

FCC Radio Test Report

FCC ID: IRJ-BM100

: BTL-FCCP-1-2303T050 Report No.

Equipment : Bluetooth Module

Model Name : BM100 **Brand Name** : Marson

: Marson Technology Co., Ltd. Applicant

: 9F., No.108-3, Min Chuan Rd., Hsin-Tien District, New Taipei City 23141, Address

Taiwan (R.O.C.)

Radio Function : Bluetooth EDR

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247) : ANSI C63.10-2013

Measurement

Date of Receipt

Procedure(s)

: 2023/3/15

Date of Test **:** 2023/3/31 ~ 2023/4/28

Issued Date : 2023/5/9

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Jay Kao, Engineer

Approved by

Jerry Chuang, Supervisor

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2303T050 Page 2 of 72 Report Version: R00

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 **TEST ENVIRONMENT CONDITIONS** 8 1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 8 1.5 **DUTY CYCLE** 9 2 **GENERAL INFORMATION** 10 **DESCRIPTION OF EUT** 2.1 10 2.2 **TEST MODES** 12 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 13 2.4 SUPPORT UNITS 14 3 AC POWER LINE CONDUCTED EMISSIONS TEST 15 3.1 LIMIT 15 **TEST PROCEDURE** 3.2 15 3.3 **DEVIATION FROM TEST STANDARD** 15 3.4 **TEST SETUP** 16 3.5 **TEST RESULT** 16 4 RADIATED EMISSIONS TEST 17 4.1 LIMIT 17 4.2 **TEST PROCEDURE** 18 4.3 **DEVIATION FROM TEST STANDARD** 18 4.4 **TEST SETUP** 18 **EUT OPERATING CONDITIONS** 4.5 19 4.6 TEST RESULT - BELOW 30 MHZ 20 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 20 4.8 TEST RESULT – ABOVE 1 GHZ 20 5 NUMBER OF HOPPING CHANNEL 21 APPLIED PROCEDURES 5.1 21 5.2 **TEST PROCEDURE** 21 5.3 **DEVIATION FROM STANDARD** 21 **TEST SETUP** 5.4 21 5.5 **EUT OPERATION CONDITIONS** 21 5.6 **TEST RESULTS** 21 AVERAGE TIME OF OCCUPANCY 6 22 6.1 APPLIED PROCEDURES / LIMIT 22 **TEST PROCEDURE** 6.2 22 **DEVIATION FROM STANDARD** 6.3 22 6.4 **TEST SETUP** 22 **EUT OPERATION CONDITIONS** 6.5 22 **TEST RESULTS** 22 6.6 HOPPING CHANNEL SEPARATION MEASUREMENT 23 7 APPLIED PROCEDURES / LIMIT 7.1 23 7.2 **TEST PROCEDURE** 23 **DEVIATION FROM STANDARD** 7.3 23 7.4 **TEST SETUP** 23 7.5 **TEST RESULTS** 23

8	BANDWI	DTH TEST	2	24
8.1	APPL	IED PROCEDURES	2	24
8.2	TEST	PROCEDURE	2	24
8.3	DEVIA	ATION FROM STANDARD	2	24
8.4	TEST	SETUP	2	24
8.5	EUT (OPERATION CONDITIONS	2	24
8.6	TEST	RESULTS	2	24
9	OUTPUT	POWER TEST	2	25
9.1	APPL	IED PROCEDURES / LIMIT	2	25
9.2	TEST	PROCEDURE	2	25
9.3	DEVIA	ATION FROM STANDARD	2	25
9.4	TEST	SETUP	2	25
9.5	EUT (OPERATION CONDITIONS	2	25
9.6	TEST	RESULTS	2	25
10	ANTENN	IA CONDUCTED SPURIOUS EMISSION	2	26
10.1	APPL	IED PROCEDURES / LIMIT	2	26
10.2	TEST	PROCEDURE	2	26
10.3	DEVIA	ATION FROM STANDARD	2	26
10.4	TEST	SETUP	2	26
10.5	EUT (OPERATION CONDITIONS	2	26
10.6	TEST	RESULTS	2	26
11	LIST OF	MEASURING EQUIPMENTS	2	27
12	EUT TES	ST PHOTO	2	29
13	EUT PHO	OTOS	2	29
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	3	30
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	3	35
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	3	38
APPEND	IX D	NUMBER OF HOPPING CHANNEL	5	55
APPEND	IX E	AVERAGE TIME OF OCCUPANCY	5	57
APPEND	IX F	HOPPING CHANNEL SEPARATION MEASUREMENT	6	60
APPEND	IX G	BANDWIDTH	6	3
APPEND	IX H	OUTPUT POWER	6	66
APPEND	IX I	ANTENNA CONDUCTED SPURIOUS EMISSION	6	88

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2303T050	R00	Original Report.	2023/5/9	Valid

Project No.: 2303T050 Page 5 of 72 Report Version: R00

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX D	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX E	Pass	
15.247 (a)(1)	Hopping Channel Separation	APPENDIX F	Pass	
15.247 (a)(1)	Bandwidth	APPENDIX G	Pass	
15.247 (b)(1)	Output Power	APPENDIX H	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX I	Pass	
15.203	Antenna Requirement		Pass	

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2303T050 Page 6 of 72 Report Version: R00

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659.

The test location(s) used to collect the test data in this report are:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

☐ CB08 ☐ CB11 ☐ SR10 ☐ SR11

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

☐ C06 ☐ CB21 ☐ CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately $\mathbf{95}$ %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CBZT	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

4 1001 .	
Test Item	U (dB)
Occupied Bandwidth	0.5338
Output power	0.3659
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348
Dwell time	0.6606
Channel separation	0.6606
Channel numbers	0.6606

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

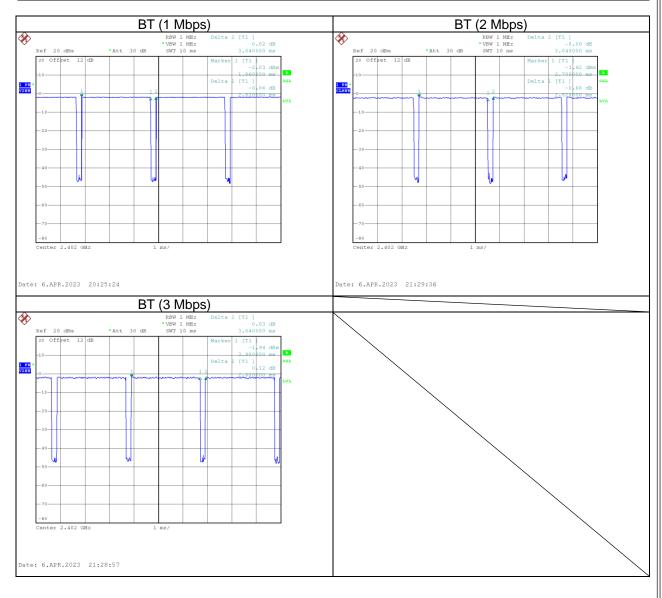
Project No.: 2303T050 Page 7 of 72 Report Version: R00

