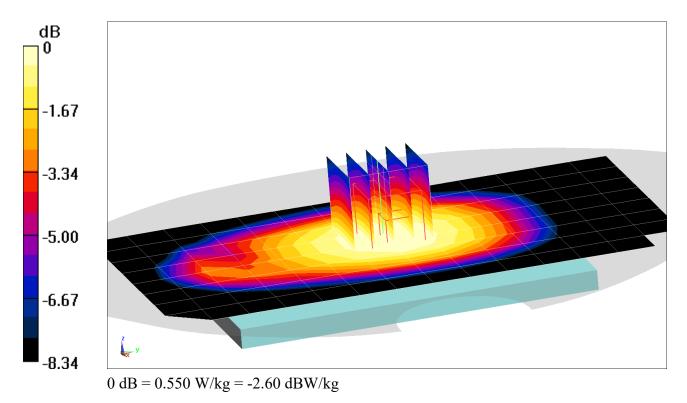
DUT: ZNFL322DL; Type: Portable Handset; Serial: 63351


Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 1.013$ S/m; $\varepsilon_r = 52.877$; $\rho = 1000$ kg/m³ Phantom section Flat Section; Space: 1.0 cm

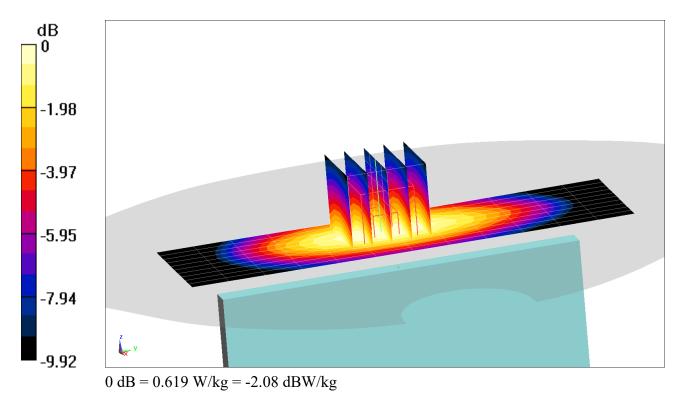
Test Date: 05-20-2019; Ambient Temp: 20.2°C; Tissue Temp: 19.5°C

Probe: EX3DV4 - SN7488; ConvF(11.03, 11.03, 11.03) @ 836.5 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 5 (Cell.), Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.44 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.606 W/kg SAR(1 g) = 0.452 W/kg

DUT: ZNFL322DL; Type: Portable Handset; Serial: 63351


Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 1.013$ S/m; $\varepsilon_r = 52.877$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

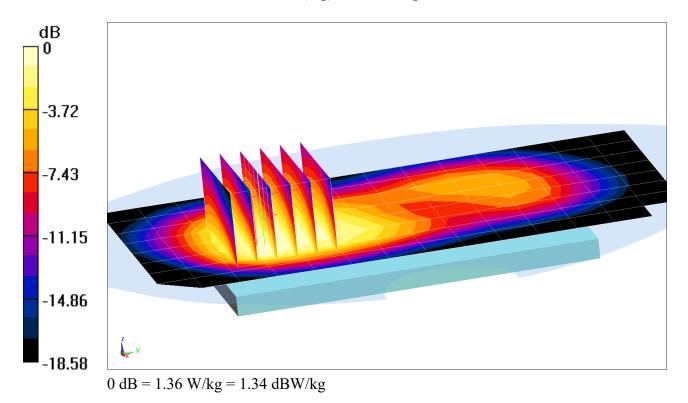
Test Date: 05-20-2019; Ambient Temp: 20.2°C; Tissue Temp: 19.5°C

Probe: EX3DV4 - SN7488; ConvF(11.03, 11.03, 11.03) @ 836.5 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 5 (Cell.), Body SAR, Right Edge, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (11x13x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.20 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.709 W/kg SAR(1 g) = 0.465 W/kg

DUT: ZNFL322DL; Type: Portable Handset; Serial: 63351


Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): f = 1720 MHz; $\sigma = 1.442$ S/m; $\epsilon_r = 52.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

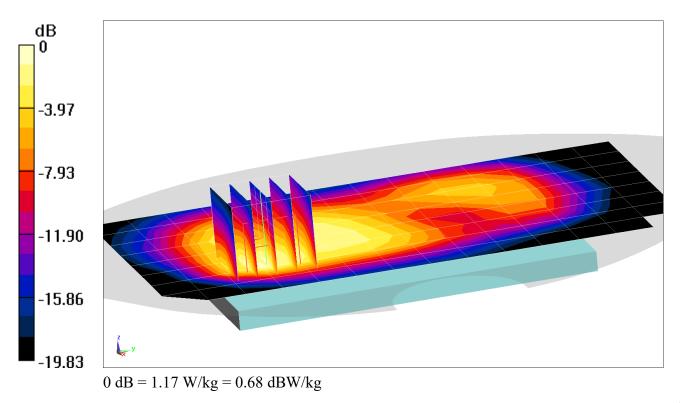
Test Date: 05-17-2019; Ambient Temp: 23.1°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN3914; ConvF(7.89, 7.89, 7.89) @ 1720 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 66 (AWS), Body SAR, Back side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (8x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.29 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 1.67 W/kg SAR(1 g) = 1.02 W/kg

DUT: ZNFL322DL; Type: Portable Handset; Serial: 63401


Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.575 \text{ S/m}$; $\varepsilon_r = 51.974$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

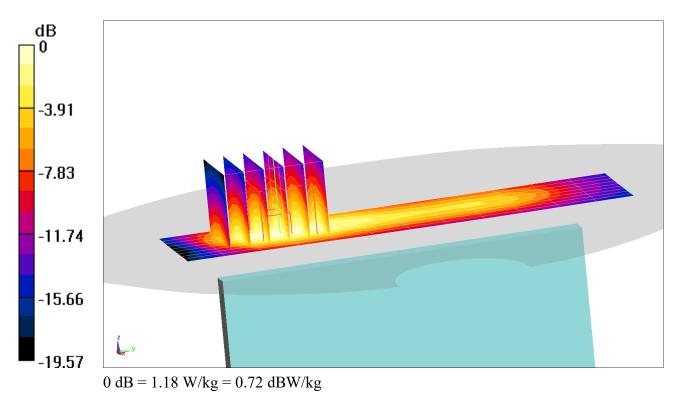
Test Date: 05-15-2019; Ambient Temp: 22.8°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7410; ConvF(7.78, 7.78, 7.78) @ 1900 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 2 (PCS), Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.36 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 1.50 W/kg SAR(1 g) = 0.770 W/kg

DUT: ZNFL322DL; Type: Portable Handset; Serial: 63401


Communication System: UID 0, LTE Band 2 (PCS), Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): f = 1860 MHz; $\sigma = 1.531$ S/m; $\varepsilon_r = 52.113$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

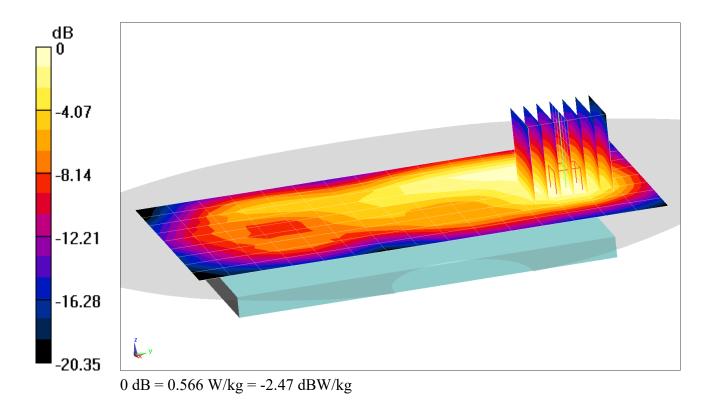
Test Date: 05-15-2019; Ambient Temp: 22.8°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7410; ConvF(7.78, 7.78, 7.78) @ 1860 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 2 (PCS), Body SAR, Left Edge, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.22 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 1.38 W/kg SAR(1 g) = 0.812 W/kg

DUT: ZNFL322DL; Type: Portable Handset; Serial: 63039


 $\begin{array}{l} \mbox{Communication System: UID 0, _IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Body; Medium parameters used (interpolated):} \\ \mbox{f} = 2462 \mbox{ MHz; } \sigma = 2.043 \mbox{ S/m; } \epsilon_r = 52.635; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

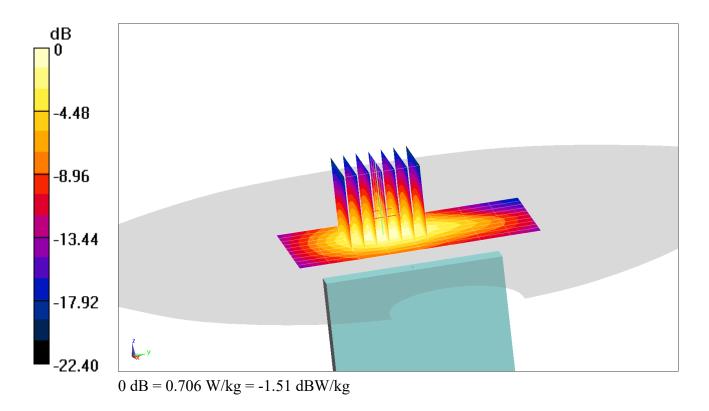
Test Date: 05-15-2019; Ambient Temp: 21.6°C; Tissue Temp: 20.2°C

Probe: EX3DV4 - SN7308; ConvF(7.57, 7.57, 7.57) @ 2462 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 11, 1 Mbps, Back Side

Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.88 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.689 W/kg SAR(1 g) = 0.374 W/kg

DUT: ZNFL322DL; Type: Portable Handset; Serial: 63039


 $\begin{array}{l} \mbox{Communication System: UID 0, _IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Body; Medium parameters used (interpolated):} \\ \mbox{f} = 2462 \mbox{ MHz; } \sigma = 2.043 \mbox{ S/m; } \epsilon_r = 52.635; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 05-15-2019; Ambient Temp: 21.6°C; Tissue Temp: 20.2°C

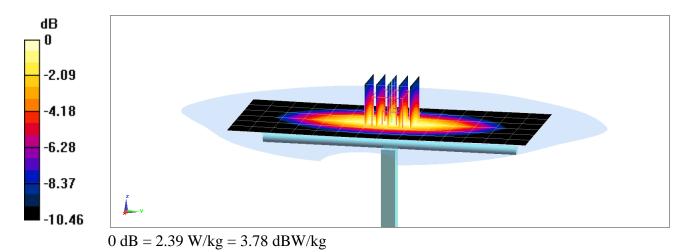
Probe: EX3DV4 - SN7308; ConvF(7.57, 7.57, 7.57) @ 2462 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 11, 1 Mbps, Top Edge

Area Scan (11x9x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.93 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.872 W/kg SAR(1 g) = 0.446 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003


Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.904$ S/m; $\epsilon_r = 43.382$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

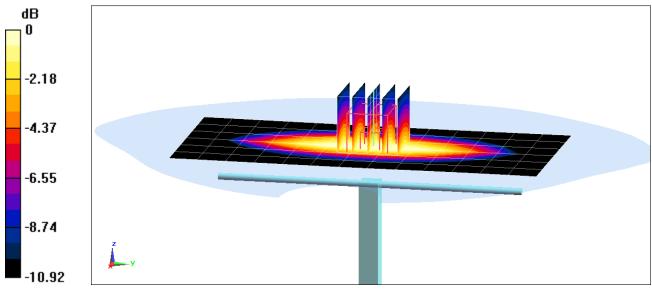
Test Date: 05-14-2019; Ambient Temp: 21.6°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7409; ConvF(9.91, 9.91, 9.91) @ 750 MHz; Calibrated: 6/25/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2018 Phantom: SAM 30 with CRP v5.0 right; Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.72 W/kg SAR(1 g) = 1.76 W/kg Deviation(1 g) = 6.28%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.892$ S/m; $\epsilon_r = 40.922$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 05-20-2019; Ambient Temp: 20.8°C; Tissue Temp: 21.7°C

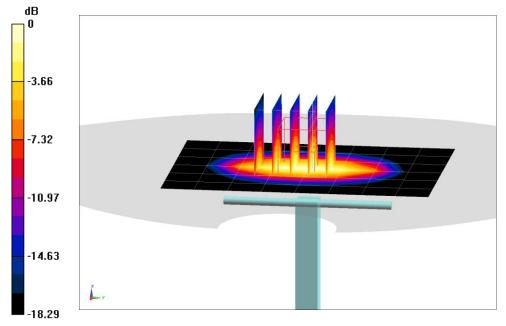
Probe: EX3DV4 - SN7409; ConvF(9.67, 9.67, 9.67) @ 835 MHz; Calibrated: 6/25/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2018 Phantom: Left 30-SAM V5.0; Type: QD 000 P40 CD; Serial: 1715 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.06 W/kg SAR(1 g) = 1.94 W/kg Deviation(1 g) = 1.15%

0 dB = 2.66 W/kg = 4.25 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1750 MHz; $\sigma = 1.371$ S/m; $\epsilon_r = 39.625$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-23-2019; Ambient Temp: 23.2°C; Tissue Temp: 22.0°C

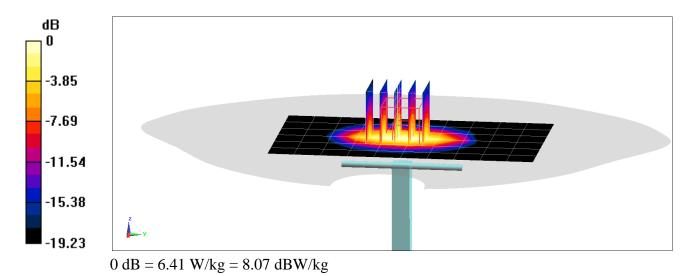
Probe: EX3DV4 - SN3589; ConvF(7.31, 7.31, 7.31) @ 1750 MHz; Calibrated: 1/25/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/22/2018 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.19 W/kg SAR(1 g) = 3.8 W/kg Deviation(1 g) = 4.11%

0 dB = 5.89 W/kg = 7.70 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.456$ S/m; $\epsilon_r = 39.853$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

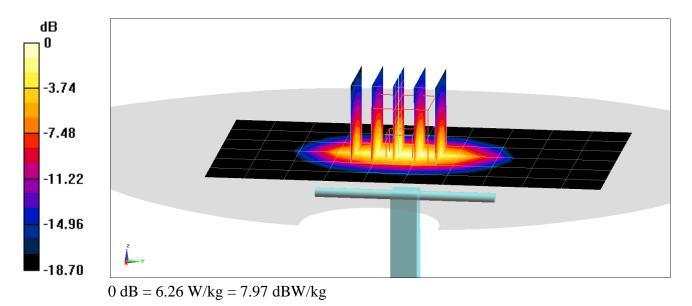
Test Date: 05-14-2019; Ambient Temp: 23.6°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN3589; ConvF(7.08, 7.08, 7.08) @ 1900 MHz; Calibrated: 1/25/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/22/2018 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.80 W/kg SAR(1 g) = 3.97 W/kg Deviation(1 g) = 1.53%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.459$ S/m; $\epsilon_r = 38.787$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

