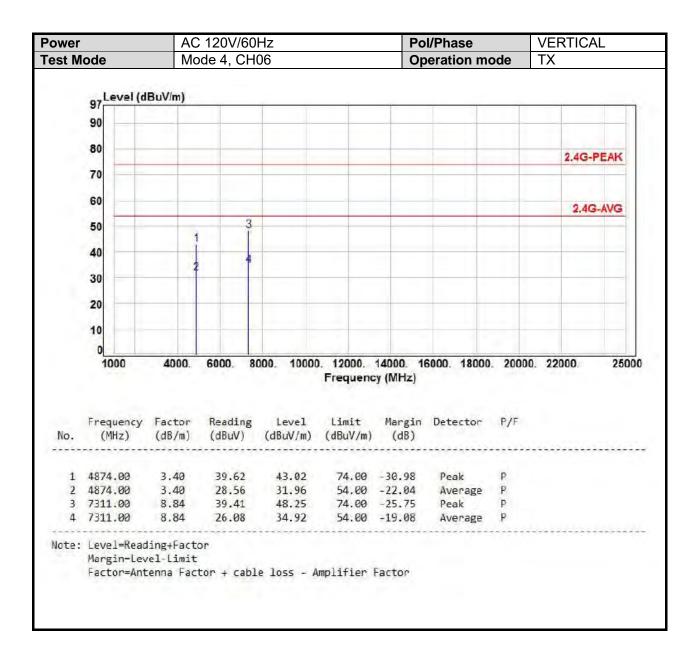


Issued date : Aug. 23, 2024

Page No. : 39 of 80



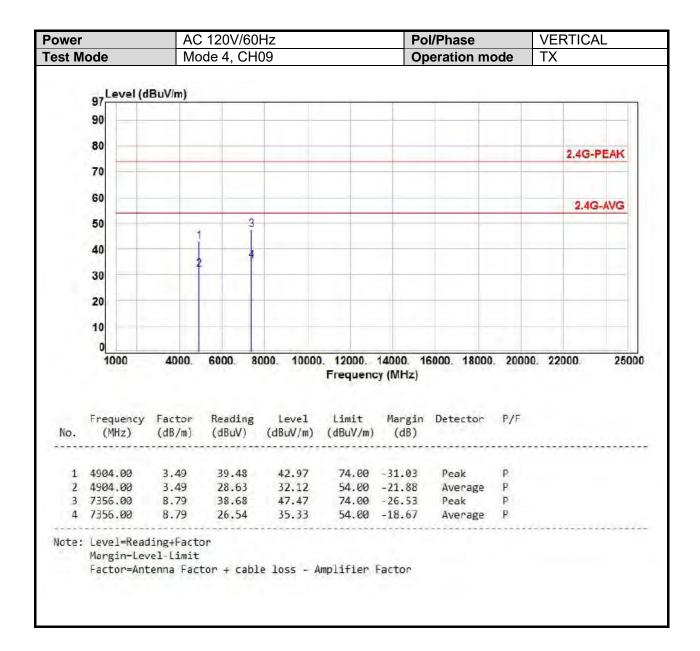
D-FD-508-0 V1.1 Page No. : 40 of 80


Issued date : Aug. 23, 2024

Page No. : 41 of 80

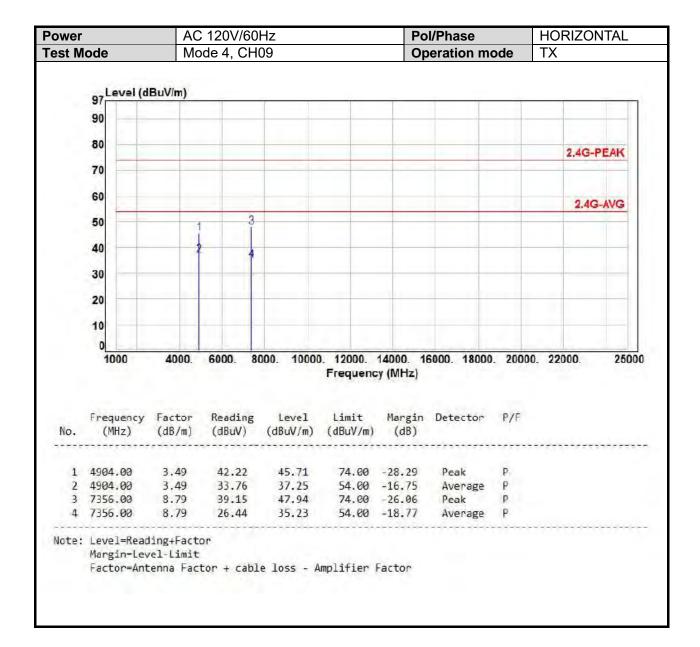
Issued date : Aug. 23, 2024

Page No. : 42 of 80


Power AC 120V/60Hz Pol/Phase HORIZONTAL Mode 4, CH06 **Test Mode Operation mode** TX 97 Level (dBuV/m) 90 80 2.4G-PEAK 70 60 2.4G-AVG 50 40 30 20 10 6000. 8000. 10000. 12000. 14000. 16000. 18000. 20000. 22000. 4000. 25000 1000 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F No. (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)1 4874.00 3.40 40.42 43.82 74.00 -30.18 Peak P 2 4874.00 3.40 29.62 33.02 54.00 -20.98 Average P 3 7311.00 8.84 39.26 48.10 74.00 -25.90 Peak P 4 7311.00 8.84 25.88 34.72 54.00 -19.28 Average P Note: Level=Reading+Factor

Issued date : Aug. 23, 2024

Page No. : 44 of 80


Margin-Level-Limit

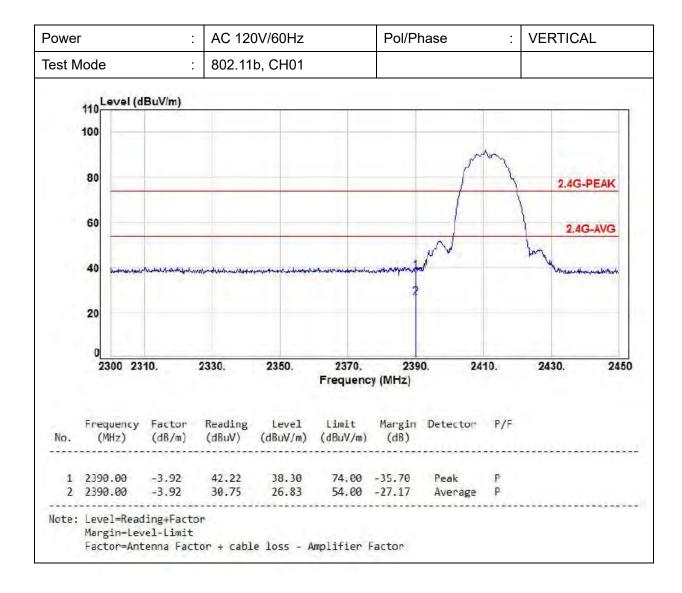
Factor=Antenna Factor + cable loss - Amplifier Factor

Issued date : Aug. 23, 2024

Page No. : 45 of 80

6.7 Restricted Bands of Operation

Only spurious emissions are permitted in any of the frequency bands listed below:


Report No.: 24050123-DRFCC01

MHz	MHz	MHz	GHz
0.09000 - 0.11000	16.42000 - 16.42300	399.9 – 410.0	4.500 - 5.250
0.49500 - 0.505**	16.69475 - 16.69525	608.0 - 614.0	5.350 - 5.460
2.17350 - 2.19050	16.80425 - 16.80475	960.0 – 1240.0	7.250 – 7.750
4.12500 – 4.12800	25.50000 - 25.67000	1300.0 - 1427.0	8.025 - 8.500
4.17725 – 4.17775	37.50000 - 38.25000	1435.0 – 1626.5	9.000 – 9.200
4.20725 – 4.20775	73.00000 - 74.60000	1645.5 – 1646.5	9.300 – 9.500
6.21500 - 6.21800	74.80000 - 75.20000	1660.0 – 1710.0	10.600 – 12.700
6.26775 - 6.26825	108.00000 - 121.94000	1718.8 – 1722.2	13.250 – 13.400
6.31175 – 6.31225	123.00000 - 138.00000	2200.0 - 2300.0	14.470 – 14.500
8.29100 - 8.29400	149.90000 - 150.05000	2310.0 – 2390.0	15.350 – 16.200
8.36200 - 8.36600	156.52475 – 156.52525	2483.5 – 2500.0	17.700 – 21.400
8.37625 - 8.38675	156.70000 - 156.90000	2655.0 - 2900.0	22.010 – 23.120
8.41425 – 8.41475	162.01250 - 167.17000	3260.0 - 3267.0	23.600 – 24.000
12.29000 – 12.29300	167.72000 - 173.20000	3332.0 - 3339.0	31.200 – 31.800
12.51975 – 12.52025	240.00000 - 285.00000	3345.8 - 3358.0	36.430 – 36.500
12.57675 – 12.57725	322.00000 - 335.40000	3600.0 - 4400.0	Above 38.6
13.36000 – 13.41000			