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	22 °C, 65 %	AC 120V	Cora Lin
Radiated emissions below 1 GHz	Refer to data	DC 5V	Eddie Lee
Radiated emissions above 1 GHz	Refer to data	DC 5V	Mark Wang
Number of Hopping Frequency	23.2 °C, 61 %	DC 5V	Jay Tien
Average Time of Occupancy	23.2 °C, 61 %	DC 5V	Jay Tien
Hopping Channel Separation	23.2 °C, 61 %	DC 5V	Jay Tien
Bandwidth	23.2 °C, 61 %	DC 5V	Jay Tien
Output Power	23.2 °C, 61 %	DC 5V	Jay Tien
Antenna conducted Spurious Emission	23.2 °C, 61 %	DC 5V	Jay Tien

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software	BT98X FCC Tool V1.2					
Modulation Mode	2402 MHz	2441 MHz	2480 MHz	Data Rate		
GFSK	0	0	0	1 Mbps		
π/4-DQPSK	0	0	0	2 Mbps		
8DPSK	0	0	0	3 Mbps		


Project No.: 2303T050 Page 8 of 72 Report Version: R00

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Mode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.820	1	2.820	3.040	92.76%	0.33
BT (2 Mbps)	2.820	1	2.820	3.040	92.76%	0.33
BT (3 Mbps)	2.800	1	2.800	3.040	92.11%	0.36

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Bluetooth Module
Model Name	BM100
Brand Name	Marson
Model Difference	N/A
Power Source	DC voltage supplied from host system.
Power Rating	DC 5V, 0.5A
Products Covered	N/A
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps
	1 Mbps: -0.12 dBm (0.0010 W)
Output Power Max.	2 Mbps: 0.21 dBm (0.0010 W)
	3 Mbps: 0.46 dBm (0.0011 W)
Test Model	BM100
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
80	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

Project No.: 2303T050 Page 10 of 72 Report Version: R00

(3) Table for Filed Antenna:

Antenna	Brand	Part number	Туре	Connector	Gain (dBi)
1	Walsin Technology Corporation	RFANT5220110A0T	Multilayer ceramic antenna	N/A	2.66

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

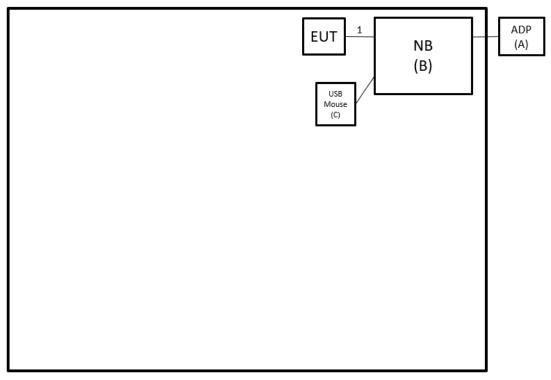
Project No.: 2303T050 Page 11 of 72 Report Version: R00

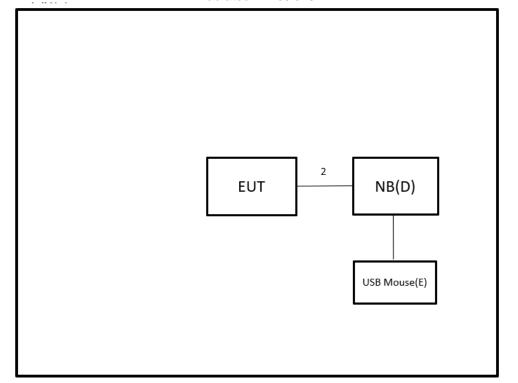
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	39	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.


Project No.: 2303T050 Page 12 of 72 Report Version: R00


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
А	ADAPTER	ASUS	ADP-45BW X	131504500507MAS 024003799	Furnished by test lab.
В	NB	ASUS	X555LN	EAN0CV311223428	Furnished by test lab.
С	USB Mouse	DELL	MOCZUL	CN-049TWY-PRC0 0-79E-01HA	Furnished by test lab.
D	NB	HP	TPN-I119	N/A	Furnished by test lab.
Е	USB Mouse	LOGITECH	B100	1402HS01W358	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	No	No	1m	mini USB Cable	Furnished by test lab.
2	No	No	0.6m	mini USB Cable	Furnished by test lab.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	II	-18.33

The following table is the setting of the receiver.

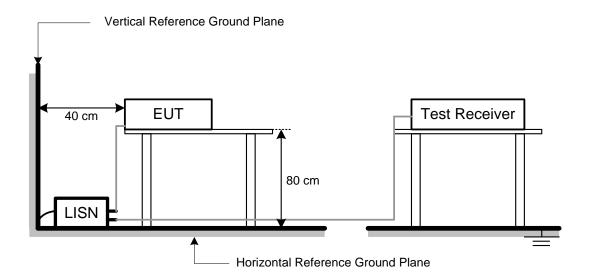
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2303T050 Page 15 of 72 Report Version: R00

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated (dBu	Measurement Distance	
(IVIHZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
35.45	+	-11.37	=	24.08

Measurement Value		Limit Value		Margin Level
24.08	-	40	=	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Mode	VBW(Hz)
BT (1M)	360
BT (2M)	360
BT (3M)	360

Spectrum Parameter	Setting	
Attenuation	Auto	
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector	
Start ~ Stop Frequency	90KHz~110KHz for QP detector	
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector	
Start ~ Stop Frequency	490KHz~30MHz for QP detector	
Start ~ Stop Frequency	30MHz~1000MHz for QP detector	

Project No.: 2303T050 Page 17 of 72 Report Version: R00

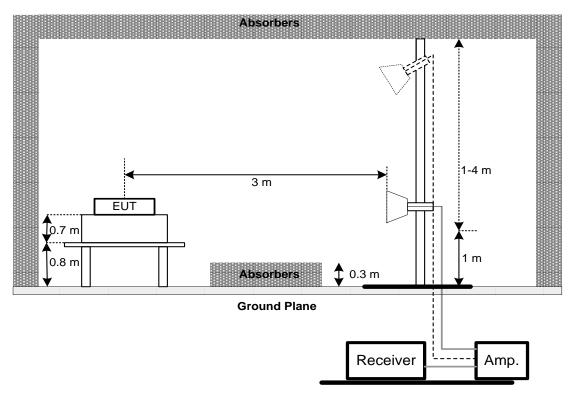
4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP



Absorbers

Ground Plane

Receiver Amp.

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2303T050 Page 20 of 72 Report Version: R00

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

Section Test Item		Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS

Spectrum Parameters	Setting	
Attenuation	Auto	
Span Frequency	> Operating Frequency Range	
RBW	100 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2303T050 Page 21 of 72 Report Version: R00

6 AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse.

A Period Time = (channel number)*0.4

For Normal Mode (79 Channel):

DH1 Time Solt: Reading * (1600/2)*31.6/(channel number)

DH3 Time Solt: Reading * (1600/2)*31.6/(channel number)

DH5 Time Solt: Reading * (1600/2)*31.6/(channel number)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (1600/2)*8/(channel number)

DH3 Time Solt: Reading * (1600/4)*8/(channel number)

DH5 Time Solt: Reading * (1600/6)*8/(channel number)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

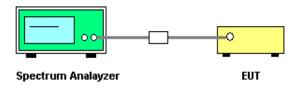
Project No.: 2303T050 Page 22 of 72 Report Version: R00

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	30 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX F.

