

RF TEST REPORT

For

Dongguan Lingjie Electronics and Technology Co., Ltd Product Name: Wireless keyboard Test Model(s): FA98

Report Reference No. : DACE250103002RF001

FCC ID : 2ANBU-FA98

Applicant's Name : Dongguan Lingjie Electronics & Technology Co., Ltd

Address : Building 3, No. 23 Zhenxing North Road, Taiyuan Community, Xiegang

Town, Dongguan City, Guangdong Province, 523590, P.R.C.

Testing Laboratory: Shenzhen DACE Testing Technology Co., Ltd.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park,

Address : Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen,

Guangdong, China

Test Specification Standard : 47 CFR Part 15.249

Date of Receipt : January 3, 2025

Date of Test : January 3, 2025 to January 11, 2025

Data of Issue : January 11, 2025

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 38

Apply for company information

Applicant's Name	:	Dongguan Lingjie Electronics & Technology Co., Ltd	
Address	:	Building 3, No. 23 Zhenxing North Road, Taiyuan Community, Xiegang Town, Dongguan City, Guangdong Province, 523590, P.R.C.	
Product Name	:	Wireless keyboard	
Test Model(s)	i	FA98	
Series Model(s)	4	FA108,FA82,FA98T,FA108T,FA82T	
Test Specification Standard(s)	-	47 CFR Part 15.249	

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:

Keren Huang

Keren Huang / Test Engineer

January 11, 2025

Supervised by:

Approved by:

Machael Mo / Manager

January 11, 2025

January 11, 2025

January 11, 2025

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 38

DAG

Report No.: DACE250103002RF001

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE250103002RF001	January 11, 2025
	1	2	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 3 of 38

DAG

CONTENTS

1 TEST SUMMARY	5
1.1 TEST STANDARDS	
2 GENERAL INFORMATION	6
2.1 CLIENT INFORMATION	6 6 7 8 8
3 EVALUATION RESULTS (EVALUATION)	9
3.1 ANTENNA REQUIREMENT	9
3.1.1 Conclusion:	9
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	10
4.1 OCCUPIED BANDWIDTH	
4.1.1 E.U.T. Operation:	10
4.1.2 Test Setup Diagram:	11
4.1.3 Test Data:	
4.2 FIELD STRENGTH OF FUNDAMENTAL	13
4.2.1 E.U.T. Operation:	13
4.2.2 Test Data:	13
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	15
4.4 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	19
4.4.1 E.U.T. Operation:	19
4.4.2 Test Data:	20
4.5 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	22
4.5.2 Test Setup Diagram:	
4.5.3 Test Data:	23
5 TEST SETUP PHOTOS	29
6 PHOTOS OF THE EUT	
	1.2 SUMMARY OF TEST RESULT

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz

Report No.: DACE250103002RF001

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.249		47 CFR Part 15.203	Pass
Occupied Bandwidth	47 CFR Part 15.249	ANSI C63.10-2013, section 6.9.2	47 CFR 15.215(c)	Pass
Field strength of fundamental	47 CFR Part 15.249	ANSI C63.10-2013 section 6.6	47 CFR 15.249(a) 47 CFR 15.249(b)(1)	Pass
Band edge emissions (Radiated)	47 CFR Part 15.249	ANSI C63.10-2013 section 6.6.4	47 CFR 15.249(d)	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.249	ANSI C63.10-2013 section 6.5	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.249	ANSI C63.10-2013 section 6.6	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)	Pass

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 38

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : Dongguan Lingjie Electronics & Technology Co., Ltd

Address : Building 3, No. 23 Zhenxing North Road, Taiyuan Community, Xiegang Town,

Dongguan City, Guangdong Province, 523590, P.R.C.

Manufacturer : Dongguan Lingjie Electronics & Technology Co., Ltd

Address : Building 3, No. 23 Zhenxing North Road, Taiyuan Community, Xiegang Town,

Dongguan City, Guangdong Province, 523590, P.R.C.