^{**:} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 47 of 80

6.8 Restrict Band Emission Measurement Data

Report No.: 24050123-DRFCC01

Power AC 120V/60Hz Pol/Phase **HORIZONTAL** Test Mode 802.11b, CH01 110 Level (dBuV/m) 100 80 2.4G-PEAK 60 2.4G-AVG 40 20 2300 2310. 2330. 2350. 2370. 2390. 2410. 2430. 2450 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F No. (MHz) (dB/m)(dBuV) (dBuV/m) (dBuV/m) (dB)

74.00 -28.86

54.00 -20.45

Peak P Average P

Issued date : Aug. 23, 2024

Page No. : 49 of 80

Report No.: 24050123-DRFCC01

Note: Level=Reading+Factor Margin-Level-Limit

1 2390.00 -3.92 49.06 2 2390.00 -3.92 37.47

Factor=Antenna Factor + cable loss - Amplifier Factor

45.14

33.55

VERTICAL Power AC 120V/60Hz Pol/Phase Test Mode 802.11b, CH11 110 Level (dBuV/m) 100 80 2.4G-PEAK 60 2.4G-AVG 40 20 2530. 2420 2430. 2450. 2470. 2490. 2510. 2550. 2570. 2590. 2600 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)No. 1 2483.50 -3.66 40.71 37.05 74.00 -36.95 Peak P 2 2483.50 -3.66 29.65 25.99 54.00 -28.01 Average P

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024

Page No. : 50 of 80

Note: Level=Reading+Factor Margin-Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor

Margin-Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor

HORIZONTAL Power AC 120V/60Hz Pol/Phase Test Mode 802.11b, CH11 110 Level (dBuV/m) 100 80 2.4G-PEAK 60 2.4G-AVG 40 20 2420 2430. 2450. 2470. 2490. 2510. 2530. 2550. 2570. 2590. 2600 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)No. 1 2483.50 -3.66 44.04 40.38 74.00 -33.62 Peak 2 2483.50 -3.66 32.53 28.87 54.00 -25.13 Average P Note: Level=Reading+Factor

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024

Page No. : 51 of 80

Margin-Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor

Power AC 120V/60Hz Pol/Phase **VERTICAL** Test Mode 802.11g, CH01 110 Level (dBuV/m) 100 80 2.4G-PEAK 60 2.4G-AVG 40 20 2300 2310. 2330. 2350. 2370. 2390. 2410. 2430. 2450 Frequency (MHz) Frequency Factor Reading Level Limit Margin (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB) Margin Detector P/F No. 1 2390.00 -3.92 49.52 45.60 74.00 -28.40 Peak 2 2390.00 -3.92 40.14 36.22 54.00 -17.78 Average P Note: Level=Reading+Factor

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024

Page No. : 52 of 80

Note: Level=Reading+Factor Margin-Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor

HORIZONTAL Power AC 120V/60Hz Pol/Phase Test Mode 802.11g, CH01 110 Level (dBuV/m) 100 80 2.4G-PEAK 60 40 20 2300 2310. 2330. 2350. 2370. 2390. 2410. 2430. 2450 Frequency (MHz) P/F Frequency Factor Reading Level Limit Margin Detector (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)No. -3.92 61.60 57.68 74.00 -16.32 -3.92 50.77 46.85 54.00 -7.15 1 2390.00 2 2390.00 -3.92 Average P

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024

Page No. : 53 of 80

VERTICAL Power AC 120V/60Hz Pol/Phase Test Mode 802.11g, CH11 110 Level (dBuV/m) 100 80 2.4G-PEAK 60 2.4G-AVG 40 20 2420 2430. 2450. 2470. 2490. 2510. 2530. 2550. 2570. 2590. 2600 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)No. 1 2483.50 -3.66 52.84 49.18 74.00 -24.82 Peak P 2 2483.50 -3.66 42.36 38.70 54.00 -15.30 Average P

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024

Page No. : 54 of 80

Note: Level=Reading+Factor Margin-Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor

Note: Level=Reading+Factor Margin-Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor

HORIZONTAL Power AC 120V/60Hz Pol/Phase Test Mode 802.11g, CH11 110 Level (dBuV/m) 100 80 2.4G-PEAK 60 2.4G-AVG 40 20 2420 2430. 2450. 2470. 2530. 2570. 2490. 2510. 2550. 2590. 2600 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)No. 1 2483.50 -3.66 60.15 56.49 74.00 -17.51 Peak 2 2483.50 -3.66 48.66 45.00 54.00 -9.00 Average P

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024

Page No. : 55 of 80

Power AC 120V/60Hz Pol/Phase **VERTICAL** Test Mode 802.11n HT20, CH01 110 Level (dBuV/m) 100 80 2.4G-PEAK 60 2.4G-AVG Perhappy who be the book of book. 40 20 2390. 2430. 2300 2310. 2330. 2350. 2370. 2410. 2450 Frequency (MHz) Limit Margin Detector P/F Frequency Factor Reading Level