Project No.: 2303T050 Page 23 of 72 Report Version: R00

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)	
15.247(a)(2)	Bandwidth	2400-2483.5	

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)		
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

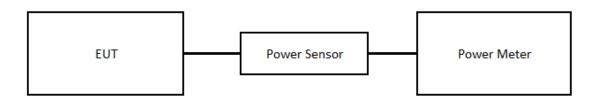
Please refer to the APPENDIX G.

Project No.: 2303T050 Page 24 of 72 Report Version: R00

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

Project No.: 2303T050 Page 25 of 72 Report Version: R00

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

EUT SPECTRUM ANALYZER

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX I.

Project No.: 2303T050 Page 26 of 72 Report Version: R00

11 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101521	2022/9/28	2023/9/27
2	Test Cable	EMCI	EMCCFD300-BM -BM-9000	210502	2022/12/8	2023/12/7
3	EMI Test Receiver	R&S	ESR 7	101433	2022/11/16	2023/11/15
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

	Radiated Emissions										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18					
2	Preamplifier	EMCI	EMC118A45SE	980819	2023/3/7	2024/3/6					
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2022/9/28	2023/9/27					
4	Preamplifier	EMCI	EMC001340	980579	2022/9/30	2023/9/29					
5	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2023/3/14	2024/3/13					
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2023/3/14	2024/3/13					
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2023/3/14	2024/3/13					
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2023/2/24	2024/2/23					
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2022/9/19	2023/9/18					
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17					
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17					
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19					
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2022/5/20	2023/5/19					
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2023/3/14	2024/3/13					
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2023/3/14	2024/3/13					
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A					

	Number of Hopping Frequency										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/6					

	Average Time of Occupancy										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/6					

	Hopping Channel Separation									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/6				

	Bandwidth									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/6				

Output Power									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Power Meter	Anritsu	ML2495A	1128008	2022/6/1	2023/5/31			
2	Power Sensor	Anritsu	MA2411B	1126001	2022/6/1	2023/5/31			

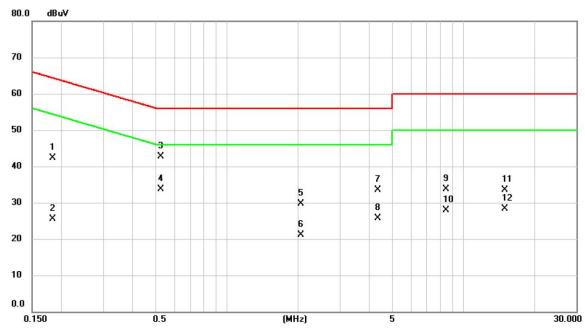
	Antenna conducted Spurious Emission									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/6				

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2303T050 Page 28 of 72 Report Version: R00

12 EUT TEST PHOTO									
Please refer to document Appendix No.: TP-2303T050-FCCP-1 (APPENDIX-TEST PHOTOS).									
13 EUT PHOTOS									
Please refer to document Appendix No.: EP-2303T050-1 (APPENDIX-EUT PHOTOS).									
Flease relei to document Appendix No.: EF-23031030-1 (AFFENDIX-E01 FNO103).									

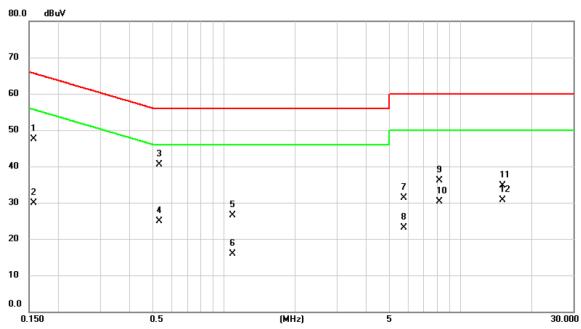
Project No.: 2303T050 Page 29 of 72 Report Version: R00



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2303T050 Page 30 of 72 Report Version: R00

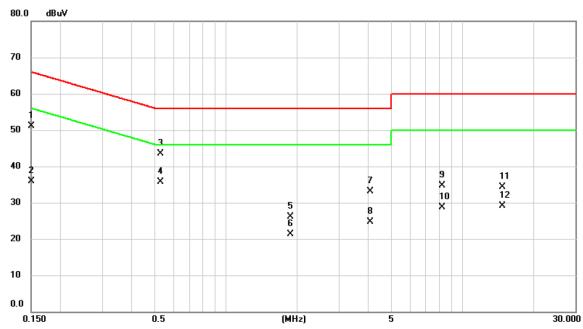
I	Test Mode	Normal	Tested Date	2023/3/31
ı	Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	V.	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1836	32.64	9.63	42.27	64.32	-22.05	QP	
2		0.1836	15.85	9.63	25.48	54.32	-28.84	AVG	
3		0.5257	32.99	9.66	42.65	56.00	-13.35	QP	
4	*	0.5257	23.95	9.66	33.61	46.00	-12.39	AVG	
5		2.0512	19.93	9.73	29.66	56.00	-26.34	QP	
6		2.0512	11.41	9.73	21.14	46.00	-24.86	AVG	
7		4.3350	23.64	9.82	33.46	56.00	-22.54	QP	
8		4.3350	15.96	9.82	25.78	46.00	-20.22	AVG	
9		8.4366	23.69	9.92	33.61	60.00	-26.39	QP	
10		8.4366	17.90	9.92	27.82	50.00	-22.18	AVG	
11		14.9932	23.61	9.99	33.60	60.00	-26.40	QP	
12		14.9932	18.41	9.99	28.40	50.00	-21.60	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

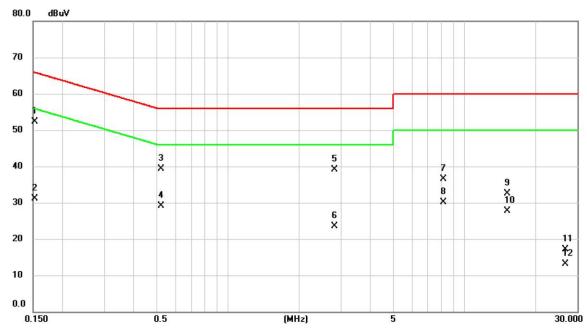
Test Mode	Normal	Tested Date	2023/3/31
Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1568	37.80	9.65	47.45	65.63	-18.18	QP	
2		0.1568	20.19	9.65	29.84	55.63	-25.79	AVG	
3	*	0.5347	30.76	9.67	40.43	56.00	-15.57	QP	
4		0.5347	15.14	9.67	24.81	46.00	-21.19	AVG	
5		1.0905	16.89	9.71	26.60	56.00	-29.40	QP	
6		1.0905	6.17	9.71	15.88	46.00	-30.12	AVG	
7		5.7593	21.49	9.88	31.37	60.00	-28.63	QP	
8		5.7593	13.14	9.88	23.02	50.00	-26.98	AVG	
9		8.1735	26.22	9.94	36.16	60.00	-23.84	QP	
10		8.1735	20.38	9.94	30.32	50.00	-19.68	AVG	
11		15.0180	24.71	10.08	34.79	60.00	-25.21	QP	
12		15.0180	20.71	10.08	30.79	50.00	-19.21	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2023/3/31
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	41.51	9.63	51.14	66.00	-14.86	QP	
2		0.1500	26.30	9.63	35.93	56.00	-20.07	AVG	
3		0.5302	33.81	9.66	43.47	56.00	-12.53	QP	
4	*	0.5302	26.10	9.66	35.76	46.00	-10.24	AVG	
5		1.8735	16.31	9.73	26.04	56.00	-29.96	QP	
6		1.8735	11.61	9.73	21.34	46.00	-24.66	AVG	
7		4.0853	23.25	9.81	33.06	56.00	-22.94	QP	
8		4.0853	14.98	9.81	24.79	46.00	-21.21	AVG	
9		8.2118	24.88	9.92	34.80	60.00	-25.20	QP	
10		8.2118	18.77	9.92	28.69	50.00	-21.31	AVG	
11		14.7098	24.23	9.99	34.22	60.00	-25.78	QP	
12		14.7098	19.09	9.99	29.08	50.00	-20.92	AVG	