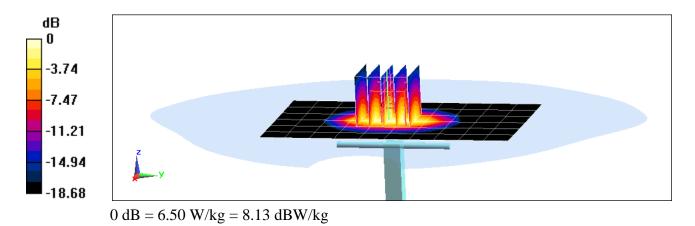
Test Date: 05-17-2019; Ambient Temp: 23.0°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN3589; ConvF(7.08, 7.08, 7.08) @ 1900 MHz; Calibrated: 1/25/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/22/2018 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.59 W/kg SAR(1 g) = 3.93 W/kg Deviation(1 g) = 0.51%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.454$ S/m; $\epsilon_r = 40.608$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

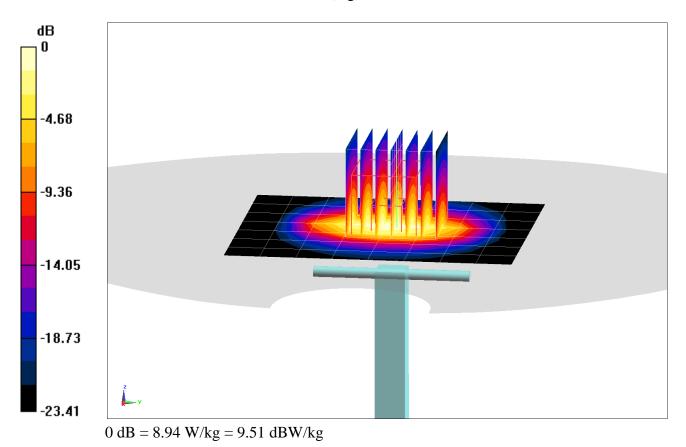
Test Date: 05-20-2019; Ambient Temp: 23.2°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN3914; ConvF(7.8, 7.8, 7.8) @ 1900 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019 Phantom: Left For Head SAM (30) with CRP v5.0; Type: QD000P40CD; Serial: TP:1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.83 W/kg SAR(1 g) = 4.14 W/kg Deviation(1 g) = 5.88%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.816$ S/m; $\epsilon_r = 38.797$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

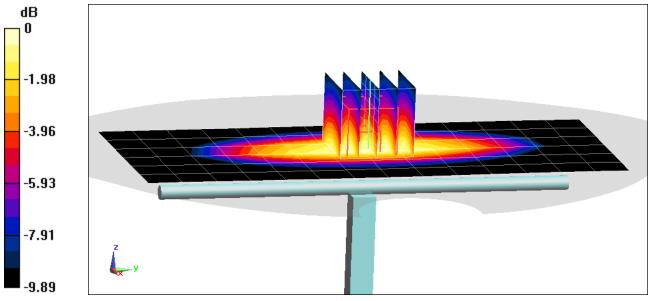
Test Date: 05-20-2019; Ambient Temp: 23.1°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN3589; ConvF(6.46, 6.46, 6.46) @ 2450 MHz; Calibrated: 1/25/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/22/2018 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.4 W/kg SAR(1 g) = 5.28 W/kg Deviation(1 g) = 0.19%

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003


Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.937$ S/m; $\varepsilon_r = 56.986$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 05-20-2019; Ambient Temp: 22.4°C; Tissue Temp: 22.2°C

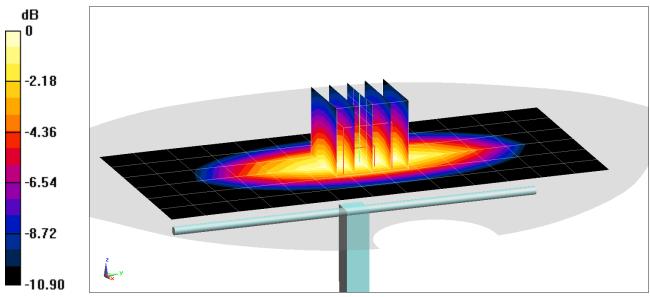
Probe: EX3DV4 - SN7357; ConvF(10.19, 10.19, 10.19) @ 750 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Twin-SAM V4.0 Front Right; Type: QD 000 P40 CC; Serial: 1167 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.60 W/kg SAR(1 g) = 1.76 W/kg Deviation(1 g) = 2.56%

0 dB = 2.31 W/kg = 3.64 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used:} \\ f = 835 \mbox{MHz; } \sigma = 1.012 \mbox{ S/m; } \epsilon_r = 52.88; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 5-20-2019; Ambient Temp: 20.2°C; Tissue Temp: 19.5°C

Probe: EX3DV4 - SN7488; ConvF(11.03, 11.03, 11.03) @ 835 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.16 W/kg SAR(1 g) = 2.03 W/kg Deviation(1 g) = 4.96%

0 dB = 2.73 W/kg = 4.36 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.476$ S/m; $\epsilon_r = 52.189$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-17-2019; Ambient Temp: 23.1°C; Tissue Temp: 22.2°C

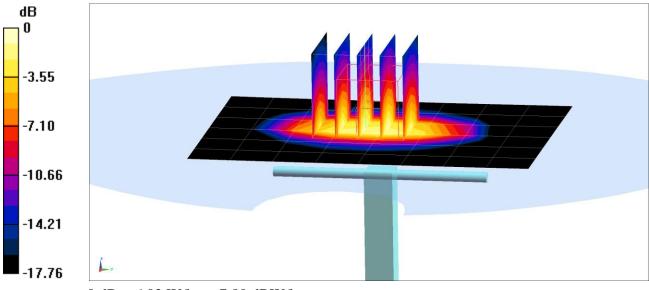
Probe: EX3DV4 - SN3914; ConvF(7.89, 7.89, 7.89) @ 1750 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.30 W/kg SAR(1 g) = 3.95 W/kg Deviation(1 g) = 5.61%

0 dB = 6.09 W/kg = 7.85 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 51.853$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-31-2019; Ambient Temp: 23.0°C; Tissue Temp: 22.6°C

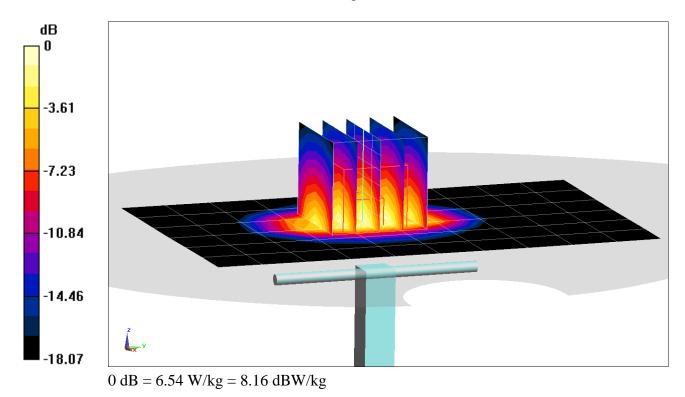
Probe: EX3DV4 - SN3914; ConvF(7.89, 7.89, 7.89) @ 1750 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.37 W/kg SAR(1 g) = 3.96 W/kg Deviation(1 g) = 5.88%

⁰ dB = 6.02 W/kg = 7.80 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.575$ S/m; $\epsilon_r = 51.974$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

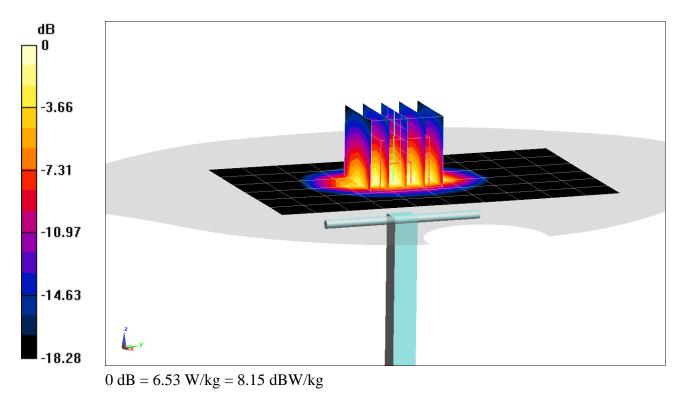
Test Date: 05-15-2019; Ambient Temp: 22.8°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7410; ConvF(7.78, 7.78, 7.78) @ 1900 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.70 W/kg SAR(1 g) = 4.18 W/kg Deviation(1 g) = 6.63%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \sigma = 1.567 \text{ S/m}; \epsilon_r = 52.401; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-19-2019; Ambient Temp: 21.3°C; Tissue Temp: 21.3°C

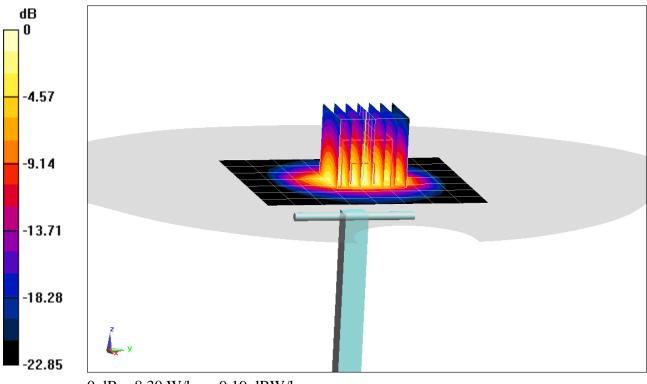
Probe: EX3DV4 - SN7410; ConvF(7.78, 7.78, 7.78) @ 1900 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.69 W/kg SAR(1 g) = 4.2 W/kg Deviation(1 g) = 7.14%

B13

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.031$ S/m; $\epsilon_r = 52.652$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-15-2019; Ambient Temp: 21.6°C; Tissue Temp: 20.2°C

Probe: EX3DV4 - SN7308; ConvF(7.57, 7.57, 7.57) @ 2450 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 10.4 W/kg SAR(1 g) = 4.96 W/kg Deviation(1 g) = -1.00%

0 dB = 8.30 W/kg = 9.19 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG ...Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D750V3-1003_Jan18

S

С

S

CALIBRATION	CERTIFICATE

Object	ect D750V3 - SN:1003		
Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz			
Calibration date:	January 15, 201	3	BN 01-25-2018
This callbration certificate documents and the unce	ents the traceability to nat rtainties with confidence p	ional standards, which realize the physical un probability are given on the following pages an	d are part of the certificate
		ry facility: environment temperature (22 \pm 3)°(02106/2010
Calibration Equipment used (M&T			
Primary Slandards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	in house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oci-18
Nelwork Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Ləlf Klysner	Laboratory Technician	Seaf The
Approved by:	Katja Pokovic	Technical Manager	helly
This calibration certificate shall no	l be reproduced except in	full without written approval of the laboratory	Issued: January 15, 2018

ept in full without written approval of the laboratory.

Certificate No: D750V3-1003_Jan18

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero dl taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured
not applicable of not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

_

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.42 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.58 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.71 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω - 2.1 jΩ
Return Loss	- 27.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω - 6.2 jΩ
Return Loss	- 24.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.043 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 21, 2009

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom

SAM Head Phantom

For usage with cSAR3DV2-R/L

_ ._ _ . _

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.94 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.33 W/kg
SAR for nominal Head TSL parameters		

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.22 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.52 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition			
SAR measured	250 mW input power	2.01 W/kg		
SAR for nominal Head TSL parameters	normalized to 1W	8.06 W/kg ± 17.5 % (k=2		
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition			
SAR measured	250 mW input power	1.38 W/kg		

SAR result with SAM Head (Ear)

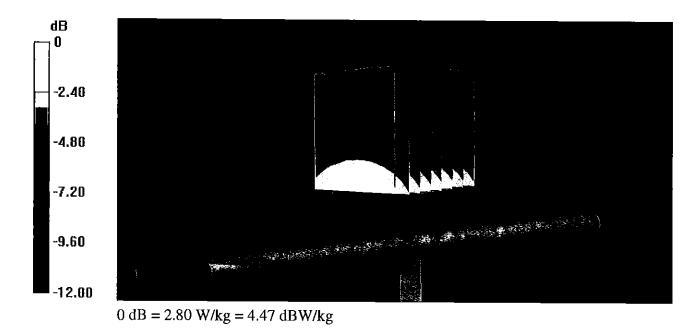
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.70 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.15 W/kg

DASY5 Validation Report for Head TSL

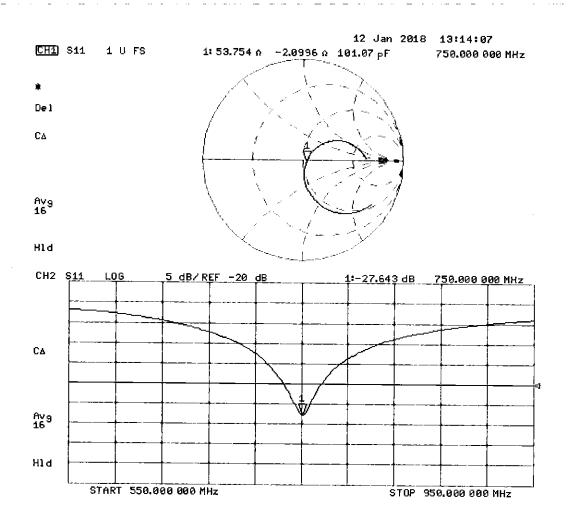
Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.11 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.15 W/kg SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.80 W/kg

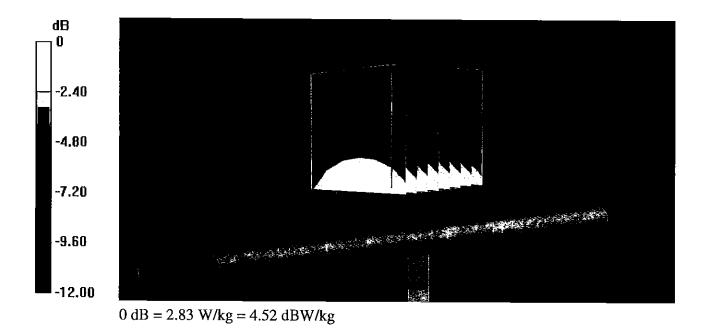
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

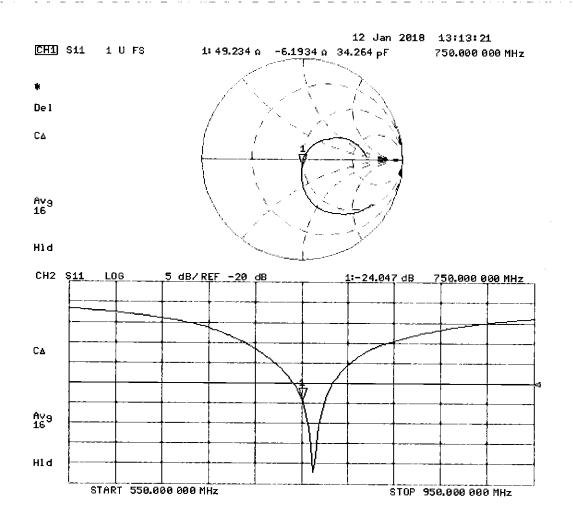
Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.19, 10.19, 10.19); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x8x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.31 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (measured) = 2.83 W/kg