No. (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)

1 2390.00 -3.92 51.56 47.64 74.00 -26.36 Peak P
2 2390.00 -3.92 36.87 32.95 54.00 -21.05 Average P

Note: Level=Reading+Factor Margin-Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor

Issued date : Aug. 23, 2024

Report No.: 24050123-DRFCC01

Page No. : 56 of 80

Note: Level=Reading+Factor Margin-Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor

Power AC 120V/60Hz Pol/Phase **HORIZONTAL** Test Mode 802.11n HT20, CH01 110 Level (dBuV/m) 100 80 2.4G-PEAK man with the state of the state 60 40 20 2300 2310. 2330. 2350. 2370. 2410. 2430. 2450 2390. Frequency (MHz) P/F Frequency Factor Reading Level Limit Margin Detector (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)No. 1 2390.00 -3.92 59.44 55.52 74.00 -18.48 2 2390.00 -3.92 46.22 42.30 54.00 -11.70 Average P

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024

Page No. : 57 of 80

Margin-Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor

VERTICAL Power AC 120V/60Hz Pol/Phase Test Mode 802.11n HT20, CH11 110 Level (dBuV/m) 100 80 2.4G-PEAK 60 2.4G-AVG and My Araphables 40 20 2530. 2420 2430. 2450. 2470. 2490. 2510. 2550. 2570. 2590. 2600 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)1 2483.54 -3.66 50.82 47.16 74.00 -26.84 Peak 2 2483.54 -3.66 38.56 34.90 54.00 -19.10 Average P Note: Level=Reading+Factor

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024
Page No. : 58 of 80

HORIZONTAL Power AC 120V/60Hz Pol/Phase Test Mode 802.11n HT20, CH11 110 Level (dBuV/m) 100 80 2.4G-PEAK Markethy May Home And King 60 2.4G-AVG 40 20 2530. 2420 2430. 2450. 2470. 2490. 2510. 2550. 2570. 2590. 2600 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)1 2483.50 -3.66 59.12 55.46 74.00 -18.54 Peak P 2 2483.50 -3.66 46.00 42.34 54.00 -11.66 Average P Note: Level=Reading+Factor Margin-Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024
Page No. : 59 of 80

VERTICAL Power AC 120V/60Hz Pol/Phase Test Mode 802.11n HT40, CH03 110 Level (dBuV/m) 100 80 2.4G-PEAK 60 40 20 2300 2310. 2330. 2350. 2370. 2390. 2410. 2430. 2450 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)No. 1 2390.00 -3.92 54.36 50.44 74.00 -23.56 Peak 2 2390.00 -3.92 45.90 41.98 54.00 -12.02 Average P Note: Level=Reading+Factor Margin-Level-Limit Factor=Antenna Factor + cable loss - Amplifier Factor

Issued date : Aug. 23, 2024
Page No. : 60 of 80

Power AC 120V/60Hz Pol/Phase **HORIZONTAL** Test Mode 802.11n HT40, CH03 110 Level (dBuV/m) 100 80 4G-PEAK sandymad the modern beautiful flat for the form of the file for the file of th 60 20 2300 2310. 2330. 2350. 2370. 2390. 2410. 2430. 2450 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)No. 1 2390.00 -3.92 64.31 60.39 74.00 -13.61 Peak P 2 2390.00 -3.92 55.21 51.29 54.00 -2.71 Average P Note: Level=Reading+Factor Margin-Level-Limit Factor=Antenna Factor + cable loss - Amplifier Factor

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024

Page No. : 61 of 80

AC 120V/60Hz **VERTICAL** Power Pol/Phase Test Mode 802.11n HT40, CH09 110 Level (dBuV/m) 100 80 2.4G-PEAK 60 2.4G-AVG waty mythy will we 40 20 2420 2430. 2450. 2470. 2490. 2510. 2530. 2550. 2570. 2590. 2600 Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)No.

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024 Page No. : 62 of 80

1 2483.50

Factor=Antenna Factor + cable loss - Amplifier Factor

1 2483.50 -3.66 53.64 49.98 74.00 -24.02 Peak P 2 2483.50 -3.66 43.40 39.74 54.00 -14.26 Average P

Note: Level=Reading+Factor Margin-Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor

Power AC 120V/60Hz Pol/Phase **HORIZONTAL** Test Mode 802.11n HT40, CH09 110 Level (dBuV/m) 100 80 2.4G-PEAK 4 hat the whole who had been a far a service 60 2.4G-AVG 40 20 2420 2430. 2450. 2470. 2530. 2570. 2590. 2600 2490. 2510. 2550. Frequency (MHz) Frequency Factor Reading Level Limit Margin Detector P/F (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)No. 1 2483.50 -3.66 61.63 57.97 74.00 -16.03 Peak P 2 2483.50 -3.66 52.76 49.10 54.00 -4.90 Average P