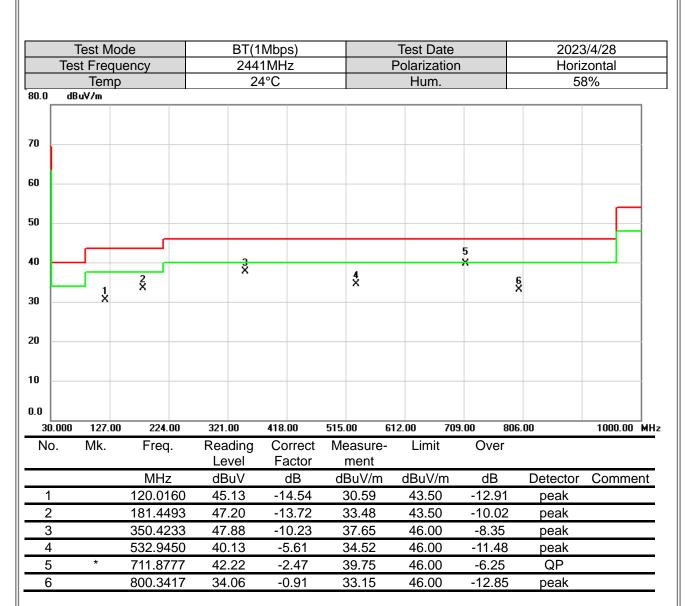
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2023/3/31
Test Frequency	-	Phase	Neutral

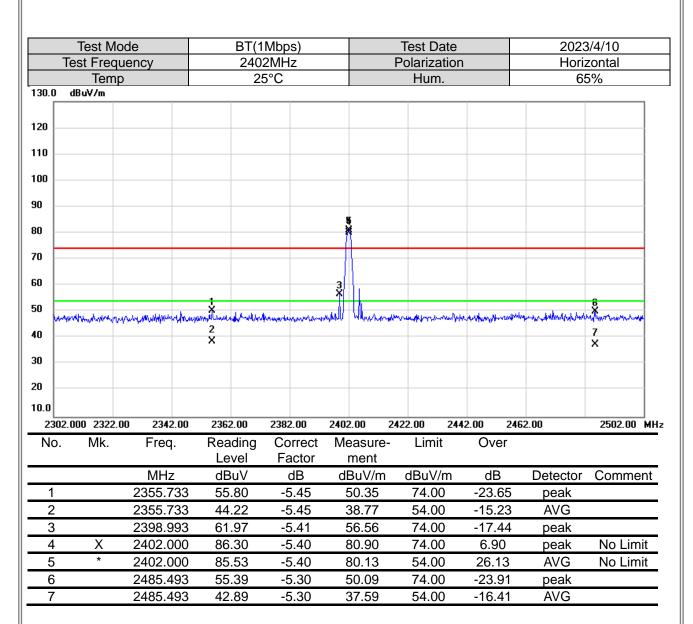
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	l.	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1532	42.71	9.65	52.36	65.82	-13.46	QP	
2		0.1532	21.40	9.65	31.05	55.82	-24.77	AVG	
3		0.5235	29.61	9.67	39.28	56.00	-16.72	QP	
4		0.5235	19.34	9.67	29.01	46.00	-16.99	AVG	
5		2.8275	29.35	9.77	39.12	56.00	-16.88	QP	
6		2.8275	13.78	9.77	23.55	46.00	-22.45	AVG	
7		8.1735	26.54	9.94	36.48	60.00	-23.52	QP	
8		8.1735	20.26	9.94	30.20	50.00	-19.80	AVG	
9		15.2183	22.35	10.08	32.43	60.00	-27.57	QP	
10		15.2183	17.53	10.08	27.61	50.00	-22.39	AVG	
11		26.6550	6.84	10.25	17.09	60.00	-42.91	QP	
12		26.6550	2.81	10.25	13.06	50.00	-36.94	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Report No.: BTET GOT T 2505 1050
APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2303T050 Page 35 of 72 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2303T050 Page 38 of 72 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)			Test Date			3/4/10
T	est Freq	•			0MHz			Polarizatio	n		zontal
	Tem)		2	5°C			Hum.		65	5%
130.0	dBuV/m										
20											
10 -											
00											
10						- \$	<u> </u>				
:0						- 1	<u> </u>				
iu											
o 🗀						- 1					
:n						_ i[]	5 X				
60 <u> </u>							5 X				
in 1	Jan. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	Jan Kura kara sa ata di Andi	oul at Min	41 10 1 1 1 1 1 1 1	مدرد واسلام والجاري وروس	المدد	1.1	الماري والمارية	المالية	Landing the course on	ينال وليسال والمقالمين
io 1	von	and language and another	~laqishni varaqan	ah Madaday	random variations	MANAN P	6	And the second s	valuradoradoral la la como de la	Lity Market Name of the Section	medialle floride fre
io 1	Virtual Later Andrew	moreologicalised	-lafilka,ivadja	de la	rodon, del qualitation	unu 🎚	Walnut Walnut	ideald was a grand of the same	y den de de la contraction de	e-dyd ^h habell proposition and a	andred a strange fra
50 1 10 2 X	~~~ <u>~~</u> ~~~~	Indoperhanipological	-lagista, siyadja	de la	routenadelpaledy,ees	unu 🎚	6	AND CONTRACTOR OF CONTRACTOR O	rasandipendipend	adjo <mark>r</mark> skatering aller and a second	madala dheedha
50 T X 40 2 X	Vidap subserviva	induction against Lieb	~kapliba.iv.edjen	de la	roston, war gad dag saar	drien M	6	ok allipenage menenggi pen	y d'andersondydyllose	tedystatoronostoren	modella ilmee _t ia
50 1 X 10 2 X 80	wayay walaa waxa	indigent bennyaget fil state	mbaqista, xoodqoo	ar maken	rodgenodefadiolynus	dann)	6	ikalikarangan dalam ang para	water had been adjudy these	e-dydraedereseandre	and the standard and the s
60 1 2 2 80 2 0.0							6 ×				
2 X X X X X X X X X X X X X X X X X X X	.000 2400.	00 2420.0	1 244	10.00	2460.00	2480	6 ×	500.00 25	520.00 254	L./yb/satz-vz.cz-sbo-z-c	2580.00 M
50 1 2 2 30 2 20 0.0			244 Rea	10.00 ading	2460.00 Correct	2480 : Me	6 × 0.00 2 easure-				
0 2 0 2 X 0 0 0.0 2380.	.000 2400.	00 2420.0	Rea Le	10.00	2460.00	2480 : Me	6 X 0.00 2 easure- ment	500.00 25 Limit	520.00 254	10.00	2580.00 M
0 2 0 2 X 0 0 0.0 2380.	.000 2400.	00 2420.00 Freq.	244 Rea Le	10.00 ading	2460.00 Correct Factor	2480 : Me	6 × 0.00 2 easure-	500.00 25	000 254 Over	00.00 Detector	
0 1 2 X X X X X X X X X X X X X X X X X X	.000 2400.	00 2420.00 Freq. MHz	244 Rea Le dl 3 54	ading evel	2460.00 Correct Factor dB	2480 : Me ! dE	6 × 0.00 2 easure-ment BuV/m	2500.00 25 Limit dBuV/m	00.00 254 Over dB	10.00	2580.00 M
0 1 2 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.000 2400.	00 2420.0 Freq. MHz 2381.573	244 Rea Le di 3 543	ading evel BuV 4.14	2460.00 Correct Factor dB -5.42	2480 : Me : d : d : d	6 × 2.000 2 easure- ment BuV/m 48.72	2500.00 25 Limit dBuV/m 74.00	0ver dB -25.28	Detector peak	2580.00 M
0 1 2 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.000 2400. Mk.	00 2420.00 Freq. MHz 2381.573 2381.573	1 244 Rea Le dl 3 543 420 93	ading evel BuV 4.14 2.89	2460.00 Correct Factor dB -5.42	2480 : Me : dE 22	6 × 2.00 2 easurement 3uV/m 48.72	2500.00 25 Limit dBuV/m 74.00 54.00	020.00 254 Over dB -25.28 -16.53	Detector peak AVG	2580.00 M
1 2 3 3	.000 2400. Mk.	00 2420.00 Freq. MHz 2381.573 2380.000	244 Rea Le di 3 542 3 420 930 930	ading evel BuV 4.14 2.89 3.89	2460.00 Correct Factor dB -5.42 -5.42 -5.31	2480 : Me ! dE 2 3	6 × 0.00 2 easure- ment 3uV/m 48.72 37.47 38.58	2500.00 25 Limit dBuV/m 74.00 54.00 74.00	Over dB -25.28 -16.53 14.58	Detector peak AVG peak	2580.00 M Comment