Impedance Measurement Plot for Body TSL

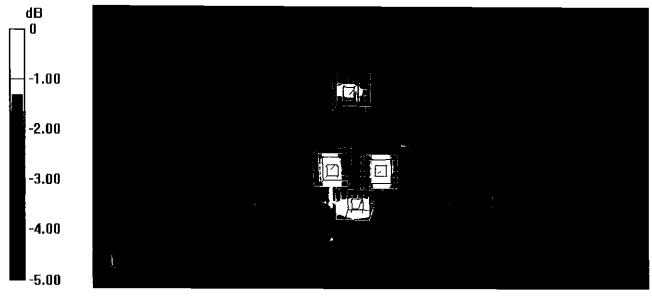
Date: 15.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9$ S/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.79 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.89 W/kg SAR(1 g) = 1.98 W/kg; SAR(10 g) = 1.33 W/kg Maximum value of SAR (measured) = 2.58 W/kg

SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.85 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 2.94 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.62 W/kg

SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.29 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.78 W/kg SAR(1 g) = 2.01 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.56 W/kg

SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.01 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.31 W/kg SAR(1 g) = 1.67 W/kg; SAR(10 g) = 1.15 W/kg Maximum value of SAR (measured) = 2.11 W/kg

0 dB = 2.58 W/kg = 4.12 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D750V3 - SN: 1003

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/15/2019

Extension Calibration date:

Description:

SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

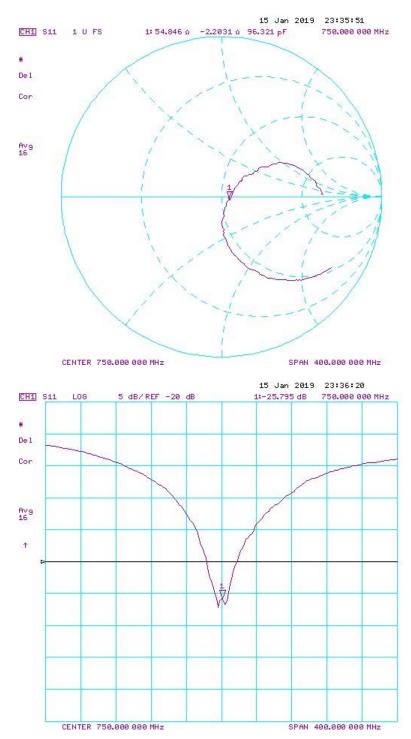
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	2/8/2018	Annual	2/8/2019	US39170122
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/3/2018	Annual	10/3/2019	1558
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091
SPEAG	EX3DV4	SAR Probe	8/23/2018	Annual	8/23/2019	7308
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

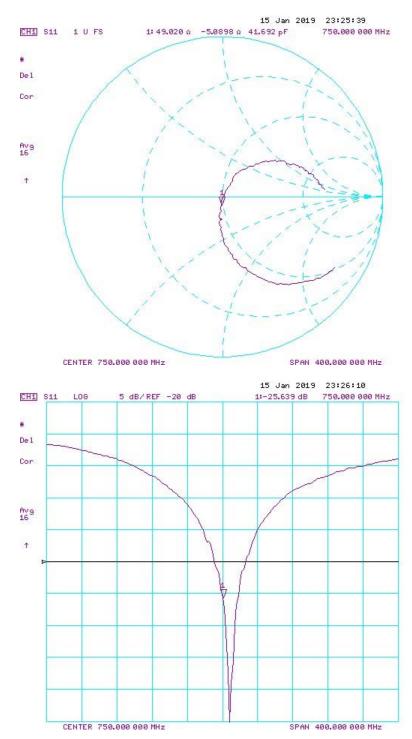
Object:	Date Issued:	Page 1 of 4
D750V3 – SN: 1003	01/15/2019	Fage 1 01 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 23.0 dBm	Measured Head SAR (1g) W/kg @ 23.0 dBm		Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	(40-) 10/0-0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/15/2018	1/15/2019	1.043	1.656	1.75	5.68%	1.08	1.15	6.09%	53.8	54.8	1	-2.1	-2.2	0.1	-27.6	-25.8	6.50%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 23.0 dBm	Measured Body SAR (1g) W/kg @ 23.0 dBm			(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/15/2018	1/15/2019	1.043	1.716	1.84	7.23%	1.14	1.23	7.71%	49.2	49	0.2	-6.2	-5.1	1.1	-24	-25.6	-6.80%	PASS

Object:	Date Issued:	Page 2 of 4
D750V3 – SN: 1003	01/15/2019	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dogo 2 of 4
D750V3 – SN: 1003	01/15/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D750V3 – SN: 1003	01/15/2019	Fage 4 01 4

Calibration Laboratory of

PC Test

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-4d132_Jan19

CALIBRATION CERTIFICATE

Object	D835V2 - SN:4d	132	
			222
			BN V 02/06/2019
Calibration procedure(s)	QA CAL-05.v11		02/06/2019
	Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
			성경 2018년 2018년 1월 2019년 1월 2018년 1월 2019년 1월 201 2월 2019년 1월 2
	an a		an an an an an an a' a' a' a' an an an a'
Calibration date:			
Calibration date:	January 22, 2019		an an tha an
8		onal standards, which realize the physical un	
The measurements and the uncertain	ainties with confidence p	robability are given on the following pages an	d are part of the certificate.
All calibrations have been conducte	ed in the closed laborato	ry facility: environment temperature (22 ± 3)°0	C and humidity < 70%.
Calibration Equipment used (M&TE	E critical for calibration)		
	,		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec18)	Dec-19
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	D#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	1		
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	enter total and bound the terms are the second
			Sel Them
	ana ang ang ang ang ang ang ang ang ang	na kana da sa kasa ka sa ka sa ka	needed of the product of the second
Approved by:	Katja Pokovic	Technical Manager	and the second
	naya runuvic	тестинса маладег	A LIES-
			Issued: January 22, 2019
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	<u>.</u>

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.3 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.59 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 W/kg

SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.23 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.67 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.35 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 3.6 jΩ
Return Loss	- 28.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω - 6.2 jΩ
Return Loss	- 23.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom

SAM Head Phantom

For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.38 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.57 W/kg

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.86 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.58 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.42 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.38 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

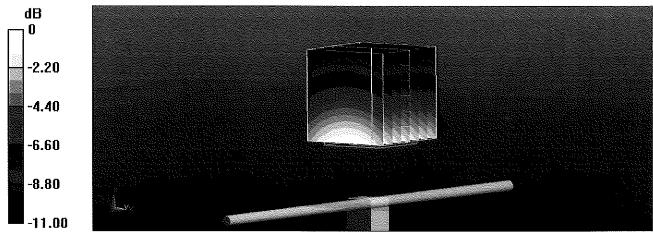
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.06 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.36 W/kg
	200 million mpar power	1.00 Wing

DASY5 Validation Report for Head TSL

Date: 17.01.2019

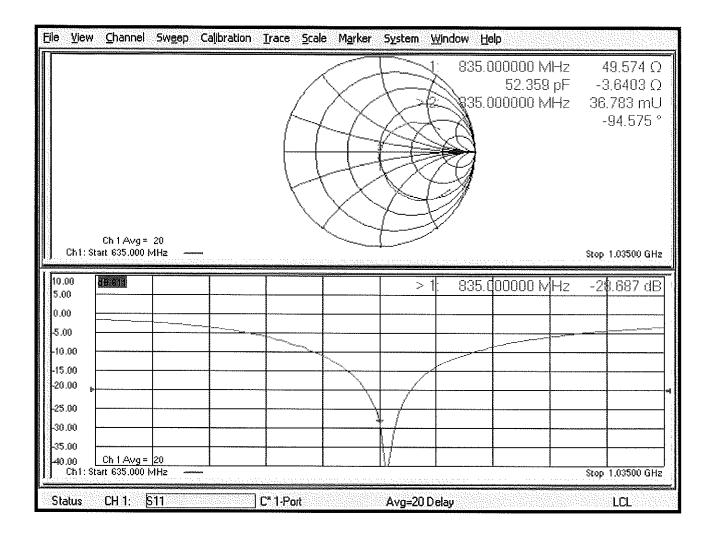
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 41.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 34.24 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.73 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.28 W/kg

0 dB = 3.28 W/kg = 5.16 dBW/kg

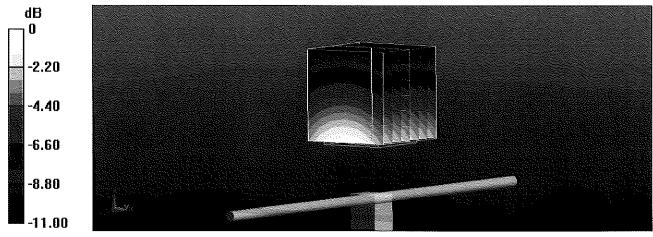
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 17.01.2019

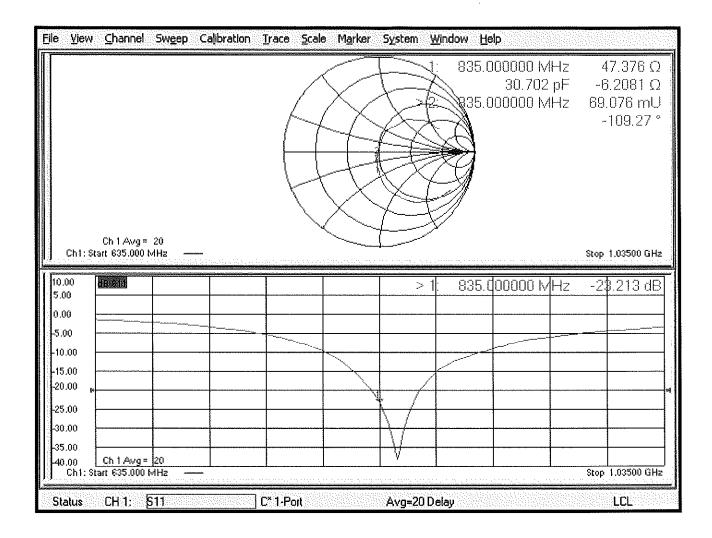
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.15, 10.15, 10.15) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 63.32 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 3.64 W/kg **SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg** Maximum value of SAR (measured) = 3.26 W/kg

0 dB = 3.26 W/kg = 5.13 dBW/kg

Impedance Measurement Plot for Body TSL

DASY5 Validation Report for SAM Head

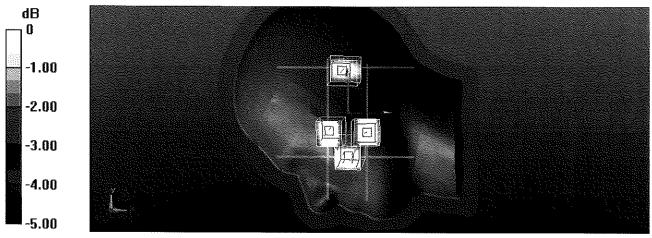
Date: 22.01.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 44.4$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: SAM Head
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

SAM/Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.32 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.51 W/kg SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 3.12 W/kg

SAM/Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.25 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.67 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.65 W/kg Maximum value of SAR (measured) = 3.24 W/kg

SAM/Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.69 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.43 W/kg SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 3.08 W/kg

SAM/Head/Ear/Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.79 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 2.94 W/kg SAR(1 g) = 2.02 W/kg; SAR(10 g) = 1.36 W/kg Maximum value of SAR (measured) = 2.62 W/kg

0 dB = 2.62 W/kg = 4.18 dBW/kg

Calibration Laboratory of

PC Test

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1750V2-1150_Oct18

CALIBRATION CERTIFICATE

Object	D1750V2 - SN:11	50	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	ve 700 MHz
			Dail
			and the second sec
Calibration date:	October 22, 2018		BN1- 1013012018
		onal standards, which realize the physical uni robability are given on the following pages an	
The meddatements and the anothe		robusinty are given on the tenering pages an	
All calibrations have been conducte	d in the closed laborato	γ facility: environment temperature (22 ± 3)°C	C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Miller
Approved by:	Katja Pokovic	Technical Manager	Jel 145-
			Issued: October 22, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.33 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω - 0.4 jΩ
Return Loss	- 40.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 0.1 jΩ
Return Loss	- 29.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.217 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

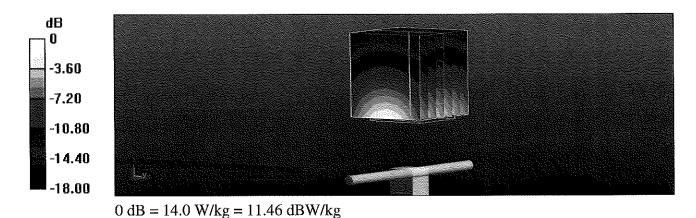
Manufactured by	SPEAG
Manufactured on	April 10, 2015

DASY5 Validation Report for Head TSL

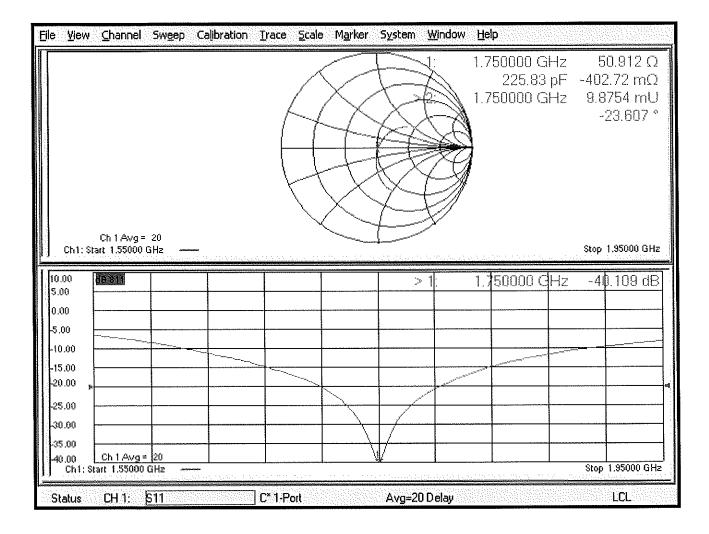
Date: 22.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.33$ S/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.76 W/kg Maximum value of SAR (measured) = 14.0 W/kg

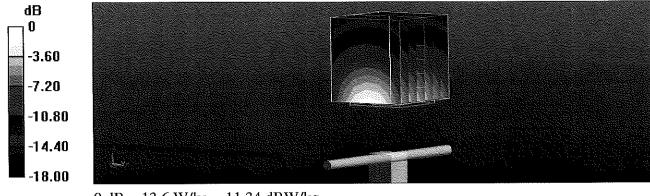
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.10.2018