Report No.: 24050123-DRFCC01

Issued date : Aug. 23, 2024

Page No. : 63 of 80

7. Test of Conducted Spurious Emission

7.1 Test Limit

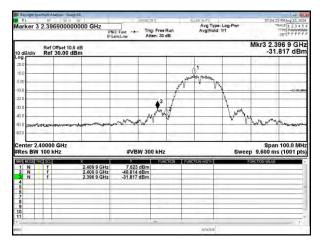
Below –20dB of the highest emission level of operating band (In 100 kHz Resolution Bandwidth)

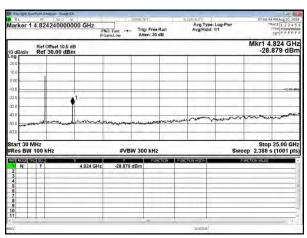
Report No.: 24050123-DRFCC01

7.2 Test Procedure

- a. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- b. Set RBW of spectrum analyzer to 100 KHz and VBW of spectrum analyzer to 300 KHz with convenient frequency span including 100 KHz bandwidth from band edge.
- c. Peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20dB relative to the maximum measured in-band peak PSD level.
- d. The band edges was measured and recorded.

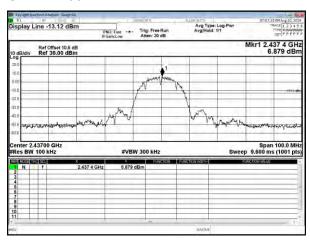
7.3 Test Setup Layout

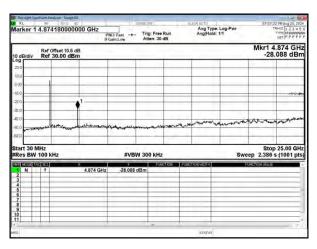

7.4 Test Result and Data


Note: Test plots refers to the following pages.

Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 64 of 80

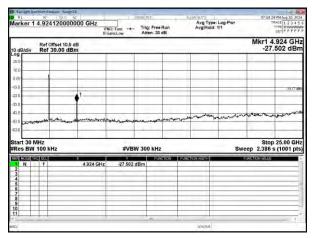
Modulation Standard: 802.11b


Channel: 01



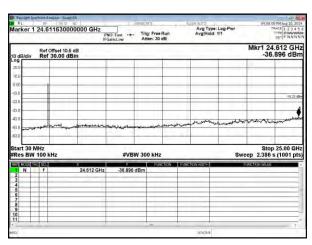
Modulation Standard: 802.11b

Channel: 06



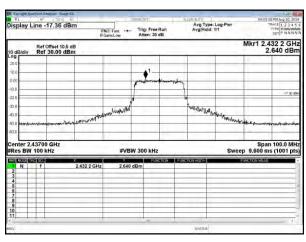
Modulation Standard: 802.11b

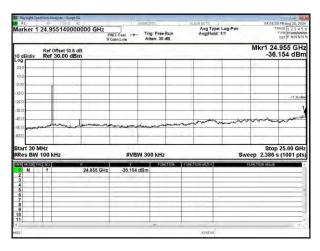
Channel: 11



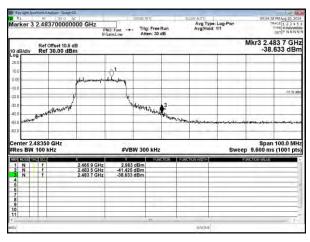
Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 65 of 80

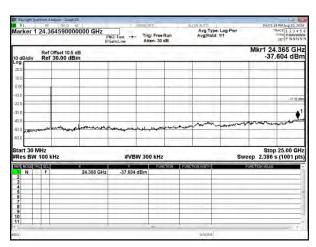
Modulation Standard: 802.11g


Channel: 01



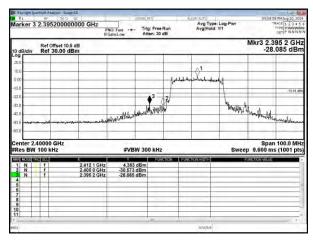
Modulation Standard: 802.11g

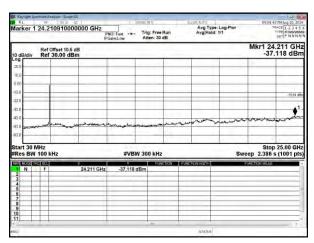

Channel: 06



Modulation Standard: 802.11g

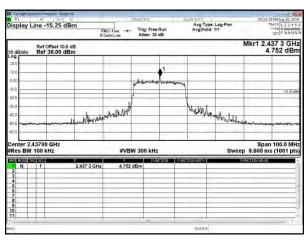
Channel: 11

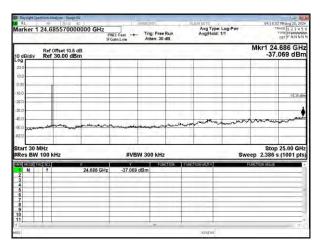




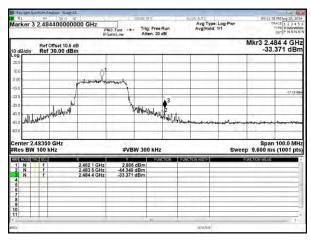
Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 66 of 80