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mod			BMbps)		Test Dat			3/4/10
ies	st Freque	ency		2MHz		Polarizati	on		zontal
130.0 dB	Temp luV/m		- 2	5°C		Hum.		63	5%
130.0 UB	uy/III								
120									
110									
100									
90					4				
80					Ä				
70					2				
60					3 X				
50 Mercany	Marindaya Salaha	Makana da Jawa	aderatificer			الاستعادات والمستعدات	wall of market of the of an other of	handra a de como de la	entertal de la company
40	his all the set mark	a cod (the color) for the	a and kelatin a selfetil	2 X		41 40 40 100 100 100 100 100 100 100 100	AND ALL LINESPEED AND	The same of the sa	7
30				^					×
20									
10.0									
2302.00	0 2322.00	2342.00	2362.00	2382.00	2402.00	2422.00 2	2442.00 246	52.00	2502.00 MF
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	n dB	Detector	Comment
1		2387.793	56.00	-5.42	50.58	74.00	-23.42	peak	
2		2387.793	44.73	-5.42	39.31	54.00	-14.69	AVG	
3		2396.573	67.34	-5.41	61.93	74.00	-12.07	peak	No Limit
4	Χ	2402.000	91.94	-5.40	86.54	74.00	12.54	peak	No Limit
5	*	2402.000	88.32	-5.40	82.92	54.00	28.92	AVG	No Limit
6		2494.533	54.46	-5.31	49.15	74.00	-24.85	peak	
7		2494.533	42.97	-5.31	37.66	54.00	-16.34	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de		BMbps)		Test Date			3/4/10
Τe	est Frequ	ency	248	80MHz		Polarization)	Horiz	zontal
	Temp		2	5°C		Hum.		65	5%
30.0 d	dBuV/m								
20									
10									
00									
0					*				
o									
	4				5 				
<u> </u>	-hallendernahadlengt	when the state of	phales and the second	and the second		Lymphanyhan	wahananana	or of the state of	yentundan
ο χ		edjenskratiery-rejeanskeep	Malyhada diraktirak karapa	manada da Mariada		Lymphynnoghny	water and the second	بالمراجعة المتعارب والمتعارب والمتعا	yentundadiyapiq
0 2 0 2		edges, Afrikas yr no flores ddish	MajaranterArburgh	manustra Anna	6 www.	Dundynaughan	wakana waka	ordophistic grade gr	yestinderbeger,
0		edges, Afrika er ywn y fan sadder	Majaranganfrikasyk	mananalahar/Vanah	6 www.	Dunkfurankur	napahanga pada paga	on the property of the second	yentunkalaya
0 2 X 0 0 0.0	t				6 ×				
) 2 X) 2 X) .0 2380.0	000 2400.0	0 2420.00	2440.00	2460.00	6 × 2480.00 25	500.00 252	20.00 254		2580.00 M
	t				6 ×				
) 2 X) 2 X) .0 2380.0	000 2400.0	0 2420.00 Freq.	2440.00 Reading Level dBuV	2460.00 Correct Factor dB	2480.00 25 Measure- ment dBuV/m	500.00 252 Limit dBuV/m	20.00 254 Over dB		2580.00 M
2 X 3 X 3 X 3 X 3 X 3 X 3 X 5 X 5 X 7	000 2400.0	0 2420.00 Freq. MHz 2385.080	2440.00 Reading Level dBuV 55.85	2460.00 Correct Factor dB -5.42	2480.00 25 Measure- ment dBuV/m 50.43	500.00 252 Limit dBuV/m 74.00	20.00 254 Over dB -23.57	0.00 Detector peak	
2 x 2 x 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	000 2400.0 Mk.	0 2420.00 Freq. MHz 2385.080 2385.080	2440.00 Reading Level dBuV 55.85 42.80	2460.00 Correct Factor dB -5.42 -5.42	2480.00 25 Measure- ment dBuV/m 50.43 37.38	500.00 252 Limit dBuV/m	20.00 254 Over dB -23.57 -16.62	0.00 Detector	2580.00 M
2380.0 No.	000 2400.0 Mk.	0 2420.00 Freq. MHz 2385.080 2385.080 2480.000	2440.00 Reading Level dBuV 55.85 42.80 97.67	2460.00 Correct Factor dB -5.42 -5.42 -5.31	2480.00 25 Measure- ment dBuV/m 50.43 37.38 92.36	500.00 252 Limit dBuV/m 74.00 54.00 74.00	Over dB -23.57 -16.62 18.36	Detector peak AVG peak	2580.00 M
2 x 0 2 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 2400.0 Mk.	0 2420.00 Freq. MHz 2385.080 2385.080 2480.000 2480.000	2440.00 Reading Level dBuV 55.85 42.80 97.67 94.03	2460.00 Correct Factor dB -5.42 -5.42 -5.31 -5.31	2480.00 25 Measure- ment dBuV/m 50.43 37.38 92.36 88.72	500.00 252 Limit dBuV/m 74.00 54.00 74.00 54.00	20.00 254 Over dB -23.57 -16.62 18.36 34.72	Detector peak AVG	2580.00 M
2 X X X X X X X X X X X X X X X X X X X	000 2400.0 Mk.	0 2420.00 Freq. MHz 2385.080 2385.080 2480.000	2440.00 Reading Level dBuV 55.85 42.80 97.67	2460.00 Correct Factor dB -5.42 -5.42 -5.31	2480.00 25 Measure- ment dBuV/m 50.43 37.38 92.36	500.00 252 Limit dBuV/m 74.00 54.00 74.00	Over dB -23.57 -16.62 18.36	Detector peak AVG peak	2580.00 M