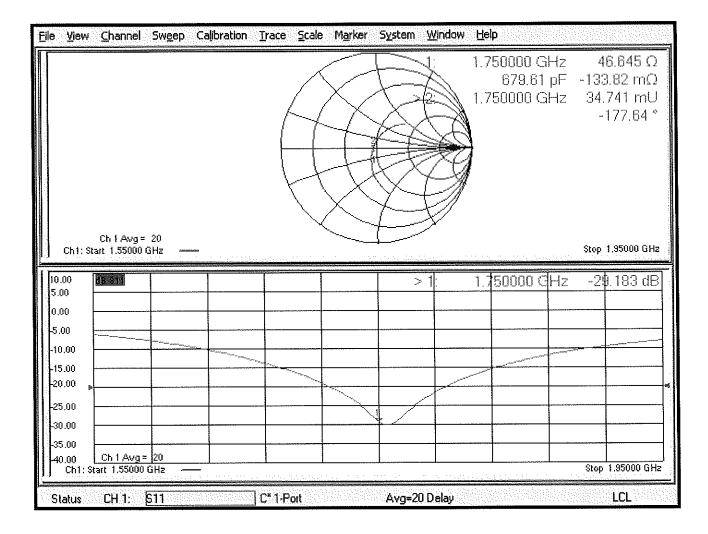
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.46 S/m; ϵ_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 102.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.82 W/kg Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

PC Test Client

											E

Object	D1900V2 - SN:5d148				
Calibration procedure(s)	QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz				
Calibration date:	February 21, 2019				
This calibration certificate documer The measurements and the uncerte	nts the traceability to nati ainties with confidence p	onal standards, which realize the physical un robability are given on the following pages ar	its of measurements (SI). d are part of the certificate.		
All calibrations have been conducte	ed in the closed laborator	ry facility: environment temperature (22 ± 3)°(C and humidity < 70%.		
Calibration Equipment used (M&TE	critical for calibration)				
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19		
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19		
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19		
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19		
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19		
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec18)	Dec-19		
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19		
Secondary Standards	Secondary Standards ID # Check Date (in house) Scheduled Check				
Power meter E4419B	SN: GB39512475	Check Date (in house)	Scheduled Check		
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	In house check: Oct-20		
Power sensor HP 8481A	SN: MY41092317	· · · · · · · · · · · · · · · · · · ·	In house check: Oct-20		
RF generator R&S SMT-06	SN: 100972	07-Oct-15 (in house check Oct-18)	In house check: Oct-20		
Network Analyzer Agilent E8358A	SN: US41080477	15-Jun-15 (in house check Oct-18)	In house check: Oct-20		
Hothert Analyzor Agilent L0000A	014.00410004/7	31-Mar-14 (in house check Oct-18)	In house check: Oct-19		
	Name	Function	Signature		

Calibrated by:

Technical Manager

Laboratory Technician

Issued: February 21, 2019

Manu Seltz

Katja Pokovic

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	9.65 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
	Condition		
SAR measured	250 mW input power	5.05 W/kg	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.56 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	· · · · · · · · · · · · · · · · · · ·
SAR measured	250 mW input power	5.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω + 6.8 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.4 Ω + 7.8 jΩ
Return Loss	- 21.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
	1.170 ns
	1.170113

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

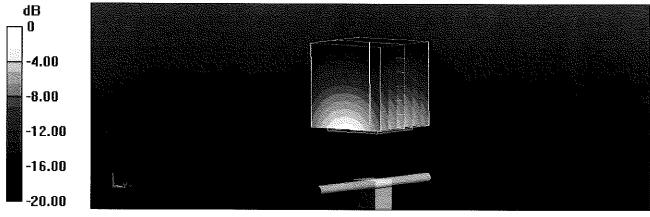
Manufactured by	SPEAG
	SPEAG

DASY5 Validation Report for Head TSL

Date: 21.02.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.4 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.8 W/kg **SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.05 W/kg** Maximum value of SAR (measured) = 15.0 W/kg

0 dB = 15.0 W/kg = 11.76 dBW/kg

Impedance Measurement Plot for Head TSL

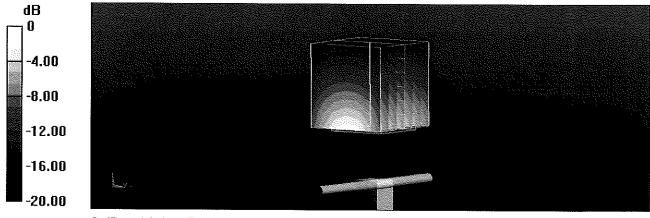
Elle <u>V</u> lev	w <u>C</u> hannel	Sw <u>e</u> ep (ajibration	<u>T</u> race <u>S</u> cal	e M <u>a</u> rker	S <u>y</u> stem	Window	<u>H</u> elp		
Ch1:	Ch 1 Avg = Start 1.70000 (20 GHz		A			A	.900000 G 573.82 .900000 G	pH ìHz	51.822 Ω 6.8503 Ω 69.458 mU 71.260 °
10.00 5.00 -5.00 -10.00 -15.00 -25.00 -25.00 -30.00								.900000 G	Hz	-23.166 dB
-35.00 -40.00	<u>Ch 1 Avg =</u> Start 1.70000 (20 GHz			/					Stop 2.10000 GHz

DASY5 Validation Report for Body TSL

Date: 21.02.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.23, 8.23, 8.23) @ 1900 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.56 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Impedance Measurement Plot for Body TSL

File	⊻iew	<u>C</u> hannel	Sweep	Calibration	<u>Trace</u> <u>S</u> cal	e M <u>a</u> rker	System	Window	<u>H</u> elp	
		Ch 1 Avg = nt 1.70000 (A				1.900000 GHz 652.32 pH 1.900000 GHz	7.7874 Ω
10.0 5.04 -5.0 -10. -15. -25. -25. -25. -30. -35. -40. -		Ch 1 Awg = rt 1.70000 c	200 3 Hz						1.900000 GHz	-21.894 dB
Sta	tus	сн 1: §	11		C* 1-Port		Avg=20	Delay		LCL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

. .

S

С

S

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D2450V2-797_Sep17

CALIBRATION CERTIFICATE

Object	D2450V2 - SN:79	7	· · ·	
Callbration procedure(s)	QA CAL-05.v9 Calibration procee	dure for dipole validation kits abo	ve 700 MHz 5 C رواوع[20 ا	Ŋ
Calibration date:	September 11, 20)17	We 700 MHz 5CV 10/03/2011 Extended PMV J/20/20	18
This calibration certificate document The measurements and the uncert	nts the traceability to natic ainties with confidence pr	onal standards, which realize the physical un obability are given on the following pages an	Is of measurements (SI).	
All calibrations have been conducted	ed in the closed laboratory	y facility: environment temperature (22 \pm 3)°(C and humidity < 70%.	
Calibration Equipment used (M&TE	E critical for calibration)			
Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18	
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18	
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18	
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18	
Type-N mismatch combination	SN: 5047,2 / 08327	07-Apr-17 (No. 217-02529)	Apr-18	
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18	
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18	
Power sensor HP 8481A	SN; US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18	
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18	
RF generator R&S SMT-08	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18	
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17	•
	Name	Function	Signature	
Calibrated by:	Michael Weber	Laboratory Technician	Miller	
Approved by:	Katja Pokovic	Technical Manager	blitty	
		· · · · ·	issued: September 11, 2017	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters;

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the ٠ nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

à

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	18. 18. us ut	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.1 W/kg ± 17.0 % (k≃2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 7.4 jΩ
Return Loss	~ 21.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 9.1 jΩ
Return Loss	- 20.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 24, 2006

DASY5 Validation Report for Head TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ϵ_r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg

Impedance Measurement Plot for Head TSL

i.

.

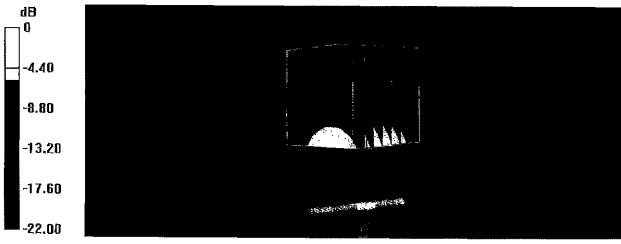
DASY5 Validation Report for Body TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

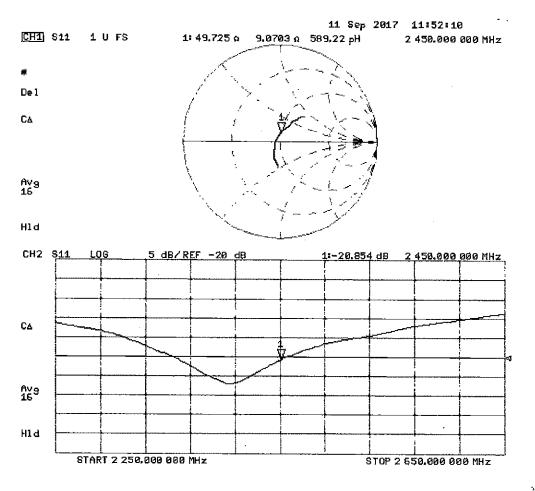
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 S/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.4 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (measured) = 20.3 W/kg

 $0 \, dB = 20.3 \, W/kg = 13.07 \, dBW/kg$

Impedance Measurement Plot for Body TSL

ţ,

. PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

PCTEST

D2450V2 - SN: 797

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 11, 2018

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

						and the second se	
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number	
Control Company	ntrol Company 4040 Therm./Clock/Humidity Monitor		3/31/2017	Biennial	3/31/2019	170232394	
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156	
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971	
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406	
Keysight	7720	Dual Directional Coupler	CBT	N/A	CBT	MY52180215	
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181	
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/30/2018	Annuai	8/30/2019	MY40003841	
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	СВТ	N/A	
SPEAG	DAK-3,5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070	
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7410	
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2018	Annual	7/11/2019	1322	
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3319	
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	1368	
Anritsu	MA2411B	Puise Power Sensor	3/2/2018	Annual	3/2/2019	1207364	
Anritsu	MA24118	Puise Power Sensor	3/2/2018	Annual	3/2/2019	1339018	
Anritsu	ML2495A	Power Meter	10/22/2017	Annuəl	10/22/2018	1328004	
Aglient	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800	
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A	
MiniCircuits	VLF-6000+	Low Pass Filter	C8T	N/A	CBT	N/A	
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	СВТ	N/A	

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

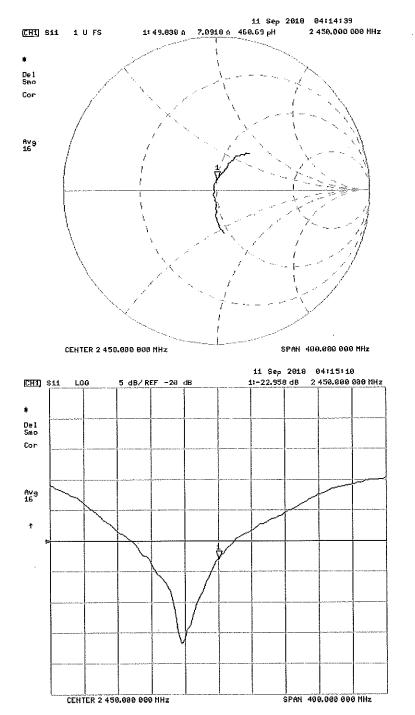
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	3KOK-

Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 797	09/11/2018	

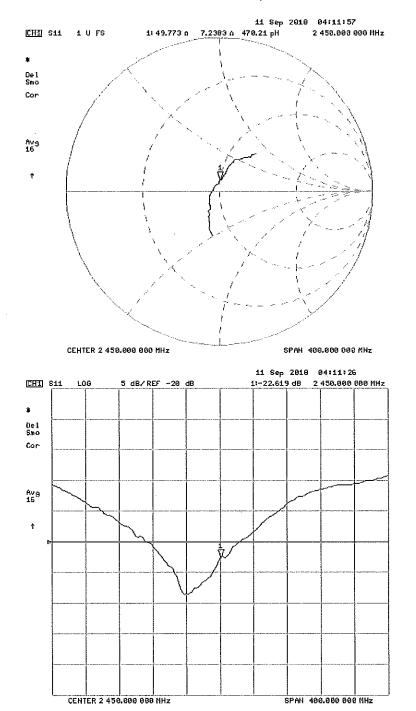
DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date		Certificate SAR Target Head (1g) W/kg @ 20.0 dBm			Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Head SAR		Certificate Impedance Head (Ohm) Real		Difference (Ohm) Real		Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/11/2018	1.152	5.27	5.52	4.74%	2.48	2.54	2.42%	53.8	49.8	4	7.4	7.1	0.3	-21.9	-23	-4.80%	PASS


Calibration Date	Extension Date		Certificate SAR Target Body (1g) W/kg @ 20.0 dBm			Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real		Certificate Impedance Body (Ohm) Imaginary		Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/11/2018	1.152	5.11	5.17	1.17%	2.42	2.37	-2.07%	49.7	49.8	0.1	9.1	7.2	1.9	-20.9	-22.6	-8.20%	PASS

Object:	Date Issued:	Dego 2 of 4
D2450V2 – SN: 797	09/11/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2450V2 SN: 797	09/11/2018	

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 – SN: 797	09/11/2018	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

BC-MRA

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1765V2-1008_May18

CALIBRATION CERTIFICATE

PC Test

Client

Object	D1765V2 - SN:10	008	
			lagge engel her open eksigte er fres openseter ander openseter op
· · · · · · · · · · · · · · · · · · ·			BN 700 MHz 7/16/2018
Calibration procedure(s)	QA CAL-05.v10		12 ¹
	Calibration proce	dure for dipole validation kits abo	ove 700 MHz 7 (16)2018
Calibration date:	May 23, 2018		
	· · · · · · · · · · · · · · · · · · ·		
This calibration certificate docume	nts the traceability to nati	onal standards, which realize the physical un	its of measurements (SI)
		robability are given on the following pages ar	
	-	3 3	
All calibrations have been conduct	ed in the closed laborato	ry facility: environment temperature (22 \pm 3)%	C and humidity $< 70%$
		Ty identity. Environment temperature (22 ± 0)	
Calibration Equipment used (M&T	E critical for calibration)		
equiprent according to	- ontour for canorationy		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	
			Jett-
Approved by:	Katja Pokovic	Technical Manager	IVIL
			ANG
			- /
			Issued: May 23, 2018
This calibration certificate shall not	t be reproduced except in	full without written approval of the laboratory	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	· · · · · · · · · · · · · · · · · · ·
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	1750 MHz ± 1 MHz	N - 1

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.71 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.92 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.7 Ω - 6.5 jΩ
Return Loss	- 23.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.3 Ω - 6.0 jΩ
Return Loss	- 20.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.210 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2005

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
---------	------------------	-----------------------------

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.4 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	, 4.95 W/kg

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.2 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.4 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.4 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

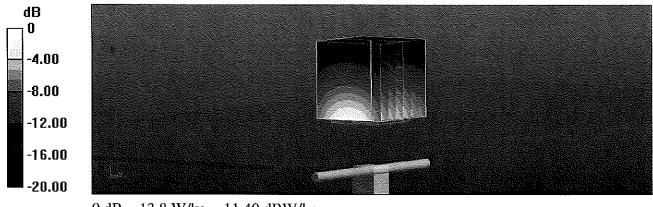
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	7.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	28.7 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.01 W/kg