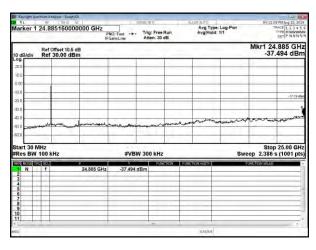
Modulation Standard: 802.11n HT20


Channel: 01



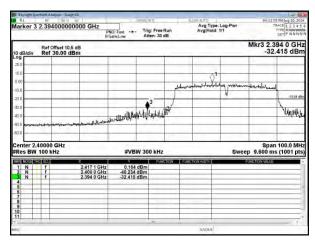
Modulation Standard: 802.11n HT20

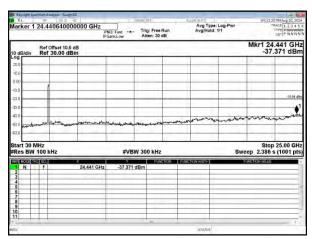

Channel: 06



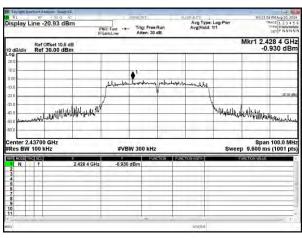
Modulation Standard: 802.11n HT20

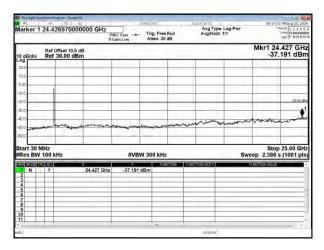
Channel: 11



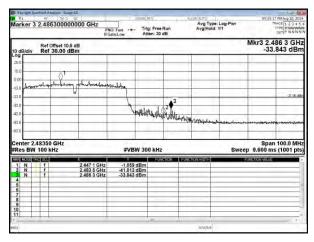


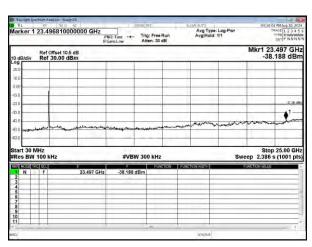
Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 67 of 80


Channel: 03



Modulation Standard: 802.11n HT40


Channel: 06



Modulation Standard: 802.11n HT40

Channel: 09

Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 68 of 80

8. On Time, Duty Cycle and Measurement methods

Report No.: 24050123-DRFCC01

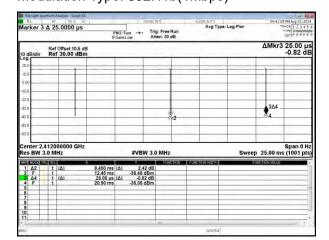
8.1 Test Limit

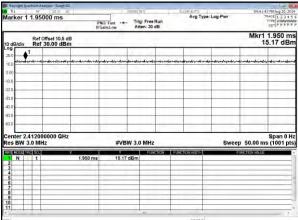
None; for reporting purposes only.

8.2 Test Procedure

Zero-Span Spectrum Analyzer Method.

8.3 Test Setup Layout

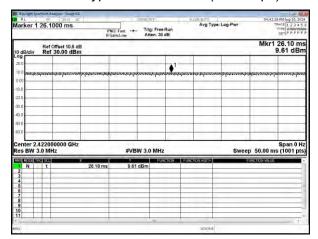



8.4 Test Result and Data

Modulation Type	On Time (ms)	Period Time (ms)	Duty Cycle (%)
11b	8.450	8.475	99.71%
11g	100.000	100.000	100.00%
11n HT20	100.000	100.000	100.00%
11n HT40	100.000	100.000	100.00%

Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 69 of 80

Modulation Type: 802.11b(1Mbps) Modulation Type: 802.11g(6Mbps)



Report No.: 24050123-DRFCC01

Modulation Type: 802.11n HT20(6.5Mbps)

| According to the control of the co

Modulation Type: 802.11n HT40(13.5Mbps)

Issued date : Aug. 23, 2024

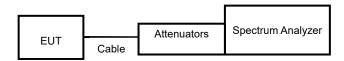
: 70 of 80

Page No.