2.2 Description of Device (EUT)

Product Name:	Wireless keyboard
Model/Type reference:	FA98
Series Model:	FA108,FA82,FA98T,FA108T,FA82T
Model Difference:	The product has many models, only the model name and color is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark:	ID 《 室徳 SILVER MONHEY Leadsail HISKA ◆ZEBRONICS
Power Supply:	DC3.0V
Operation Frequency:	2403.85,2441.85,2479.85
Number of Channels:	3
Modulation Type:	GFSK
Antenna Type:	PCB
Antenna Gain:	0dBi
Hardware Version:	V1.0
Software Version:	V1.0

2.3 Description of Test Modes

No	Title	Description
TM1	Lowest channel	Keep the EUT connect to DC power line and works in continuously transmitting mode with GFSK modulation.
TM2	Middle channel	Keep the EUT connect to DC power line and works in continuously transmitting mode with GFSK modulation.
ТМЗ	Highest channel	Keep the EUT connect to DC power line and works in continuously transmitting mode with GFSK modulation.

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
Battery	1	AAA (1.5V)	1

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 38

2.5 Equipments Used During The Test

Occupied Bandwidth		700			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0	1	1
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	DA
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector Signal Generator	Keysight	N5181A	MY50143455	2024-12-06	2025-12-05
Signal Generator	Keysight	N5182A	MY48180415	2024-12-06	2025-12-05
Spectrum Analyzer	Keysight	N9020A	MY53420323	2024-12-06	2025-12-05

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	1	1
Positioning Controller	MF	MF-7802	1	1	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Cable(LF)#2	Schwarzbeck	1	1	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	1	C 1	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2024-03-20	2025-03-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 7 of 38 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

2.6 Statement Of The Measurement Uncertainty

Measurement Uncertainty
±3.63%
±5.46dB
±5.79dB

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.	
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China	
Phone Number:	+86-13267178997	
Fax Number:	86-755-29113252	

Identification of the Responsible Testing Location

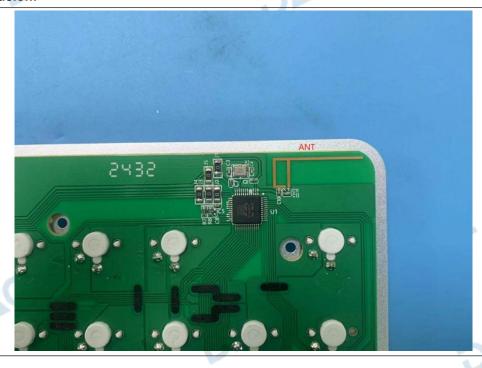
	9
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 8 of 38