DASY5 Validation Report for Head TSL

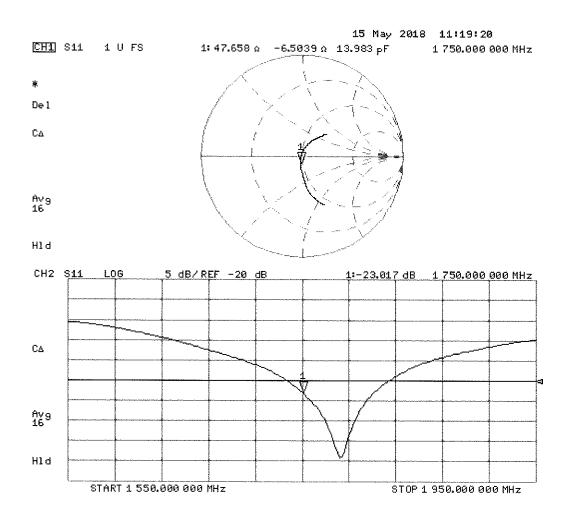
Date: 15.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.34 S/m; ϵ_r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

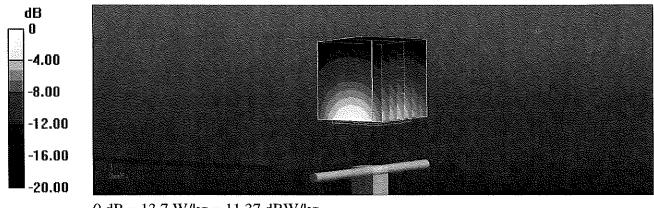
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 106.6 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 8.94 W/kg; SAR(10 g) = 4.71 W/kg Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

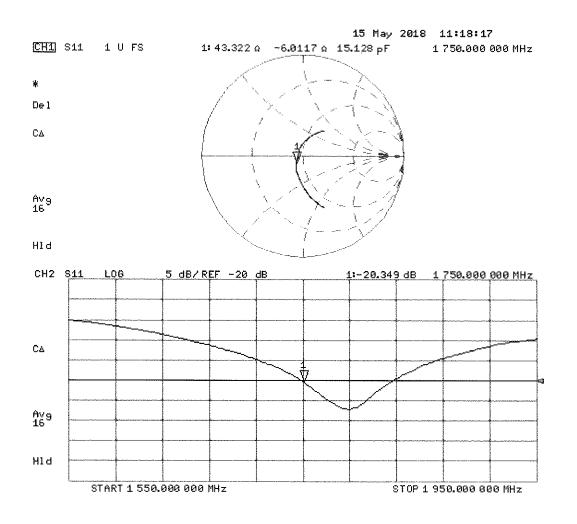
DASY5 Validation Report for Body TSL

Date: 15.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.46 S/m; ϵ_r = 53.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm Reference Value = 102.4 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.92 W/kg Maximum value of SAR (measured) = 13.7 W/kg

0 dB = 13.7 W/kg = 11.37 dBW/kg

DASY5 Validation Report for SAM Head

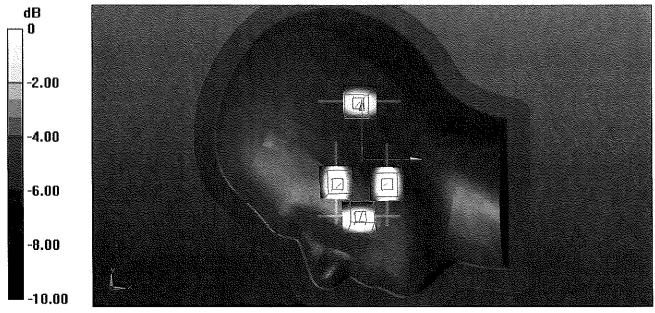
Date: 23.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

SAM/Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.8 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 4.95 W/kg Maximum value of SAR (measured) = 13.9 W/kg

SAM/Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.2 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.47 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 13.7 W/kg

SAM/Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 15.8 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 5.02 W/kg Maximum value of SAR (measured) = 13.8 W/kg

SAM/Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.46 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 7.12 W/kg; SAR(10 g) = 4.01 W/kg Maximum value of SAR (measured) = 10.3 W/kg

0 dB = 10.3 W/kg = 10.13 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Service suisse d'étaionnage Servizio svizzero di taratura
- S Swiss Calibration Service

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client	PC Test

Certificate No: D1900V2-5d080_Oct18

CALIBRATION CERTIFICATE

Object	D1900V2 - SN:5c	1080	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abov	
Calibration date:	October 23, 2018		BN1/ 10-30-2018
The measurements and the uncerta	ainties with confidence p	onal standards, which realize the physical units robability are given on the following pages and y facility: environment temperature (22 ± 3)°C a	are part of the certificate.
Calibration Equipment used (M&TE			and manually < 7078.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02672)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02673)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	e Un
Approved by:	Katja Pokovic	Technical Manager	<u>AUU</u>
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory.	Issued: October 23, 2018

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

····	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.18 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω + 7.9 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.1 Ω + 8.1 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.193 ns		
	Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

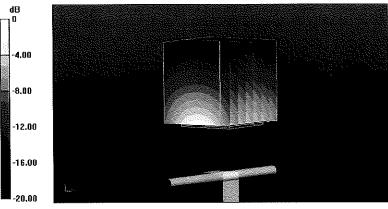
Manufactured by	SPEAG
Manufactured on	June 28, 2006

DASY5 Validation Report for Head TSL

Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ S/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

Impedance Measurement Plot for Head TSL

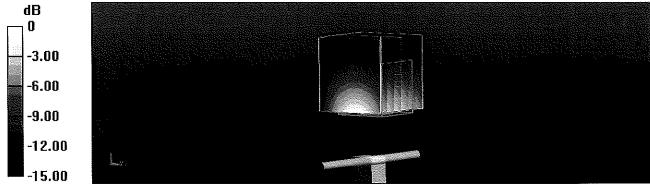
<u>File V</u> iew	<u>C</u> hannel	Sweep Ca	alibration <u>T</u>	race <u>S</u> calı	e M <u>a</u> rker	System '	Window	Help		(The surface sector sector)	
Ch1: SI	Ch 1 Avg = tart 1.70000 0			A			A.	1.900000 G 665.50 1.900000 C	рΗ	7.9 81.00 67	525 Ω 447 Ω 38 mU 7.935 °
10.00	Inst	1	1		·		41.	t doooo z	-11 (
5.00				······		>		<u>1.900000 C</u>	<u>1HZ</u>	-21.8	323 dB
0.00 -5.00											
-10.00											
-15.00											
-25.00											
-30.00					\vdash						· · · · · · · · · · · · · · · · ·
-35.00 -40.00 Ch1: S	Ch 1 Avg = tart 1.70000 0	20 3Hz		<u> </u>	/					Stop 2	10000 GHz
· · · · · · · · · · · · · · · · · · ·											

DASY5 Validation Report for Body TSL

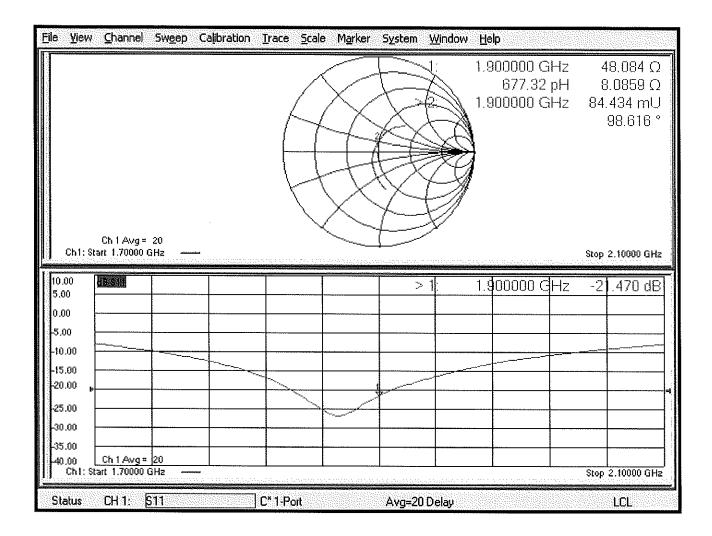
Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.86 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.09 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

Schweizerischer Kallbrlerdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-719_Aug17

Object	D2450V2 - SN:7	19 of the second second	
			Priv
Calibration procedure(s)	QA CAL-05.v9	Aktan Alah Marin	
		dure for dipole validation kits abo	ove 700 MHz 8/27
	11년 48년 동네가 한다.		Extende
			Rai
Calibration date:	August 17, 2017	· 我们就是你说,你可能是可能的。"	(DNC)
			ove 700 MHz 8/27 Extende BN 7/19/2
This calibration certificate docum	ents the traceability to nat	ional standards, which realize the physical un	nits of measurements (SI).
The measurements and the unce	rtainties with confidence p	robability are given on the following pages an	nd are part of the certificate.
All calibrations have been conduc	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%
Calibration Equipment used (M&	FE critical for calibration)		
	lD #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	ID # SN: 104778	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	Scheduled Calibration Apr-18
Power meter NRP			
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 1D # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 1D # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V 52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.7 Ω + 7.0 jΩ
Return Loss	- 21.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.4 Ω + 8.1 jΩ
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

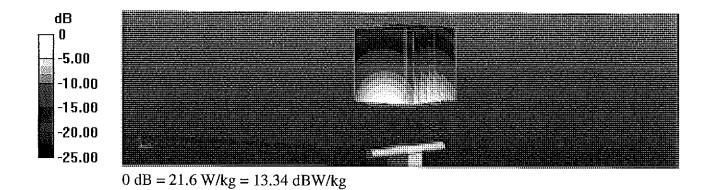
Manufactured by	SPEAG
Manufactured on	September 10, 2002

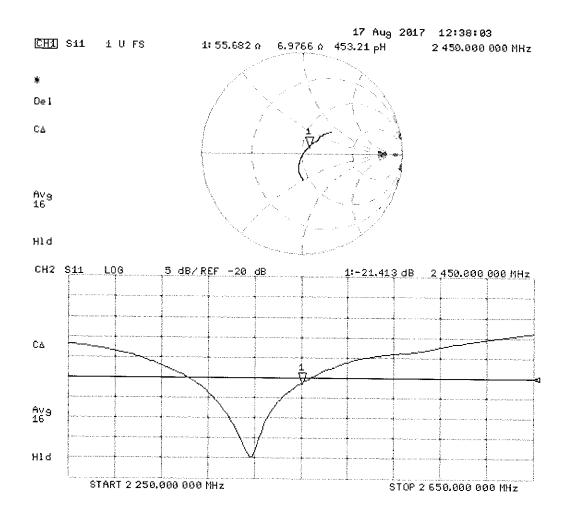
DASY5 Validation Report for Head TSL

Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

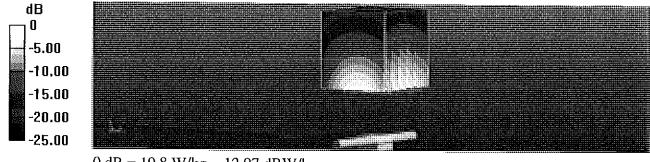
Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (measured) = 21.6 W/kg

DASY5 Validation Report for Body TSL

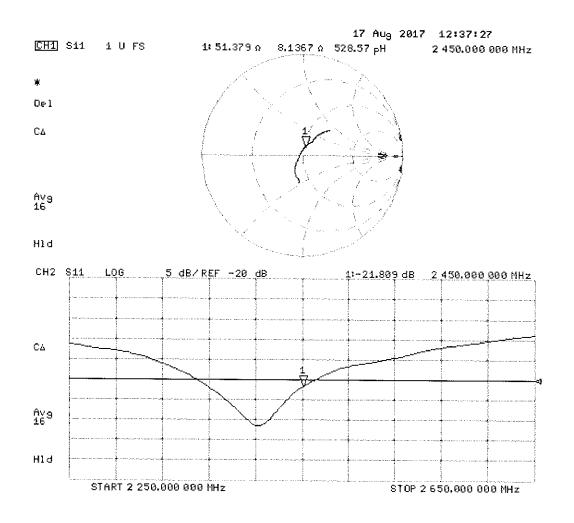
Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.0 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 25.2 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6 W/kg Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D2450V2 - SN: 719

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

07/18/2018

Extended Calibration date:

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

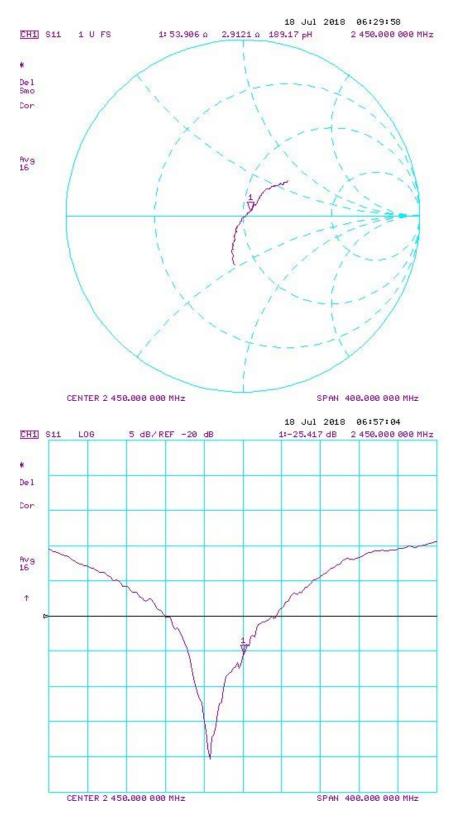
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4438C	ESG Vector Signal Generator	3/24/2017	Biennial	3/24/2019	MY42082385
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	ML2495A	Power Meter	11/28/2017	Annual	11/28/2018	1039008
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	1368
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/9/2017	Annual	8/9/2018	1323
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/12/2017	Annual	9/12/2018	1091
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3319
SPEAG	ES3DV3	SAR Probe	8/14/2017	Annual	8/14/2018	3332

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

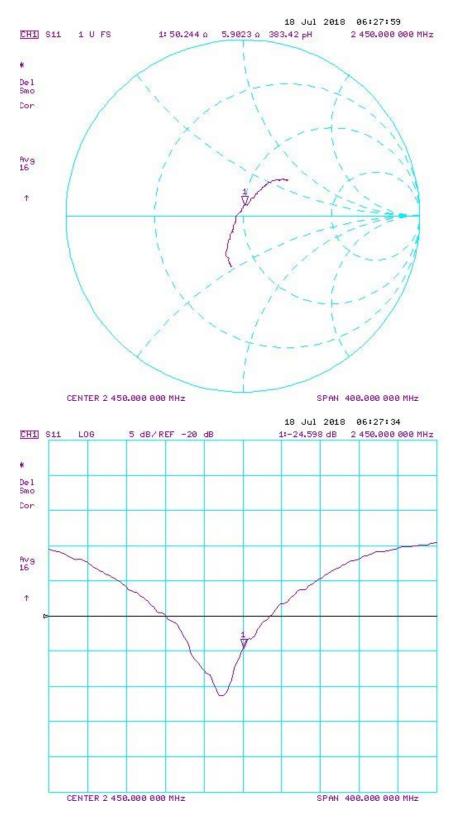
Object:	Date Issued:	Dogo 1 of 4
D2450V2 – SN: 719	07/18/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	dBm	(%)	W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
8/17/2017	7/18/2018	1.150	5.19	5.46	5.20%	2.43	2.51	3.29%	55.7	53.9	1.8	7.0	2.9	4.1	-21.4	-25.4	-18.70%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)		(40-) Million (2)	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
8/17/2017	7/18/2018	1.150	5.01	5.19	3.59%	2.37	2.38	0.42%	51.4	50.2	1.2	8.1	5.9	2.2	-21.8	-24.6	-12.80%	PASS

Object:	Date Issued:	Daga 2 of 4
D2450V2 – SN: 719	07/18/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dogo 2 of 4
D2450V2 – SN: 719	07/18/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 – SN: 719	07/18/2018	

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: EX3-7409_Jun18

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7409	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes	3
	BIN 07/16/2018	Ş
Calibration date:	June 25, 2018	
	ments the traceability to national standards, which realize the physical units of measurements (SI). certainties with confidence probability are given on the following pages and are part of the certificate.	