9. 6dB Bandwidth Measurement Data

9.1 Test Limit

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.


9.2 Test Procedures

- a. The transmitter output was connected to the spectrum analyzer.
- b. Set RBW of spectrum analyzer to 100 KHz and VBW to 300 KHz.

Report No.: 24050123-DRFCC01

- c. Set spectrum analyzer X dB to 6 dB.
- d. Set spectrum analyzer peak detector with maximum hold.

9.3 Test Setup Layout

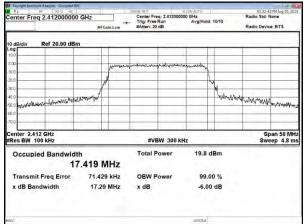
Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 71 of 80

9.4 Test Result and Data

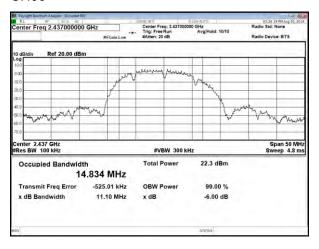
Modulation Type	Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)
	01	2412	11.07	0.5
IEEE 802.11b	06	2437	11.10	0.5
	11	2462	10.71	0.5
IEEE 802.11g	01	2412	17.29	0.5
	06	2437	17.23	0.5
	11	2462	17.33	0.5
IEEE 802.11n HT20	01	2412	18.13	0.5
	06	2437	18.22	0.5
	11	2462	18.29	0.5
IEEE 802.11n HT40	03	2422	35.16	0.5
	06	2437	35.20	0.5
	09	2452	32.71	0.5

Report No.: 24050123-DRFCC01

Report No.: 24050123-DRFCC01


Modulation Type: 802.11b

CH01



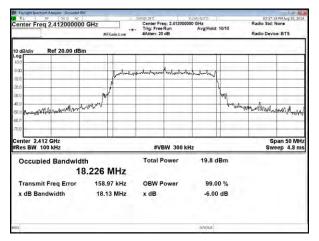
Modulation Type: 802.11g

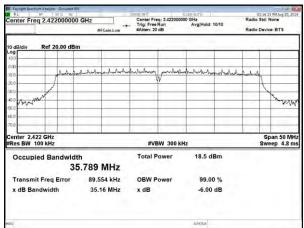
CH01


CH06

CH06

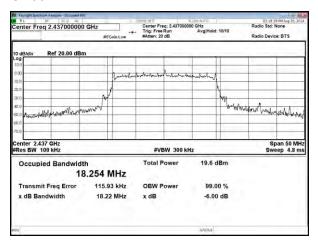
CH11


CH11

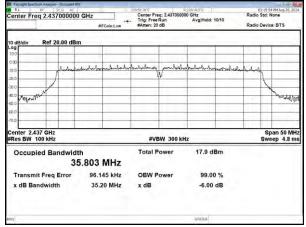

Cerpass Technology Corp. Issued date : Aug. 23, 2024 Page No. : 73 of 80

D-FD-508-0 V1.1

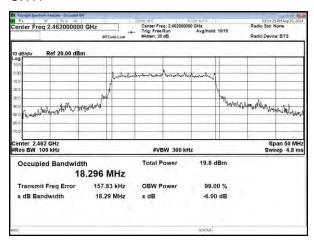
Modulation Type: IEEE 802.11n HT20 **CH01**

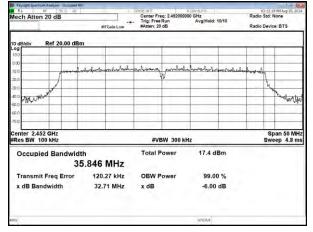


Modulation Type: IEEE 802.11n HT40 **CH03**



Report No.: 24050123-DRFCC01


CH06


CH06

CH11

CH09

Cerpass Technology Corp. Issued date : Aug. 23, 2024 : 74 of 80 Page No.

D-FD-508-0 V1.1

10. Maximum Peak Output Power

10.1Test Limit

The Maximum Peak Output Power Measurement is 30dBm.

10.2Test Procedures

The antenna port (RF output) of the EUT was connected to the input (RF input) of a power meter. Power was read directly from the meter and cable loss connection was added to the reading to obtain power at the EUT antenna terminal. The EUT Output Power was set to maximum to produce the worse case test result.