3 Evaluation Results (Evaluation)


3.1 Antenna requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No.: DACE250103002RF001

3.1.1 Conclusion:

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 9 of 38

10

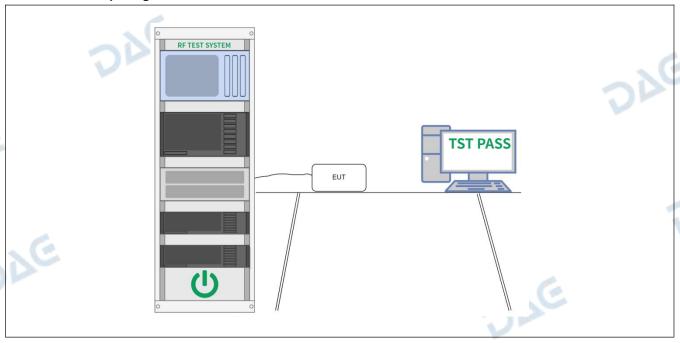
Report No.: DACE250103002RF001

4 Radio Spectrum Matter Test Results (RF)

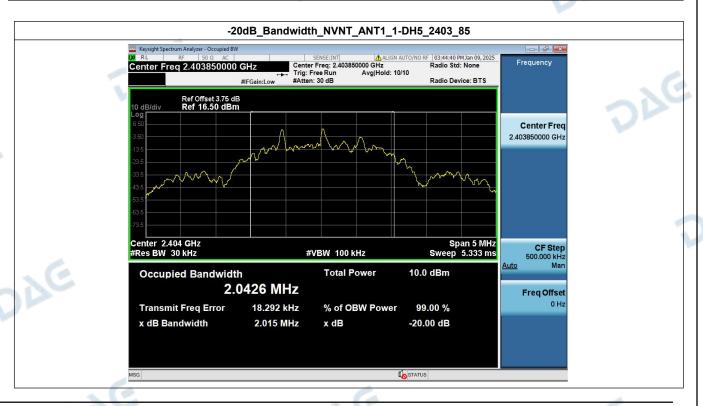
4.1 Occupied Bandwidth

Test Requirement:	47 CFR 15.215(c)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 6.9.2
Procedure:	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from
VE . C	exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the
DIE	reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.
DP	i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down
DIE	amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

4.1.1 E.U.T. Operation:

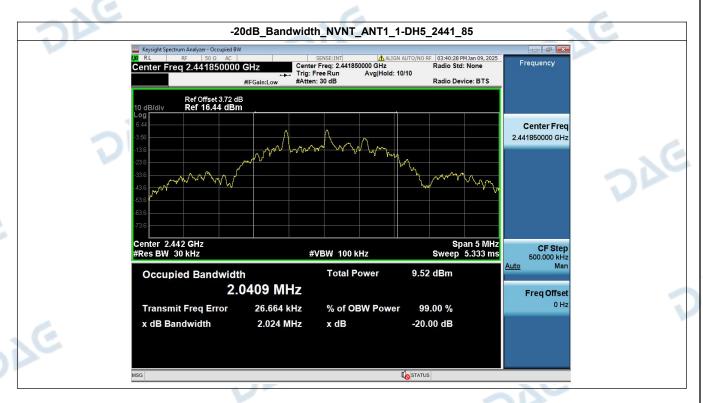

Operating Environment:

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 10 of 38


Temperature: 23.2 °C	Humidity:	53 %	Atmospheric Pressure:	101 kPa
Pretest mode:	TM1, TM2, TM3	270		76
Final test mode:	TM1, TM2, TM3	V		OF

4.1.2 Test Setup Diagram:

4.1.3 Test Data:


Condition	Condition Antenna		Frequency (MHz)	-20dB BW(MHz)
NVNT	ANT1	1-DH5	2403.85	2.015
NVNT	ANT1	1-DH5	2441.85	2.024
NVNT	ANT1	1-DH5	2479.85	2.019

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 38

V1.0

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 12 of 38

4.2 Field strength of fundamental

V1.0

Test Requirement:			ion, the field strength of emissions frequency bands shall comply with						
	Fundamental Field strength of fundamental (millivolts/meter)		Field strength of harmonics (microvolts/meter)						
	902-928 MHz	50	500						
	2400-2483.5 MHz	50	500						
	5725-5875 MHz	50	500						
	24.0-24.25 GHz	250	2500						
	The field strength of emissions in this band shall not exceed 2500 millivolts/meter.								
Test Method:	ANSI C63.10-2013	section 6.6	1C						
Procedure:	ANSI C63.10-2013	section 6.6							

4.2.1 E.U.T. Operation:

Operating Environment:									
Temperature: 23.2 °C Humidity: 53 % Atmospheric Pressure: 101 kPa									
Pretest mode:		TM1,	TM2, TM3			6			
Final test mode:		TM1,	TM2, TM3			70			

4.2.2 Test Data:

Frequency	Frequency Emission Level		Margin	Detector	Polarization
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(PK/AV)	(H/V)
2403.85	102.11	114	-11.89	PK	Н
2403.85	2403.85 92.56		-1.44	AV	H
2403.85	2403.85 88.14		-25.86	PK	V
2403.85	79.53	94	-14.47	AV	V
	1/6		10		_