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	lD	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature	
Calibrated by:	Claudio Leubler	Laboratory Technician)
				2
Approved by:	Katja Pokovic	Technical Manager	Jol Hy	4
			issued: June	26, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:7409

Manufactured: Calibrated:

November 24, 2015 June 25, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.38	0.33	0.38	± 10.1 %
DCP (mV) ⁸	100.8	102.3	97.7	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	C	D	VR	Unc [≞]
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	157.1	±2.2 %
		Y	0.0	0.0	1.0		172.6	
		Z	0.0	0.0	1.0		175.7	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1	C2	α	T1	T2	T3	T4	T5	T6
	fF	fF	V-1	ms.V⁻²	ms.V⁻¹	ms	V-2	V ^{~1}	
X	15.40	116.5	36.38	2.655	0.140	4.978	0.000	0.017	1.008
Y	27.94	206.6	35.20	4.338	0.095	4.989	1.642	0.000	1.004
Z	31.47	244.0	37.99	3.819	0.313	5.030	0.103	0.363	1.006

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

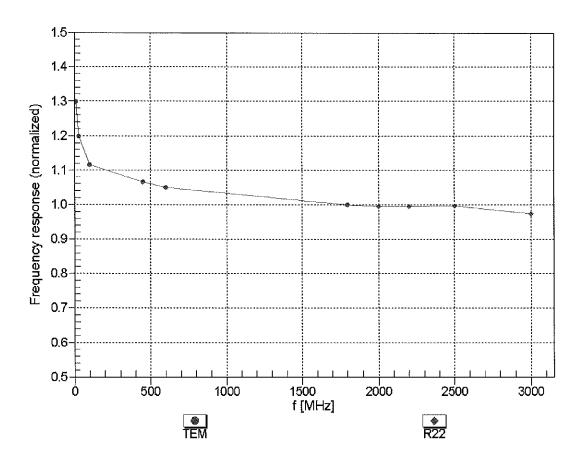
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.91	9.91	9.91	0.44	0.90	± 12.0 %
835	41.5	0.90	9.67	9.67	9.67	0.46	0.85	± 12.0 %
1750	40.1	1.37	8.43	8.43	8.43	0.38	0.80	± 12.0 %
1900	40.0	1.40	8.05	8.05	8.05	0.38	0.84	± 12.0 %
2300	39.5	1.67	7.57	7.57	7.57	0.32	0.80	± 12.0 %
2450	39.2	1.80	7.23	7.23	7.23	0.34	0.86	± 12.0 %
2600	39.0	1.96	6.98	6.98	6.98	0.39	0.86	± 12.0 %
5250	35.9	4.71	5.20	5.20	5.20	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.77	4.77	4.77	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.82	4.82	4.82	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

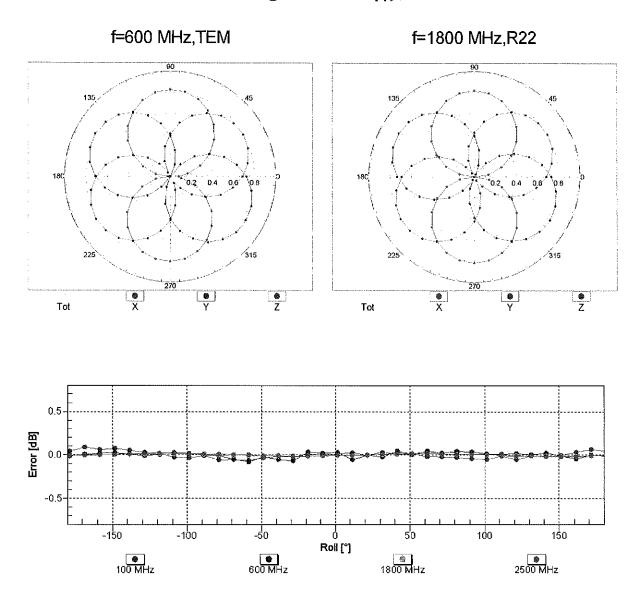
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

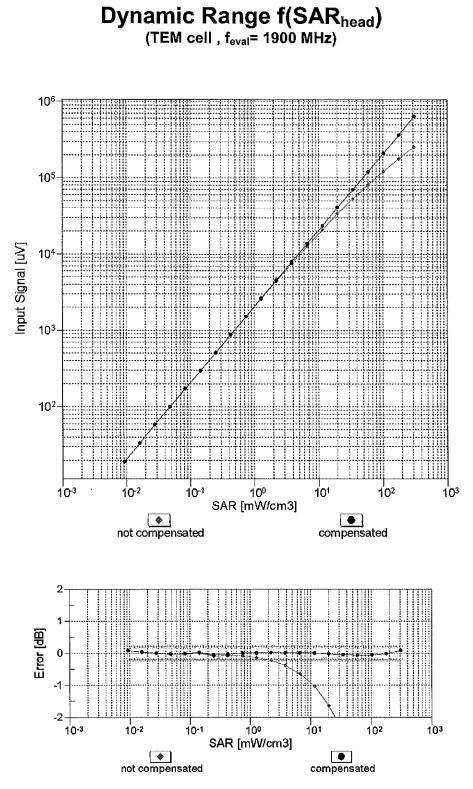

			-					
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.82	9.82	9.82	0.52	0.84	± 12.0 %
835	55.2	0.97	9.63	9.63	9.63	0.48	0.80	± 12.0 %
1750	53.4	1.49	7.91	7.91	7.91	0.36	0.93	± 12.0 %
1900	53.3	1.52	7.60	7.60	7.60	0.44	0.80	± 12.0 %
2300	52.9	1.81	7.36	7.36	7.36	0.38	0.88	± 12.0 %
2450	52.7	1.95	7.24	7.24	7.24	0.33	0.89	± 12.0 %
2600	52.5	2.16	7.07	7.07	7.07	0.32	0.96	± 12.0 %
5250	48.9	5.36	4.67	4.67	4.67	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.25	4.25	4.25	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.32	4.32	4.32	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

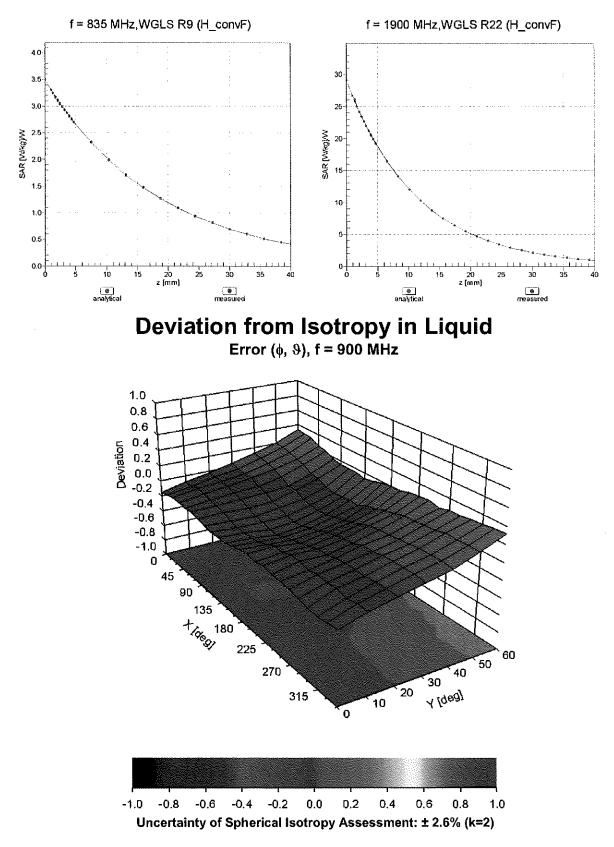
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

 G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	41.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	157.1	± 2.2 %
		Y	0.00	0.00	1.00		172.6	
10010		Z	0.00	0.00	1.00		175.7	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	1.25	60.42	5.97	10.00	20.0	±9.6 %
		Y	1.37	61.35	6.72		20.0	
40044		Z	1.46	61.54	7.06		20.0	
10011- CAB	UMTS-FDD (WCDMA)	×	0.71	66.47	12.38	0.00	150.0	± 9.6 %
		Y	1.49	76.31	19.52		150.0	
10012-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	Z	0.80	65.38	13.27		150.0	
CAB	Mbps)	X	0.97	63.61	14.22	0.41	150.0	± 9.6 %
		Y Z	<u>1.14</u> 1.01	65.32 62.66	16.39		150.0	
10013-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	3.98	66.92	14.20 16.39	1.46	150.0 150.0	± 9.6 %
CAB	OFDM, 6 Mbps)		4.54	07.00				
		Y	4.51	67.09	17.14		150.0	
10021-	GSM-FDD (TDMA, GMSK)	Z X	4.51 2.93	66.48 68.02	16.81 10.47	9.39	150.0 50.0	± 9.6 %
DAC	-							
		<u> </u>	5.30	74.12	13.20		50.0	
10023-	GPRS-FDD (TDMA, GMSK, TN 0)	Z	8.30	79.26	15.55		50.0	
DAC	GERS-FDD (TDWA, GWSK, TNU)	X	2.04	64.26	8.75	9.57	50.0	± 9.6 %
		Y Z	3.75 5.18	70.52	11.87		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	0.77	74.16 60.84	13.81 5.97	6.56	50.0 60.0	± 9.6 %
		Y	100.00	98.81	18.33		60.0	
		Z	7.39	79.44	14,17		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	2.92	62.32	21.25	12.57	50.0	± 9.6 %
		Y	3.79	70.21	26.28		50.0	
10026-		Z	3.08	62.64	21.59		50.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	4.19	76.79	26.73	9.56	60.0	± 9.6 %
		Y Z	5.08 4.89	81.51	29.10		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	0.43	79.35 60.00	27.91 4.84	4.80	60.0 80.0	± 9.6 %
		Y	100.00	98.82	17.61		80.0	
		Ż	99,96	97.90	17.31		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	0.29	60.00	4.20	3.55	100.0	± 9.6 %
		Y	100.00	100.72	17.79		100.0	
10029-		Z	0.57	63.31	6.83		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	3.08	70.55	22.84	7.80	80.0	± 9.6 %
		Y Z	3.50	73.17	24.28		80.0	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	3.45 0.52	72.07 60.00	23.57 4.79	5.30	80.0 70.0	± 9.6 %
		Y	1.54	67.33	9.06		70.0	
		Ż	1.17	65.26	8.49		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	0.04	196.26	30.81	1.88	100.0	± 9.6 %
		Y	0.17	60.00	4.10		100.0	
		Z	15.90	60.96	1.69		100.0	

10032-	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Х	0.00	86.08	35.43	1.17	100.0	± 9.6 %
CAA		Y	99.99	344.89	100.44		100.0	
·		Υ Ζ	<u>99.99</u> 1.14	<u>344.89</u> 132.41	100.44		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	0.95	60.75	6.54	5.30	70.0	± 9.6 %
		Y	4.98	80.79	18.23		70.0	
		Ζ	3.25	75.39	16.74		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Х	3.04	65.72	5.34	1.88	100.0	± 9.6 %
		Υ	1.68	70.56	12.82	····	100.0	
40005		Z	0.99	64.34	10.07	4 47	100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	24.75	218.80	26.78 12.15	1.17	100.0	± 9.6 %
		Y Z	1.37	69.43		,	100.0	
10036-	UTTT 902 15 1 Plusteeth (9 DDSV DU1)		0.77 0.94	62.85 60.83	8.95 6.63	5.30	70.0	± 9.6 %
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Y	7.23	85.73	19.90	5.30	70.0	± 9.0 %
		Z	3.94	78.17	17.83		70.0	
10037-	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	<u> </u>	63.61	4.82	1.88	100.0	± 9.6 %
CAA	IEEE 802.15.1 Blueloo(II (8-DPSK, DH3)	^ Y	1.41	68.85	12.14	1.00	100.0	± 9.0 %
		r Z	0.93	63.88	9.84		100.0	
10038-	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	26.17	217.46	9.04 26.16	1.17	100.0	± 9.6 %
CAA		^ Y	1.45	70.29	12.67	1.17	100.0	1 9.0 %
		Z	0.78	63.02	9.17		100.0	
10039-	CDMA2000 (1xRTT, RC1)	X	21.96	306.20	30.49	0.00	150.0	± 9.6 %
CAB		Y	1.63			0.00	150.0	± 9.0 %
		Z	0.63	72.13 61.62	12.95 7.75		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	1.01	60.95	6.26	7.78	50.0	± 9.6 %
		Y	1.74	65.58	9.03		50.0	· ·
		Z	1.74	65.58	9.34		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.10	124.30	3.45	0.00	150.0	± 9.6 %
		Y	0.01	119.74	2.99		150.0	
		Z	0.14	123.41	9.03		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	2.82	62.25	9.34	13.80	25.0	±9.6 %
		Y	3.46	64.98	10.90		25.0	
		Z	4.35	67.54	12.61		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	2.47	64.28	8.96	10.79	40.0	± 9.6 %
		Y	3,27	67.55	10.82		40.0	
		Z	4.02	69.88	12.36		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	×	2.81	66.64	10.78	9.03	50.0	± 9.6 %
		Y	11.82	86.24	20.09		50.0	
		Z	9.59	84.12	20.02		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	×	2.65	68.11	20.96	6.55	100.0	± 9.6 %
		Y	2.94	70.05	22.07		100.0	
		Z	2.91	69.15	21.44		100,0	
10059- CAB	IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps)	X	0.95	64.02	14.39	0.61	110.0	± 9.6 %
		Y	1.14	66.10	16.82		110.0	
1		Z	1.00	63.23	14.55		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	1.76	81.26	19.48	1.30	110.0	± 9.6 %
		Y	100.00	150.16	40.00		110.0	
		Z	1.90	81.85	20.27		110.0	