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps)				t Dat				3/4/10
Te	est Freq					2MHz				rizati	on			tical
	Tem	р			2	5°C			H	lum.			68	5%
130.0 d	lBuV/m							1						
20														
110														
00														
10														
80														
o 🗀														
io														
io		1 X												
		×												
10		2 X												
20														
10.0 1000 0)00 3550.	00 6100	1 00	8650	nn	11200.00	1379	50.00	16300.0	NN 1	18850.00	2140	n nn	26500.00 MF
No.	Mk.	Freq		Read	ding	Correct	Me	easure-		imit.	Ove			
				Lev		Factor		ment						
		MHz		dBı		dB		BuV/m		uV/m			Detector	Comment
1		4804.0		45.		0.75		45.92		4.00	-28.0		peak	
2	*	4804.0	000	32.	04	0.75	(32.79	5	4.00	-21.2	21	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

_	Test M						Mbps)					Test Da					3/4/10	
le	est Fred		СУ				2MHz 5°C					Polariza					zontal 5%	
130.0 d	Tem dBuV/m	ıρ				Ζ:	5 C					Hum				0:	0 %	
																		\neg
120																		_
110																		
110																		ĺ
100																		\dashv
90																		
00																		
80																		
70																		7
60																		
																		4
50		1 X																1
40																		-
30		2 X																
20																		1
10.0																		
	000 3550).00	6100		8650		11200.		1375			300.00		50.00		00.00	26500.0	10 MHz
No.	Mk.		Freq			ding vel	Corr			easur ment	e-	Limit	[Ove	ŀΓ			
			MHz	<u>, </u>		uV	dE			BuV/r	n	dBuV/	m	dB		Detector	Comm	ent
1		48	304.0		42		0.7			3.55		74.00		-30.4		peak		
2	*	48	304.0	000	31	.81	0.7	5	3	32.56		54.00)	-21.4	14	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode			BT(1	Mbps)			Test D	ate		2023	3/4/10
Te	est Frequ					1MHz			Polariza				rtical
	Temp	כ			2	5°C			Hum	۱.		6	5%
30.0	BuV/m												
20													
10													
10													
00													
10 <u> </u>													
80													
0													
io —													
io 🗀		-											
10		1 ½ X											
		^											
io													
20													
0.0													
	000 3550.0			8650		11200.00	3750.0		6300.00	1885		400.00	26500.00 MF
No.	Mk.	Freq	•	Read		Corre Facto	Meas me		Limi	t	Over		
		MHz		dBı		dB	dBu\		dBuV/	/m	dB	Detector	Comment
1		4882.0	00	44.	17	1.01	45.		74.0	0	-28.82	peak	
2	*	4882.0	00	39.	05	1.01	 40.	06	54.0	0	-13.94	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			Mbps)		Test Date			3/4/10
Т	est Frequ			1MHz		Polarization	า		zontal
	Temp		2	5°C		Hum.		65	5%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		¥							
40		×							
30									
20									
10.0									
	.000 3550.0		8650.00	11200.00				100.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	49.61	1.01	50.62	74.00	-23.38	peak	
2	*	4882.000	44.55	1.01	45.56	54.00	-8.44	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			1Mbps)		Test Date			3/4/10
To	est Frequ			30MHz		Polarization	1		tical
100.0	Temp)	2	25°C		Hum.		68	5%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1							
40		1 X							
30		2 X							
20									
10.0	000 3550.0	00 6100.00	0 8650.00	11200.00	13750.00	16300.00 188	350.00 21 4	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading	Correct	Measure-		Over		
		MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000		1.28	45.94	74.00	-28.06	peak	Comment
2	*	4960.000		1.28	35.55	54.00	-18.45	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode			BT(1	Mbps)		Т	est Dat	te		2023	3/4/10
Te	est Frequ					0MHz			olarizati				zontal
	Temp)			2	5°C			Hum.			65	5%
130.0 c	BuV/m								1				
120													
10													
100 -													
90													
30													
<u> </u>													
0													
60 —													
50		1 X											
10		X 2											
		×											
80													
20													
10.0													
	000 3550.0			8650		11200.00	50.00			18850.00		00.00	26500.00 MF
No.	Mk.	Freq	•	Rea Le		Correct Factor	easure ment	:-	Limit	Ov	er		
		MHz	<u>-</u>	dB		dB	BuV/m	1 (dBuV/m	n dl	3	Detector	Comment
1		4960.0	000	45.	.29	1.28	46.57		74.00	-27	.43	peak	
2	*	4960.0	000	35.	29	1.28	 36.57		54.00	-17	.43	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M					Mbps)			Test Da				3/4/10
Te	est Freq					2MHz		F	Polarizat	ion			tical
	Tem	р			2	5°C			Hum.			65	5%
30.0 c	BuV/m												
20													
10													
00													
0													
:0													
o <u> </u>													
۱ 🗀													
0													
0		1 X											
o 🗀													
		2 X											
0													
0													
0.0													
	000 3550.			8650		11200.00	3750.00			18850.00		100.00	26500.00 MF
No.	Mk.	Freq	-	Read Lev		Corre Facto	Measure ment	9-	Limit	O۷	er/		
		MHz	7	dB		dB	dBuV/n	n	dBuV/n	n d	В	Detector	Comment
1		4804.0	000	45.	19	0.75	45.94		74.00	-28	.06	peak	
2	*	4804.0	000	33.	67	0.75	34.42		54.00	-19	.58	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M	ode			BT(3	Mbps)				Гest Da	ate		2023	3/4/10
Te	est Freq	uency				2MHz			Р	olarizat	tion			zontal
	Tem	р			2	5°C				Hum.			6	5%
30.0	BuV/m													
20														
10														
00 -														
0														
:0														
0														
0														
io		X X												
0		2 X												
0														
:0														
0.0														
) 00 3550 .			8650		11200.00		50.00		00.00	18850		1400.00	26500.00 M
No.	Mk.	Fred	l·	Rea Le	ding vel	Correct Factor		easure ment	-	Limit		Over		
		MH	7	dB	uV	dB	d	BuV/m		dBuV/r	m	dB	Detector	Comment
1		4804.0	000	48.	.14	0.75		48.89		74.00)	-25.11		
2	*	4804.0	000	37.	12	0.75		37.87		54.00)	-16.13	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)		Test Date			3/4/10
Te	est Frequ				1MHz		Polarization	n		tical
	Temp)		2	5°C		Hum.		65	5%
130.0	dBuV/m									
120										
110										
100										
90										
80										
70										
60										
50		4								
40		1 X 2								
30		×								
20										
10.0										
1000.0	000 3550.0	00 6100.0	00 8	8650.00	11200.00	13750.00	16300.00 18	850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	F	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.00	00	43.64	1.01	44.65	74.00	-29.35	peak	
2	*	4882.00	00	35.74	1.01	36.75	54.00	-17.25	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode			BT(3	Mbps)			Te	st Dat	e		2023	3/4/10
Test Frequency					1MHz				arizati				zontal	
			2	25°C				Hum.			65	5%		
130.0	dBuV/m													
120														
10														
100														
90														
30														
'o 🦳														
SO														
50		-												
		1 ×												
10		2 X												
30														
20														
10.0														
	000 3550.	00 6100).00	8650	.00	11200.00	137	50.00	16300	.00	18850.00	2140	00.00	26500.00 MH
No.	Mk.	Freq		Rea Le		Correct Factor		easure ment	-	Limit	Ove	er		
		MHz	<u>, </u>	dB		dB		BuV/m	dl	3uV/m	n dE	3	Detector	Comment
1		4882.0		44.		1.01		45.48		74.00	-28.		peak	
2	*	4882.0	000	35.	32	1.01		36.33	Ę	54.00	-17.	67	AVG	