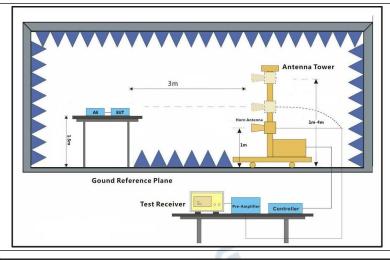
Frequency	Emission Level	Limits	Margin	Detector	Polarization
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(PK/AV)	(H/V)
2441.85	100.28	114	-13.72	PK	Н
2441.85	86.74	94	-7.26	AV	Н
2441.85	89.64	114	-24.36	PK	V
2441.85	81.54	94	-12.46	AV	V

Frequency	requency Emission Level		Margin	Detector	Polarization
(MHz) (dBuV/m)		(dBuV/m)	(dBuV/m)	(PK/AV)	(H/V)
2479.85	103.02	114	-10.98	PK	Н
2479.85	2479.85 91.45		-2.55	AV	Н
2479.85	88.54	114	-25.46	PK	V
2479.85	80.41	94	-13.59	AV	V

Note: Margin = Emission Level – Limit; For fundamental frequency, RBW>20dB BW, VBW>=3XRBW

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 13 of 38 E-mail: service@dace-lab.com

4.3 Band edge emissions (Radiated)


V1.0

	, ,		
Test Requirement:	shall be attenuated by at le	of the specified frequency bands, ast 50 dB below the level of the fur imits in § 15.209, whichever is the	ndamental or to the
Test Limit:	shall be attenuated by at le	of the specified frequency bands, east 50 dB below the level of the fur imits in § 15.209, whichever is the	ndamental or to the
DIA	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
\	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
DIE	radiators operating under the state of the s	tragraph (g), fundamental emission his section shall not be located in the 4-216 MHz or 470-806 MHz. Howevermitted under other sections of the tighter limit applies at the bar in the above table are based on more ak detector except for the freque 200 MHz. Radiated emission limits its employing an average detector.	ne frequency bands ever, operation within is part, e.g., §§ 15.231 and edges. easurements ncy bands 9–90 kHz,
Test Method:	ANSI C63.10-2013 section	6.6.4	276
Procedure:	ANSI C63.10-2013 section	6.6.4	DE

4.3.1 E.U.T. Operation:

Operating Environment:									
Temperature:	23.2 °C		Humidity:	53 %		Atmospheric Pressure:	101 kPa		
Pretest mode:	V	TM1,	TM2, TM3)			
Final test mode:		TM1,	TM2, TM3					201	

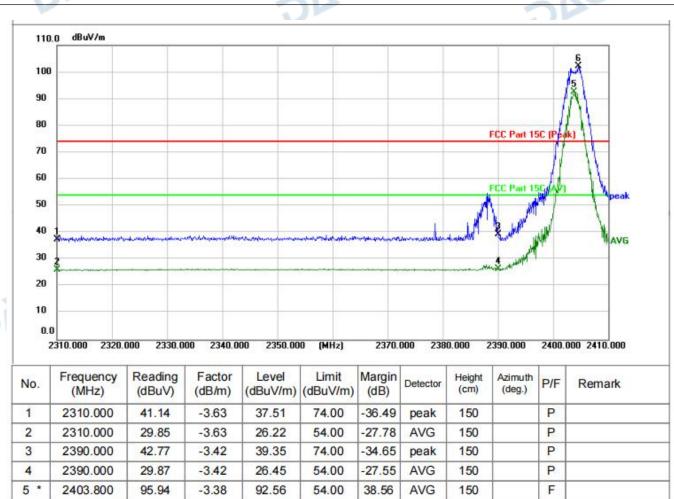
4.3.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 38