10061-			4.40					
CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	1.18	69.71	16.58	2.04	110.0	± 9.6 %
		Y	1.94	78.32	21.99		110.0	
····	·····	Z	1.40	71.35	18.33		110.0	
10062-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6	X	3.80	66.99	15.87	0.49	100.0	± 9.6 %
CAC	Mbps)		0.00		10.01	0.10	100.0	10.0 %
	· · ·	Y	4.35	67.21	16.69		100.0	
		Z	4.31	66.43	16.23		100.0	
10063-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9	X	3.81	67.06	15.96	0.72	100.0	±9.6 %
CAC	Mbps)			ļ				
·····		Y	4.36	67.29	16.77		100.0	
10064-		Z	4.32	66.52	16.32		100.0	
10064- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	3.97	67.23	16.12	0.86	100.0	±9.6 %
0.00		Y	4.56	67.40	16.91		100.0	
		Z	4.55	66.72	16.52		100.0	
10065-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18	X	3.85	66.82	16.02	1.21	100.0	± 9.6 %
CAC	Mbps)		0.00	00.02	10.00	1.6-1	100.0	10.0 %
		Y	4.42	67.15	16.92		100.0	
		Z	4.42	66.52	16.58		100.0	
10066-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24	X	3.83	66.65	16.06	1.46	100.0	±9.6 %
CAC	Mbps)			<u> </u>				
		Y	4.41	67.05	17.01		100.0	
40007		Z	4.42	66.49	16.71		100.0	
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36	Х	4.01	66.66	16.35	2.04	100.0	± 9.6 %
UAC	Mbps)	Y	4.65	67.23	17.40		400.0	
		Z	4.05	66.78	17.40		100.0	
10068-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48	X	4.12	66.97	16.78	2.55	100.0	± 9.6 %
CAC	Mbps)		7.12	00.57	10.70	2.55	100.0	1 9.0 %
		Y	4.69	67.14	17.56		100.0	
		Z	4.73	66.69	17.36		100.0	
10069-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54	X	4.11	66.73	16.77	2.67	100.0	± 9.6 %
CAC	Mbps)							
		Υ	4.72	67.08	17.69		100.0	
		Z	4.78	66.70	17.53		100.0	
10071-	IEEE 802.11g WiFi 2.4 GHz	X	4.07	66.96	16.68	1.99	100.0	±9.6 %
CAB	(DSSS/OFDM, 9 Mbps)	Y	4.59	07.07	47.07		400.0	
			4.59	67.07	17.37	1	100.0	
10072-	IEEE 802.11g WiFi 2.4 GHz	Z		66.53 66.89	17.10		100.0	100%
CAB	(DSSS/OFDM, 12 Mbps)	X	3.98	66.89	16.71	2.30	100.0	± 9.6 %
0,10		Y	4.51	67.19	17.50		100.0	
		Z	4.54	66.70	17.26		100.0	
10073-	IEEE 802.11g WiFi 2.4 GHz	X	4.03	67.09	17.06	2.83	100.0	± 9.6 %
CAB	(DSSS/OFDM, 18 Mbps)							
		Y	4.56	67.35	17.81		100.0	
		Z	4.59	66.87	17.58		100.0	
10074-	IEEE 802.11g WiFi 2.4 GHz	X	4.11	67.36	17.40	3.30	100.0	±9.6 %
CAB	(DSSS/OFDM, 24 Mbps)	<u> </u>					L .	
		Y	4.57	67.31	17.95		100.0	
40075		Z	4.60	66.82	17.73	<u> </u>	100.0	
10075- CAB	IEEE 802.11g WIFi 2.4 GHz	X	4.18	67.58	17.73	3.82	90.0	± 9.6 %
UND	(DSSS/OFDM, 36 Mbps)	Y	4.58	67.25	18.15		00.0	
	·	Z	4.58	66.79	18.15		90.0 90.0	
10076-	IEEE 802.11g WiFi 2.4 GHz	X	4.01	67.48	17.90	4.15	90.0	± 9.6 %
CAB	(DSSS/OFDM, 48 Mbps)	^	7.24	07.40	17.31		30.0	1 2.0 %
UU		Y	4.61	67.08	18.28		90.0	
		Ż	4.65	66.67	18.13		90.0	
10077-	IEEE 802.11g WiFi 2.4 GHz	X	4.28	67.60	18.06	4.30	90.0	± 9.6 %
CAB	(DSSS/OFDM, 54 Mbps)							
		Y	4.64	67.18	18.41		90.0	

10082- CAB		1 ····						
		Y	0.57	64.50	9.19		150.0	
		Z	0.37	60.00	6.09		150.0	
	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	72.13	59.07	0.77	4.77	80,0	± 9.6 %
		Y	7.02	60.09	1.53		80.0	
		Z	7.63	60.12	1.53		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	0.78	60.88	6.00	6.56	60.0	± 9.6 %
		Y	100.00	98.83	18.35		60.0	
		Z	8.66	80.77	14.58		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	1.12	65.69	11.46	0.00	150.0	±9.6 %
		Y	2.39	74.48	18.29		150.0	
40000		Z	1.58	66.95	14.31		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	1.11	65.81	11.55	0.00	150.0	±9.6 %
		Y	2.34	74.47	18.31		150.0	
10099-	EDGE-FDD (TDMA, 8PSK, TN 0-4)	ZX	1.54 4.22	66.88	14.28	0.50	150.0	+0.00/
DAC	EDGE-FDD (TDIMA, 885K, TN 0-4)			76.90	26.77	9.56	60.0	±9.6 %
		Y	5.12	81.66	29.15		60.0	
10100-	LTE-FDD (SC-FDMA, 100% RB, 20	Z X	4.92 2.39	79.46	27.95	0.00	60.0	1000/
CAD	MHz, QPSK)	Y		69.31 72.58	16.37	0.00	150.0	± 9.6 %
			3.20 2.69	1	18.18		150.0	
10101-	LTE-FDD (SC-FDMA, 100% RB, 20	Z X	2.69	68.81 67.07	15.94 15.44	0.00	150.0 150.0	+06%
CAD	MHz, 16-QAM)					0.00		±9.6 %
		Y	3.12	68.53	16.66		150.0	
40400		Z	2.91	66.65	15.40	0.00	150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	2.71	67.23	15.58	0.00	150.0	± 9.6 %
		Y	3.22	68.53	16.74		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Z X	3.02 3.72	66.72 71.26	15.54 18.49	3.98	150.0 65.0	± 9.6 %
	MINZ, QFOK)	Y	4.70	73.63	19.84		65.0	
		Z	4.70	71.81	19.64		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.95	69.27	17.90	3.98	65.0	± 9.6 %
		Y	4.71	71.04	19.29		65.0	
	······	Z	4.63	70.10	18.86		65.0	
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.78	68.25	17.72	3.98	65.0	±9.6 %
		Y	4.47	69.73	18.97		65.0	
		Z	4,37	68.68	18.48		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	1.98	69.15	15.95	0.00	150.0	± 9.6 %
		Y	2.77	72.39	18.20		150.0	
		Z	2.29	68.22	15.72		150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.19	67.24	14.70	0.00	150.0	± 9.6 %
		Y	2.80	69.06	16.71		150.0	l
10110-	LTE-FDD (SC-FDMA, 100% RB, 5 MHz,	Z X	2.54 1.35	66.58 66.94	15.14 13.41	0.00	150.0 150.0	±9.6%
CAE	QPSK)	Y	2.32	72.63	18.00		150.0	
		Z	1.78	67.28	14.92		150.0	l l
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	1.58	65.90	12.12	0.00	150.0	± 9.6 %
		Y	2.81	72.30	17.60		150.0	<u>.</u>
İ		1 F	I Z.OI	: 12.00	1 17.00	1	1 100.0	1

10112- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	2.30	67.45	14.81	0.00	150.0	± 9.6 %
		Y	2.93	69.12	16.76		150.0	
		Z	2.66	66.72	15.26		150.0	
10113- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	1.64	65.77	12.05	0.00	150.0	± 9.6 %
		Y	2.95	72.32	17.65		150.0	
		Z	2.37	67.73	15.17		150.0	
10114- CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	4.34	66.99	16.28	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	4.86	67.57	16.78		150.0	
		Z	4.82	66.90	16.32		150.0	
10115- CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	4.58	67.29	16.33	0.00	150.0	±9.6 %
		Y	5.08	67.61	16.77		150.0	
		Z	5.06	66.98	16.35		150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	Х	4.40	67.26	16.31	0.00	150.0	± 9.6 %
		Y	4.93	67.75	16.79		150.0	
	· · · · · · · · · · · · · · · · · · ·	Z	4.89	67.04	16.31		150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	4.33	66.90	16.26	0.00	150.0	± 9.6 %
		Y	4.84	67.46	16.74		150.0	
		Z	4.79	66.75	16.26		150.0	[
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	4.58	67.24	16.31	0.00	150.0	±9.6 %
		Y	5.15	67.78	16.86		150.0	
		Z	5.14	67.21	16.48		150.0	
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	4.39	67.16	16.27	0.00	150.0	± 9.6 %
		Y	4.94	67.78	16.81		150.0	
		Z	4.90	67.08	16.34		150.0	
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	2.65	67.18	15.35	0.00	150.0	±9.6 %
		Y	3.23	68.57	16.65		150.0	
		Z	3.03	66.74	15.44		150.0	
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	2.80	67.68	15.68	0.00	150.0	± 9.6 %
		Y	3.37	68.79	16.86		150.0	
		Z	3.16	66.97	15.67		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	0.71	61.44	8.06	0.00	150.0	± 9.6 %
		Y	2.27	74.06	17.56		150.0	
		Z	1.48	66.51	13.59		150.0	1
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	0.73	60.00	6.15	0.00	150.0	± 9.6 %
		Y	2.80	73.44	16.54		150.0	
		Z	1.85	66.55	13.15		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	0.73	60.00	5.65	0.00	150.0	±9.6 %
		Y	1.85	66.75	12.85		150.0	
		Z	1.61	64.01	11.28		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	5.16	385.51	36.59	0.00	150.0	± 9.6 %
		Y	0.54	60.00	5.91		150.0	
		Z	0.58	60.00	5.88		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	0.00	60.00	0.00	0.00	150.0	± 9.6 %
		Y	0.74	60.00	4.95		150.0	
		Z	0.80	60.00	5.53		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	0.00	60.00	0.00	0.00	150.0	± 9.6 %
		Y	0.60	58.26	3.86		150.0	
		Z	0.82	60.00	5.58		150.0	

June 25, 2018

10149- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	2.21	67.36	14.78	0.00	150.0	± 9.6 %
***		Y	2.81	69.16	16.77		150.0	
		Z	2.55	66.65	15.19		150.0	
10150- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	2.32	67.56	14.88	0.00	150.0	± 9.6 %
		Y	2.94	69.22	16.82		150.0	
		Z	2.67	66.78	15.30		150.0	
10151- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	3.66	73.29	18.78	3.98	65.0	± 9.6 %
·		Y	4.98	76.80	21.12		65.0	
		Z	4.55	74.40	20.06		65.0	
10152- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	3.31	68.29	16.15	3.98	65.0	± 9.6 %
		Y	4.23	70.96	18.67		65.0	
		Z	4.14	69.89	18.22		65.0	
10153- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.64	69.78	17.29	3.98	65.0	± 9.6 %
		Y	4.61	72.30	19.68		65.0	
		Z	4.49	71.11	19.19		65.0	
10154- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	1.38	67.29	13.63	0.00	150.0	± 9.6 %
		Y	2.40	73.30	18.35		150.0	
		Z	1.82	67.63	15.14		150.0	
10155- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	1.60	66.02	12.20	0.00	150.0	± 9.6 %
		Y	2.83	72.40	17.66		150.0	
		Z	2.23	67.54	15.03		150.0	
10156- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	0.51	60.00	5.91	0.00	150.0	± 9.6 %
		Y	2.15	74.23	16.90		150.0	
		Z	1.25	65.50	12.43		150.0	
10157- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	0.57	60.00	4.69	0.00	150.0	± 9.6 %
		Y	1.61	66.51	12.13		150.0	
		Z	1.35	63.41	10.38		150.0	
10158- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	1.65	65.90	12.13	0.00	150.0	± 9.6 %
		Y	2.98	72.51	17.74		150.0	
		Z	2.38	67.83	15.24		150.0	
10159- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	0.59	60.00	4.69	0.00	150.0	± 9.6 %
	· ·	Υ	1.68	66.77	12.27		150.0	
		Z	1.39	63.54	10.48		150.0	
10160- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	1.93	68.16	15.00	0.00	150.0	± 9.6 %
		Y	2.76	71.39	17.74		150.0	
1015		Ζ	2.38	67.93	15.64		150.0	
10161- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	2.12	67.05	14.02	0.00	150.0	±9.6 %
		Y	2.84	69.35	16.71		150.0	
		Z	2.55	66.69	15.09		150.0	
10162- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	2.21	67.37	14.17	0.00	150.0	± 9.6 %
		Y	2.96	69.65	16.87		150.0	
		Z	2.66	66.96	15.26		150.0	
10166- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	2.13	65.17	17.70	3.01	150.0	± 9.6 %
		Y	3.00	69.75	19.60		150.0	
		Z	2.90	67.96	18.43		150.0	
10167- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	1.98	65.92	17.43	3.01	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	3.74	74.17	20.63		150.0	

Certificate No: EX3-7409_Jun18

10168- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	2.18	68.43	19.32	3.01	150.0	± 9.6 %
		Y	4.55	78.58	22.96	····.	150.0	
		Z	3.73	73.08	20.34	· ····· -	150.0	
10169- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	1.87	64.00	17.04	3.01	150.0	± 9.6 %
		Υ	2.53	68.75	19.16		150.0	
		Z	2.36	66.10	17.52	1	150.0	
10170- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	1.85	66.74	18.73	3.01	150.0	± 9.6 %
	······································	Y	3.84	78.32	23.19		150.0	
		Z	2.87	70.66	19.54		150.0	
10171- AAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	1.59	63.66	15.82	3.01	150.0	± 9.6 %
		Y	2.83	71.75	19.17		150.0	
10100		Z	2.39	66.90	16.66		150.0	
10172- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	1.63	66.94	19.47	6.02	65.0	± 9.6 %
		Υ	2.64	75.18	23.09		65.0	
		Z	2.68	72.94	21.86		65.0	
10173- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	1.75	70.70	19.61	6.02	65.0	±9.6 %
		Y	6.55	90.87	26.66		65.0	
		Z	4.15	79.90	22.82		65.0	
10174- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	1.33	66.12	16.85	6.02	65.0	±9.6 %
		Y	3.87	81.08	22.62		65.0	
		Z	2.77	72.65	19.43		65.0	
10175- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	1.85	63.78	16.81	3.01	150.0	± 9.6 %
		Y	2.49	68.40	18.88		150.0	
		Z	2,33	65.83	17.28		150.0	
10176- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	1.86	66.75	18.74	3.01	150.0	±9.6 %
		Y	3.85	78.36	23.20		150.0	
		Z	2.87	70.68	19.55		150.0	
10177- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	1.86	63.82	16.84	3.01	150.0	±9.6 %
		Y	2.51	68.53	18.95		150.0	
		Z	2.34	65.93	17.35		150.0	
10178- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	1.85	66.70	18.70	3.01	150.0	± 9.6 %
		Y	3.81	78.15	23.10		150.0	
		Z	2.85	70.55	19.47		150.0	
10179- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	1.70	65.12	17.16	3.01	150.0	± 9.6 %
		Y	3.27	74.82	21.01		150.0	
		Z	2.59	68.61	17.93		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	1.59	63.66	15.82	3.01	150.0	± 9.6 %
		Y	2.82	71.71	19.14		150.0	
		Z	2.39	66.88	16.63		150.0	
10181- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	1.86	63.82	16.84	3.01	150.0	± 9.6 %
		Y	2.50	68.51	18.95		150.0	
		Z	2.34	65.92	17.34		150.0	
10182- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	1.85	66.68	18.69	3.01	150.0	± 9.6 %
		Y	3.80	78.11	23.08		150.0	
		Z	2.85	70.52	19.45	····	150.0	
10183- AAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	1.59	63.65	15.80	3.01	150.0	± 9.6 %
AAC	1	1		I	1		1	1
		Y	2.82	71.68	19,12		150.0	