Report No.: 24050123-DRFCC01

10.3Test Setup Layout

Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 75 of 80

10.4Test Result and Data

Modulation Type	Channel	Frequency (MHz)	Conduct ed(peak) output power (dBm)	Total peak power (mW)	Power Limit (dBm)
11b	1	2412	18.800	75.858	30.00
	6	2437	18.540	71.450	30.00
	11	2462	18.970	78.886	30.00
11g	1	2412	20.450	110.917	30.00
	6	2437	19.860	96.828	30.00
	11	2462	19.910	97.949	30.00
11n HT20	1	2412	19.520	89.536	30.00
	6	2437	19.430	87.700	30.00
	11	2462	19.390	86.896	30.00
11n HT40	3	2422	17.900	61.660	30.00
	6	2437	17.680	58.614	30.00
	9	2452	17.390	54.828	30.00

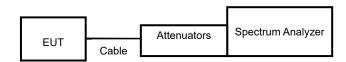
Report No.: 24050123-DRFCC01

Cerpass Technology Corp. Issued date : Aug. 23, 2024
D-FD-508-0 V1.1 Page No. : 76 of 80

11. Power Spectral Density

11.1 Test Limit

The Maximum of Power Spectral Density Measurement is 8dBm.


If transmitting antennas of directional gain greater than 6 dBi are used, the power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

Report No.: 24050123-DRFCC01

11.2 Test Procedures

- a. The transmitter output was connected to spectrum analyzer.
- b. The spectrum analyzer's resolution bandwidth were set at 3kHz RBW and 10KHz VBW as that of the fundamental frequency. Set the sweep time=auto couple.
- c. The power spectral density was measured and recorded.

11.3 Test Setup Layout

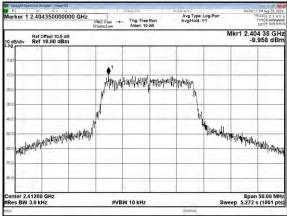
Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 : 77 of 80 Page No.

Report No.: 24050123-DRFCC01

11.4 Test Result and Data

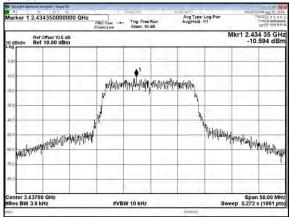
Modulation Type	Channel	Frequency (MHz)	Maximum Power Density of 3KHz Bandwidth (dBm)	Limit (dBm)
11b	1	2412	-7.467	8.00
	6	2437	-8.812	8.00
	11	2462	-9.43	8.00
11g	1	2412	-9.958	8.00
	6	2437	-10.594	8.00
	11	2462	-12.468	8.00
11n HT20	1	2412	-10.855	8.00
	6	2437	-12.029	8.00
	11	2462	-12.968	8.00
11n HT40	3	2422	-15.86	8.00
	6	2437	-16.772	8.00
	9	2452	-17.361	8.00

Report No.: 24050123-DRFCC01

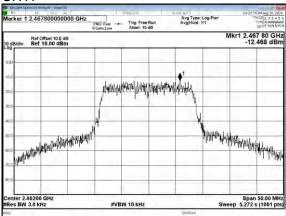

Modulation Type: 802.11b

CH01

Modulation Type: 802.11g

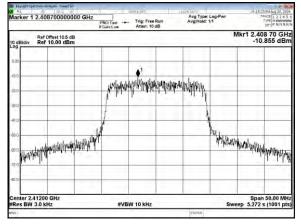

CH01

CH06


CH06

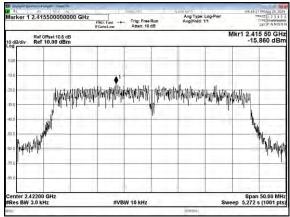
CH11

CH11

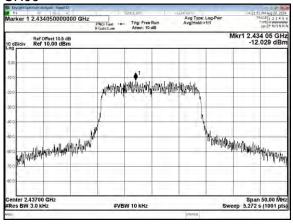

Cerpass Technology Corp. D-FD-508-0 V1.1 Page No. : 79 of 80

CERPASS TECHNOLOGY CORP.

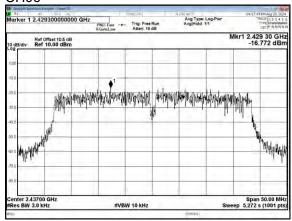
Report No.: 24050123-DRFCC01

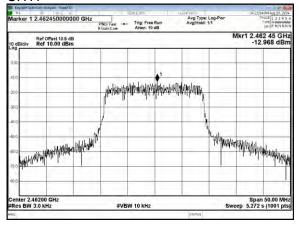

Modulation Type: 802.11n HT20

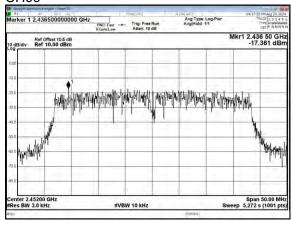
CH01



Modulation Type: 802.11n HT40


CH03


CH06


CH06

CH11

CH09

----- End of the report ------

Cerpass Technology Corp. Issued date : Aug. 23, 2024 D-FD-508-0 V1.1 Page No. : 80 of 80