6 X

2404.600


4.3.3 Test Data:

-3.38

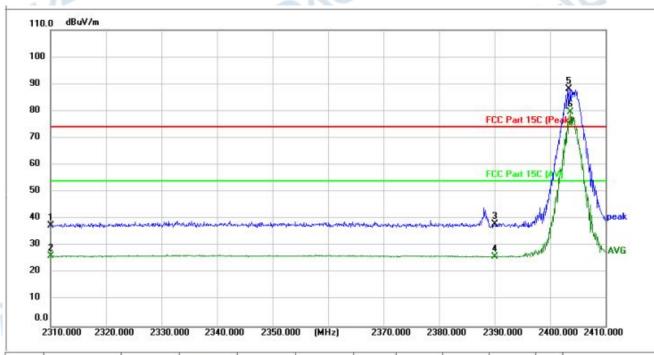
102.11

105.49

74.00

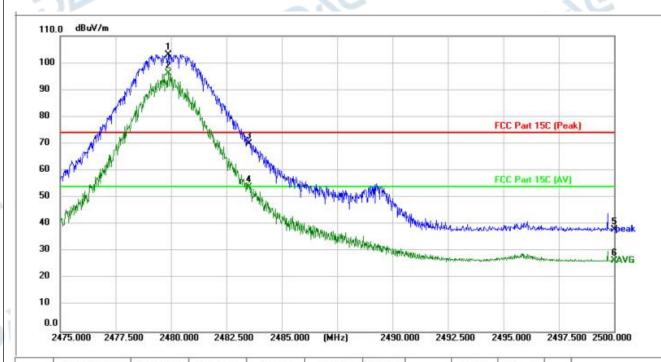
28.11

peak


150

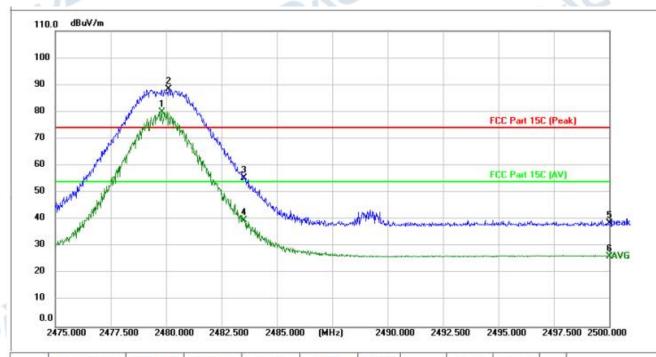
F

Report No.: DACE250103002RF001


TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2310.000	41.07	-3.63	37.44	74.00	-36.56	peak	150		Р	
2	2310.000	29.83	-3.63	26.20	54.00	-27.80	AVG	150		Р	
3	2390.000	41.54	-3.42	38.12	74.00	-35.88	peak	150		Р	
4	2390.000	29.48	-3.42	26.06	54.00	-27.94	AVG	150		Р	
5 X	2403.400	91.52	-3.38	88.14	74.00	14.14	peak	150		F	
6 *	2403.700	82.91	-3.38	79.53	54.00	25.53	AVG	150		F	

TM3 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 X	2479.875	106.21	-3.19	103.02	74.00	29.02	peak			F	
2 *	2479.875	99.33	-3.19	96.14	54.00	42.14	AVG			F	
3	2483.500	73.25	-3.17	70.08	74.00	-3.92	peak			Р	
4	2483.500	57.02	-3.17	53.85	54.00	-0.15	AVG			Р	
5	2500.000	41.29	-3.13	38.16	74.00	-35.84	peak			Р	
6	2500.000	29.74	-3.13	26.61	54.00	-27.39	AVG			Р	

Page 17 of 38

TM3 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	2479.800	83.20	-3.19	80.01	54.00	26.01	AVG	150		F	
2 X	2480.100	91.47	-3.19	88.28	74.00	14.28	peak	150		F	
3	2483.500	58.46	-3.17	55.29	74.00	-18.71	peak	150		Р	
4	2483.500	43.02	-3.17	39.85	54.00	-14.15	AVG	150		Р	
5	2500.000	41.77	-3.13	38.64	74.00	-35.36	peak	150		Р	
6	2500.000	29.52	-3.13	26.39	54.00	-27.61	AVG	150		Р	