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	1,86	63.84	16.85	3.01	150.0	± 9.6 %
	··· ~· · ·	Y	2.51	68.55	18.97		150.0	
		z	2.35	65.96	17.36		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	1.86	66.74	18.73	3.01	150.0	± 9.6 %
		Y	3.83	78.22	23.13		150.0	
		Z	2.86	70.59	19.49		150.0	
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	×	1.59	63.69	15.83	3.01	150.0	±9.6 %
		Y	2.83	71.76	19.16		150.0	
······		Z	2.39	66.91	16.65		150.0	
10187- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	Х	1,87	63.97	16.99	3.01	150.0	± 9.6 %
		Y	2.53	68.67	19.08		150.0	
		Ζ	2.36	66.04	17.45		150.0	
10188- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	1.89	67.14	19.05	3.01	150.0	± 9.6 %
		Y	4.00	79.20	23.64		150.0	
		Z	2.94	71.15	19.86		150.0	
10189- AAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	1.61	63.93	16.07	3.01	150.0	± 9.6 %
		Y	2.91	72.32	19.52		150.0	
		Z	2.43	67.24	16.90		150.0	
10193- CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	3.74	67.40	15.79	0.00	150.0	± 9.6 %
		Y	4.29	67.57	16.55		150.0	
		Z	4.20	66.51	15.90		150.0	
10194- CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	3.82	67.41	15.90	0.00	150.0	± 9.6 %
		Y	4.40	67.71	16.67		150.0	
		Z	4.32	66.72	16.05		150.0	
10195- CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	3.83	67.37	15.89	0.00	150.0	± 9.6 %
		Y	4.42	67.68	16.66		150.0	
		Z	4.35	66.72	16.06		150.0	
10196- CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	3.72	67.37	15.75	0.00	150.0	± 9.6 %
		Y	4.26	67.52	16.51		150.0	
		Z	4.17	66.48	15.88		150.0	
10197- CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	3.82	67.41	15.91	0.00	150.0	±9.6%
		Y	4.41	67.70	16.67		150.0	
		Z	4.33	66.72	16.05		150.0	
10198- CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	3.82	67.36	15,88	0.00	150.0	± 9.6 %
		Y	4.41	67.66	16.65		150.0	
		Z	4.34	66.71	16.05		150.0	
10219- CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	3.68	67,48	15.78	0.00	150.0	±9.6 %
		Y	4.22	67.61	16.52		150.0	
		Z	4.13	66.53	15.85		150.0	
10220- CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	3.82	67.41	15.91	0.00	150.0	± 9.6 %
		Y	4.40	67.66	16.65		150.0	
		Ζ	4.32	66.68	16.04		150.0	
10221- CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X	3.85	67.40	15.91	0.00	150.0	± 9.6 %
		Y	4.43	67.62	16.64		150.0	
		Z	4.36	66.67	16.05	I	150.0	
10222- CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	4.34	66.97	16.27	0.00	150.0	± 9.6 %
		Y	4.82	67.47	16.73		150.0	

June 25, 2018

10223- CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	4.49	67.10	16.25	0.00	150.0	± 9.6 %
		Y	5.02	67.50	16.74	l	150.0	
		Ż	5.01	66.90	16.33		150.0	
10224- CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	4.35	67.14	16.26	0.00	150.0	± 9.6 %
		Y	4.86	67.63	16.73		150.0	
		Z	4.81	66.90	16.25		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	1.60	62.87	10.00	0.00	150.0	± 9.6 %
		Y	2.64	67.73	15.37		150.0	
		Z	2.42	65.46	14.06		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	1.83	71.58	20.13	6.02	65.0	± 9.6 %
		Y	7.36	93.10	27.50		65.0	
10007		Z	4.39	80.98	23.33		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	1.73	70.59	18.93	6.02	65.0	± 9.6 %
		Y	7.00	90.72	25.86		65.0	
10000		Z	4.34	79.99	22.28		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	1.83	69.36	20.71	6.02	65.0	± 9.6 %
		Y	3.28	79.62	24.97		65.0	
		Z	3.15	76.53	23.48		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	1.76	70.79	19.64	6.02	65.0	± 9.6 %
		Y	6.63	91.03	26.72		65.0	
		Z	4.18	80.00	22.86		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	1.65	69.73	18,45	6.02	65.0	± 9.6 %
		Y	6.22	88.63	25.09		65.0	
		Z	4.10	78.96	21.82		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	1.79	68.81	20.33	6.02	65.0	± 9.6 %
		Y	3.15	78.74	24.52		65.0	
		Z	3.06	75.85	23.10		65.0	
10232- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	Х	1.76	70.77	19.64	6.02	65.0	± 9.6 %
		Y	6.61	91.00	26.71		65.0	
		Z	4.18	79.98	22.86		65.0	
10233- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	1.65	69.70	18.44	6.02	65.0	± 9.6 %
		Y	6.19	88.57	25.08		65.0	
••••••••••		Z	4.09	78.93	21.81		65.0	
10234- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	1.76	68.43	20.02	6.02	65.0	± 9.6 %
		Y	3.07	78.12	24.14		65.0	
		Z	2.98	75.33	22.76		65.0	
10235- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	1.76	70.76	19.64	6.02	65.0	± 9.6 %
		Y	6.61	91.04	26.73		65.0	
		Z	4.18	80.00	22.87		65.0	
10236- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	1.66	69.79	18.48	6.02	65.0	±9.6 %
		Y	6.30	88.80	25.14		65.0	
10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z X	4.13 1.78	79.05 68.76	21.85 20.32	6.02	65.0 65.0	± 9.6 %
CAD	QPSK)							
		Υ	3.15	78.74	24.53		65.0	
		Z	3.05	75.85	23.11		65.0	
10238- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	1.76	70.75	19.64	6.02	65.0	± 9.6 %
		Y	6.59	90.97	26.70		65.0	
		Z	4.17	79.95	22.85		65.0	

۲

10239- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	1.65	69.67	18.43	6.02	65.0	± 9.6 %
		Y	6.16	88.50	25.06		65.0	
		Z	4.07	78.89	21.79		65.0	
10240- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	1.78	68.77	20.32	6.02	65.0	± 9.6 %
		Y	3.14	78.73	24.52		65.0	
		Z	3.05	75.83	23.10		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	×	3.09	71.04	21.81	6.98	65.0	± 9.6 %
		Y	5.84	80.29	25.20		65.0	
40040		Z	5.54	77.13	23.79		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	2.70	68,41	20.47	6.98	65.0	±9.6 %
		Y Z	4.94	76.94	23.76 22.64		65.0	
10243-		X	4.89 2.78	74.64 67.24	22.04	6.98	65.0 65.0	± 9.6 %
CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)					0.96		± 9.0 %
		Y	4.14	72.94	22.88		65.0	
10244-	LTE-TDD (SC-FDMA, 50% RB, 3 MHz,	Z	4.22	71.72	22.18	2.00	65.0	+0.69/
10244- CAB	16-QAM)	X	0.80	57.73	3.36 10.18	3.98	65.0	± 9.6 %
		Y	2.15	64.01			65.0	
10245-	LTE-TDD (SC-FDMA, 50% RB, 3 MHz,	ZX	2.44	64.99 57.61	11.42 3.20	3.98	65.0 65.0	± 9.6 %
CAB	64-QAM)	Ŷ				3.90		± 9.0 %
		r Z	2.13	63.69	9.96		65.0	
10246-	LTE-TDD (SC-FDMA, 50% RB, 3 MHz,	X	2.42	64.65 60.00	11.19	2.00	65.0	+06%
CAB	QPSK)		0.87		5.50	3.98	65.0	± 9.6 %
		Y	2.12	67.09	12.65		65.0	
40047		Z	2.17	66.84	12.89		65.0	
10247- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	1.26	60.00	6,38	3.98	65.0	± 9.6 %
		Y	2.78	67.32	13.60		65.0	
10248- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	Z X	<u>2.82</u> 1.30	66.99 60.00	13.82 6.40	3.98	65.0 65.0	± 9.6 %
UAD		Y	2.73	66.64	13.26		65.0	
		Z	2.73	66.52	13.58		65.0	
10249- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	1.24	61.72	8.36	3.98	65.0	±9.6 %
		Υ	3.85	75.74	18.20		65.0	
		Z	3.35	73.06	17.32		65.0	
10250- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.74	67.58	14.25	3.98	65.0	± 9.6 %
		Y	4.25	73.58	19.37		65.0	
		Z	4.02	71.93	18.78		65.0	
10251- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	×	2.46	65.14	12.48	3.98	65.0	± 9.6 %
		Y	3.86	70.68	17.56		65.0	
		Z	3.78	69.64	17.25		65.0	
10252- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.82	71.28	16.40	3.98	65.0	± 9.6 %
		Y	4.98	79,52	21.77		65.0	
10253-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	Z X	4.29 3.12	76.11 67.32	20.42 15.07	3,98	65.0 65.0	± 9.6 %
CAD	16-QAM)		4.40	70.00	40.00		07.0	.
		Y	4.18	70.66	18.33		65.0	
10254-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	Z X	4.10	69.61	17.93	2.00	65.0	+0.6.04
10254- CAD	64-QAM)		3.39	68.52	15,96	3.98	65.0	± 9.6 %
		<u>Y</u>	4.50	71.75	19.15		65.0	
		Z	4.39	70.63	18,74		65.0	

10255- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	×	3.40	72.07	17.90	3.98	65.0	± 9.6 %
		Y	4.72	76.03	20.86		65.0	
		Z	4.36	73.79	19.90		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	0.74	56.57	1.48	3.98	65.0	± 9.6 %
		Y	1.50	60.83	7.03		65.0	
		Z	1.77	61.73	8.31		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	0.63	56.72	1.58	3.98	65.0	± 9.6 %
		Y	1.50	60.62	6.80		65.0	
		Z	1.77	61.47	8.06		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	0.75	60.00	4.13	3.98	65.0	± 9.6 %
		Y	1.38	61.96	8.52		65.0	
		Z	1.52	62.42	9.24		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	1.62	61.68	8.48	3.98	65.0	± 9.6 %
		Y	3.35	69.89	15.82		65.0	
		Z	3.28	68.97	15.69		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	1.65	61.61	8.42	3.98	65.0	± 9.6 %
		Y	3.36	69.55	15.64		65.0	
		Z	3.31	68.75	15.57		65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	1.63	64.06	10.69	3.98	65.0	± 9.6 %
		Y	4.19	76.83	19.42		65.0	
		Z	3.63	73.87	18.36		65.0	
10262- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.73	67.47	14.17	3.98	65.0	± 9.6 %
		Y	4.22	73.47	19.30		65.0	
		Z	4.00	71.83	18.72		65.0	
10263- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.46	65.13	12.47	3.98	65.0	± 9.6 %
		Y	3.85	70.66	17.56	****	65.0	
		Z	3.77	69.62	17.25	····	65.0	1
10264- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.78	71.03	16.25	3.98	65.0	± 9.6 %
		Y	4.91	79.23	21.63		65.0	
		Z	4.25	75.88	20.29		65.0	
10265- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	3.31	68.31	16.16	3.98	65.0	± 9.6 %
		Y	4.23	70.96	18.67		65.0	
		Z	4.14	69.89	18.23		65.0	
10266- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.64	69.75	17.27	3.98	65.0	±9.6 %
		Y	4.61	72.28	19.66		65.0	
		Z	4.48	71.09	19.18		65.0	
10267- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	3.65	73.23	18.74	3.98	65.0	± 9.6 %
		Y	4.96	76.74	21.09		65.0	[
		Z	4.55	74.35	20.04		65.0	[
10268- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	4.08	69.60	17.97	3.98	65.0	± 9.6 %
		Y	4.89	71.20	19.41		65.0	
		Z	4.81	70.25	18.99		65.0	
10269- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	4.15	69.51	17.90	3.98	65.0	± 9.6 %
		Y	4.93	70.92	19.29		65.0	
		Z	4.85	69.98	18.89		65.0	
10270- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	4.11	72.44	19.03	3.98	65.0	± 9.6 %
		Y	5.01	74.05	20.18		65.0	
		Z	4.76	72.38	19.41		65.0	1

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	1.45	63.39	10.22	0.00	150.0	± 9.6 %
		Y	2.58	68.99	15.79		150.0	
		Z	2.36	65.99	14.08		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.00	66.09	12.05	0.00	150.0	± 9.6 %
		Y	1.98	74.04	18.23		150.0	
		Z	1.30	66.38	13.95		150.0	
10277- CAA	PHS (QPSK)	X	4.43	65.00	5.66	9.03	50.0	± 9.6 %
		Y	1.25	57.54	2.57		50.0	
		Z	1.34	58.35	3.69		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	1.39	58.79	4.19	9.03	50.0	± 9.6 %
		Y	2.00	62.01	7.70		50.0	
		Z	2.27	62.99	8.81		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	×	1.42	58.87	4.28	9.03	50.0	± 9.6 %
		Y	2.04	62.14	7.84		50.0	
		Z	2.32	63.16	8.96		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	24.89	264.54	21.43	0.00	150.0	± 9.6 %
		Y	0.75	64.32	9.28		150.0	
		Z	0.55	60.53	6.84		150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	8.17	257.05	37.61	0.00	150.0	± 9.6 %
		Y	0.54	64.12	8.98		150.0	
		Z	0.37	60.00	6.07		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	2.31	326.58	8.83	0.00	150.0	± 9.6 %
·		Y	100.00	114.29	23.68		150.0	
		Ζ	0.37	60.29	6.50		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	×	2.41	304.08	37.98	0.00	150.0	± 9.6 %
		Y	100.00	121.87	26.96		150.0	
		Z	0.47	62.33	8.10		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	11.16	76.14	13.68	9.03	50.0	± 9.6 %
		Y	24.30	94.04	23.00		50.0	
		Z	21.29	93.19	23.41		50.0	
10297- AAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	2.00	69.33	16.06	0.00	150.0	± 9.6 %
		Y	2.80	72.57	18.31		150.0	
100		Z	2.31	68,33	15.80		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	8.49	243.95	30.00	0.00	150.0	± 9.6 %
		Y	0.98	64.80	10.42		150.0	
40000		Z	0.78	61.52	8.38		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	12.17	331.10	45.12	0.00	150.0	± 9.6 %
		Y	0.99	61.11	7.01	ļ	150.0	
40000		Z	1.06	61.03	7.46		150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	10.15	348.38	28.30	0.00	150.0	± 9.6 %
		Y	0.82	59.43	5.36		150.0	
40004		Z	0.95	60.00	6.23		150.0	
10301- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	3.30	64.31	15.03	4.17	50.0	± 9.6 %
		Y	4.07	65.29	17.00	Į	50.0	
10052		Z	4.16	64.88	16.72		50.0	
10302- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	3.81	65.12	15.99	4.96	50.0	± 9.6 %
		Y	4.52	65.76	17.66		50.0	
		Z	4.66	65.71	17.60		50.0	