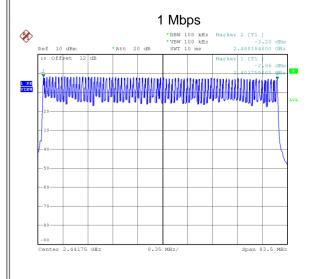
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

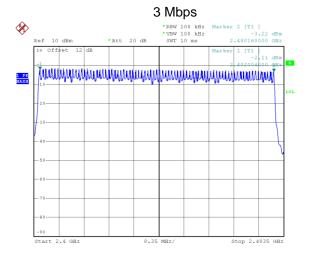
	Test Mo					Mbps)					Test Da					3/4/10	
Test Frequency			2480MHz			Polarization					Vertical						
00.0	Temp)			2	5°C					Hum.				6	5%	
30.0 d	IBuV/m																_
20																	
10																	
00																	1
10																	+
:0																	
o 🗀																	-
50																	
io 🗀		1 X															-
ю 📙																	_
		2 X															
!O																	1
1000.0	000 3550.0	00 6100	1 00	8650	nn	11200.	nn	1375	n nn	163	300.00	18850	1 00 -	21400.00		26500.0	
No.	Mk.	Freq		Read		Corr			asure		Limit		Over			20300.0	U 1911
				Lev		Fact			ment								
		MHz		dBı	uV	dE	3	dE	3uV/m	1	dBuV/ı	m	dB	De	tector	Commo	ent
1		4960.0	00	45.	33	1.2	8	4	6.61		74.00)	-27.39) р	eak		
2	*	4960.0	000	32.	86	1.2	8	3	34.14		54.00)	-19.86	6 A	٧G		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode			BT(3	Mbps)			Т	est Dat	te		2023	3/4/10
Test Frequency					0MHz				larizati				zontal	
	Temp		2	25°C				Hum. 6			65	5%		
130.0	dBuV/m													
120														
20														
10														
00														
10														
30														
'o														
io														
io														
"		1 X												
0		2												
:0		×												
20														
10.0														
	000 3550.	00 6100	1.00	8650	.00	11200.00	137	50.00	1630	00.00	18850.00	214	00.00	26500.00 MF
No.	Mk.	Freq		Read		Correc		easure		Limit	Ov			
				Lev	vel -	Factor		ment						
		MHz		dBı		dB		BuV/m	(dBuV/n			Detector	Comment
1		4960.0		43.		1.28		44.78		74.00	-29.		peak	
2	*	4960.0	000	32.	89	1.28		34.17		54.00	-19.	83	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.




Project No.: 2303T050 Page 55 of 72 Report Version: R00

Test Mode	1/3Mbps
-----------	---------

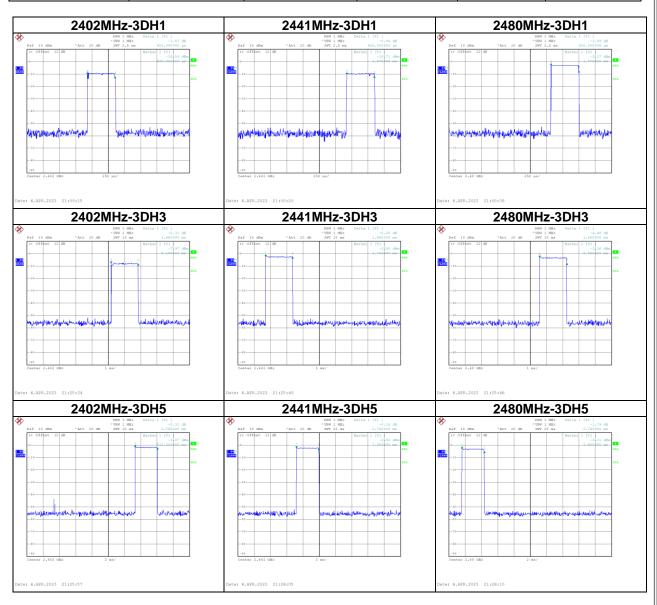
Test Mode	Number of Hopping Channel	≥ Limit	Test Result
1 Mbps	79	15	Pass
3 Mbps	79	15	Pass

Date: 6.APR.2023 20:38:07 Date: 7.APR.2023 13:16:55


APPENDIX E AVERAGE TIME OF OCCUPANCY

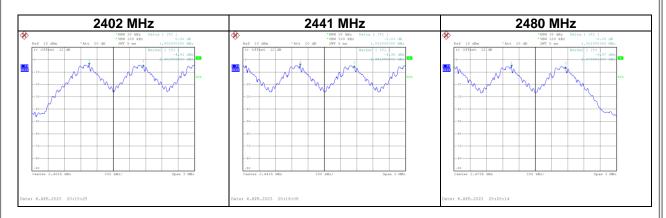
Project No.: 2303T050 Page 57 of 72 Report Version: R00

Test Mode: 1Mbps


Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.8400	0.3029	0.4000	Pass
DH3	2402	1.6200	0.2592	0.4000	Pass
DH1	2402	0.4250	0.1360	0.4000	Pass
DH5	2441	2.8400	0.3029	0.4000	Pass
DH3	2441	1.6200	0.2592	0.4000	Pass
DH1	2441	0.4300	0.1376	0.4000	Pass
DH5	2480	2.8400	0.3029	0.4000	Pass
DH3	2480	1.6200	0.2592	0.4000	Pass
DH1	2480	0.4350	0.1392	0.4000	Pass