Page 18 of 38

Test Requirement:	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)			DAG					
Test Limit:	Except as provided in parage from intentional radiators of the following:								
DI	Fundamental frequency	Field strength of fundamental (millivolts/meter)	rength of nics olts/meter)						
	902-928 MHz	50							
	2400-2483.5 MHz	50	50 500						
	5725-5875 MHz	50	500						
	24.0-24.25 GHz	250	2500						
	shall be attenuated by at lea	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.							
XC.	Frequency (MHz)	Frequency (MHz) Field strength (microvolts/meter)							
	0.009-0.490	2400/F(kHz)	2400/F(kHz)						
	0.490-1.705	24000/F(kHz)		30					
	1.705-30.0	30	OF	30					
	30-88	100 **	100 ** 150 **						
DIE	88-216	150 **							
OF	216-960	200 **		3					
	Above 960	Above 960 500							
O i	** Except as provided in pa radiators operating under the 54-72 MHz, 76-88 MHz, 17 these frequency bands is part of 15.241. In the emission. The emission limits shown employing a CISPR quasi-part 110–490 kHz and above 10 are based on measurement As shown in § 15.35(b), for paragraphs (a) and (b) of this peak field strength of any e average limits specified abomodulation. For point-to-po peak field strength shall not antenna azimuth.	nis section shall not be locally a section shall not be locally a section shall not be locally as a section are based on a section and a section are based on a section and a section are based on a section and a section are based on a section shall not exceed to be by more than 20 dB u int operation under paraging.	ated in the day at the maxing aph (b) of the day at the	the frequency bands over, operation within as part, e.g., §§ 15.231 as at the band edges. The sasurements of					
Test Method:	ANSI C63.10-2013 section	6.5							
Procedure:	ANSI C63.10-2013 section								
	2010 2010 10000								

4.4.1 E.U.T. Operation:

Operating Environment:									
Temperature:	ture: 23.2 °C		C Humidity: 53 % At		Atmospheric Pressure:	101 kPa			
Pretest mode:	TM1,	TM2, TM3							
Final test mode:	TM1,	TM2, TM3							

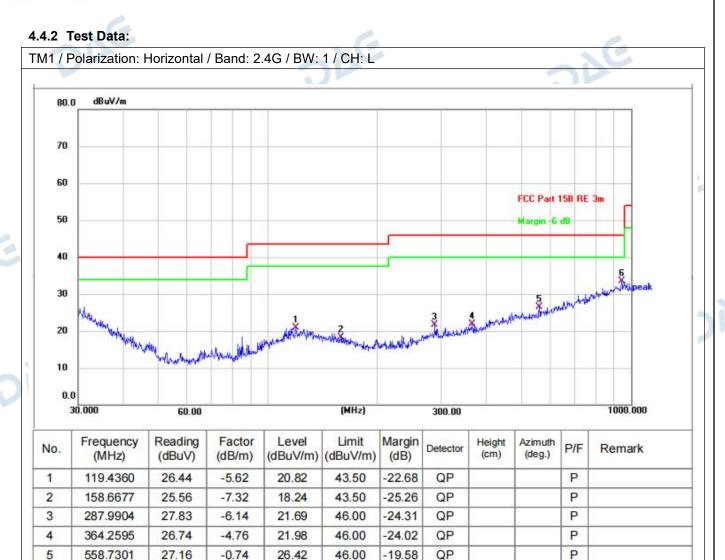
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 19 of 38