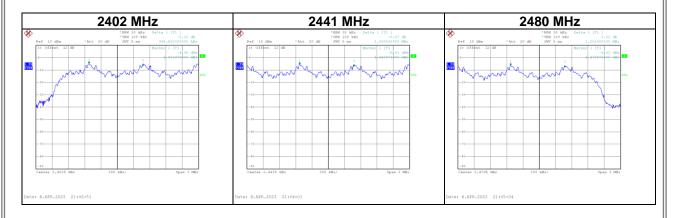
Test Mode: 3Mbps

Data Packet	Frequency	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	2.7600	0.2944	0.4000	Pass
3DH3	2402	1.6600	0.2656	0.4000	Pass
3DH1	2402	0.4250	0.1360	0.4000	Pass
3DH5	2441	2.7600	0.2944	0.4000	Pass
3DH3	2441	1.6600	0.2656	0.4000	Pass
3DH1	2441	0.4250	0.1360	0.4000	Pass
3DH5	2480	2.7600	0.2944	0.4000	Pass
3DH3	2480	1.6800	0.2688	0.4000	Pass
3DH1	2480	0.4300	0.1376	0.4000	Pass


APPENDIX F	HOPPING CHANNEL SEPARATION MEASUREMENT

Project No.: 2303T050 Page 60 of 72 Report Version: R00

Test Mode :	Hopping on _1Mbps
1000 111000	I iopping on _ imapo


Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	1.002	0.638	Pass
2441	1.002	0.634	Pass
2480	1.002	0.644	Pass

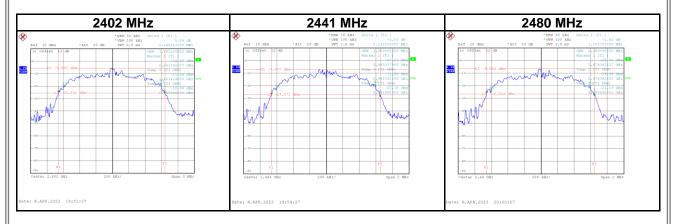
Test Mode: Hopping on _3Mbps

Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	0.995	0.867	Pass
2441	1.001	0.875	Pass
2480	1.002	0.869	Pass

3 T L		Report No.: BTL-FCCP-1-2303T050
		Керон No.: Вте-госк-1-23031030
	APPENDIX G	BANDWIDTH

Project No.: 2303T050 Page 63 of 72 Report Version: R00

Test Mode :	1Mbps


Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	0.957	0.888	Pass
2441	0.951	0.884	Pass
2480	0.966	0.896	Pass

Test Mode :	3Mbps

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1.300	1.192	Pass
2441	1.312	1.200	Pass
2480	1.304	1.200	Pass

	Report No.: BTL-FCCP-1-2303T050
APPENDIX H	OUTPUT POWER

Project No.: 2303T050 Page 66 of 72 Report Version: R00

Report No.: BTL-FCCP-1-2303T050

Test Mode :	1Mbps		Tested	d Date 2	2023/4/6
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	-0.12	0.0010	21.00	0.1259	Pass
2441	-0.64	0.0009	21.00	0.1259	Pass
2480	-1.30	0.0007	21.00	0.1259	Pass

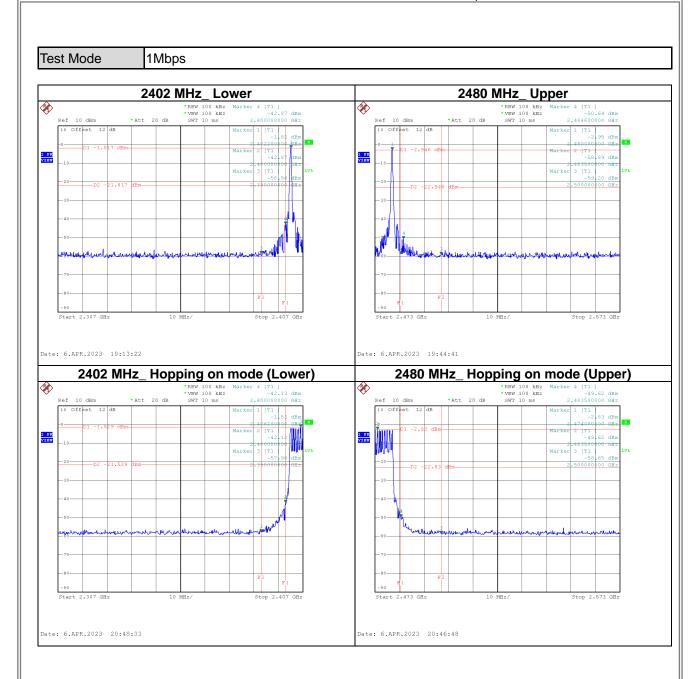
Test Mode:	2Mbps	Tested Date	2023/4/6

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	0.21	0.0010	21.00	0.1259	Pass
2441	-0.27	0.0009	21.00	0.1259	Pass
2480	-1.11	0.0008	21.00	0.1259	Pass

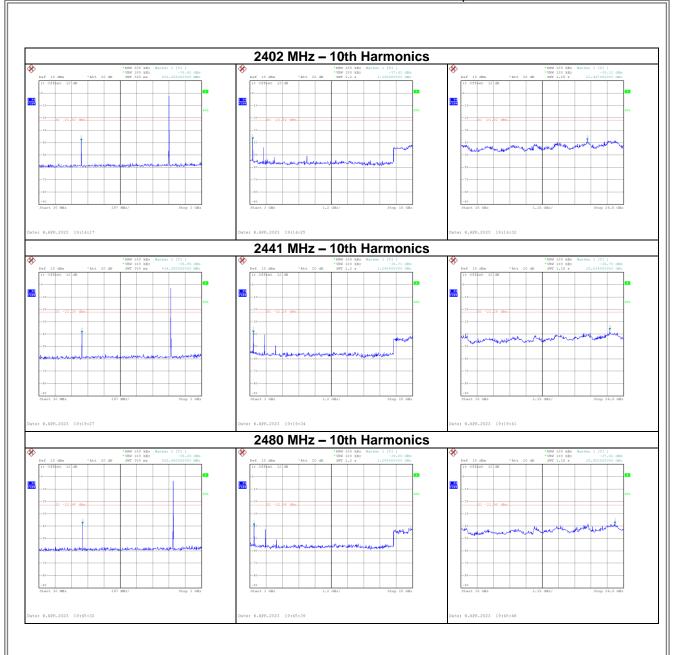
Test Mode: 3Mbps	Tested Date	2023/4/6
------------------	-------------	----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	0.46	0.0011	21.00	0.1259	Pass
2441	0.01	0.0010	21.00	0.1259	Pass
2480	-0.83	0.0008	21.00	0.1259	Pass

Project No.: 2303T050 Page 67 of 72 Report Version: R00



APPENDIX I	ANTENNA CONDUCTED SPURIOUS EMISSION


Project No.: 2303T050 Page 68 of 72 Report Version: R00