6

942.1304

27.15


6.33

33.48

46.00

-12.52

QP

Report No.: DACE250103002RF001

P

3

4

5

6 *

197.8928

357.9287

576.6443

948.7610

27.17

26.35

26.41

27.88

-8.85

-4.62

-0.01

6.34

18.32

21.73

26.40

34.22

43.50

46.00

46.00

46.00

-25.18

-24.27

-19.60

-11.78

QP

QP

QP

QP

100

100

100

100

Report No.: DACE250103002RF001

P

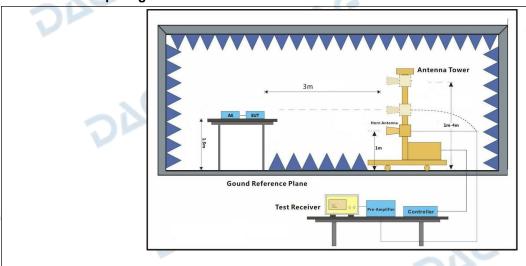
P

P

TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: L dBuV/m 80.0 70 60 FCC Part 15B RE 3m 50 40 30 20 10 0.0 (MHz) 30.000 60.00 300.00 1000.000 Frequency Reading Factor Level Limit Margin Height Azimuth No. Detector P/F Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) 108.2667 -6.4419.12 QP P 1 25.56 43.50 -24.38 100 2 159.2251 26.90 -7.3819.52 43.50 -23.98 QP 100 P

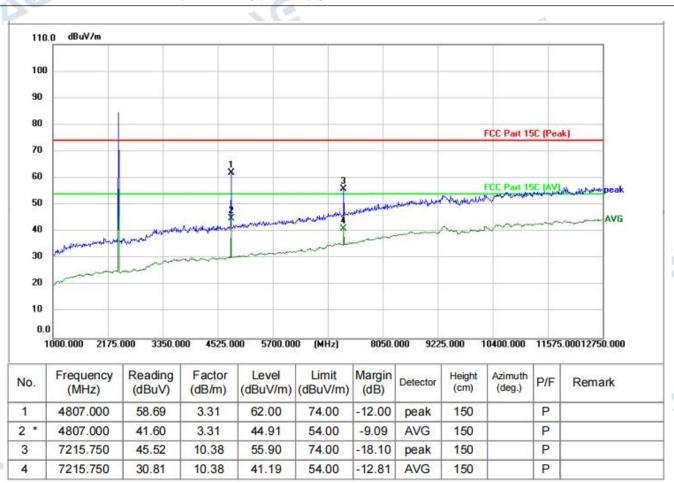
Test Requirement:	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)								
Test Limit:		Except as provided in paragraph (b)of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:							
	Fundamental frequency	Field strength of fundamental (millivolts/meter)	rength of lics olts/meter)						
	902-928 MHz	50							
	2400-2483.5 MHz	50	50 500						
	5725-5875 MHz	50							
	24.0-24.25 GHz	250	2500						
	shall be attenuated by at lea	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.							
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	2400/F(kHz)						
	0.490-1.705	24000/F(kHz)		30					
	1.705-30.0	30	JI	30					
	30-88	100 **		3					
	88-216	150 **		3					
	216-960	200 **		3					
	Above 960	500		3					
	** Except as provided in paradiators operating under the 54-72 MHz, 76-88 MHz, 17-1 these frequency bands is paradiators of the emission. The emission limits shown is employing a CISPR quasi-paragraph (a) and above 10 are based on measurement As shown in § 15.35(b), for paragraphs (a) and (b) of this peak field strength of any expectation. For point-to-point peak field strength shall not antenna azimuth.	nis section shall not be locally a section shall not be locally a section shall not be locally as a section are based on a section are based on a section are based on average of the section are than 20 dB unit operation under paragination.	tated in the Hz. Howe ons of this mit applies and on me freques on limits in detector. MHz, the erage limithe maximater any raph (b)or	ne frequency bands ever, operation within s part, e.g., §§ 15.23 as at the band edges. easurements easurements in these three bands field strength limits in its. However, the num permitted condition of f this section, the					
Test Method:	ANSI C63.10-2013 section	6.6							
Procedure:	ANSI C63.10-2013 section								
	7.1101 000.10 2010 3001011								

4.5.1 E.U.T. Operation:


Operating Environment:									
Temperature:	ture: 23.2 °C		C Humidity: 53 % At		Atmospheric Pressure:	101 kPa			
Pretest mode:	TM1,	TM2, TM3							
Final test mode:	TM1,	TM2, TM3							

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

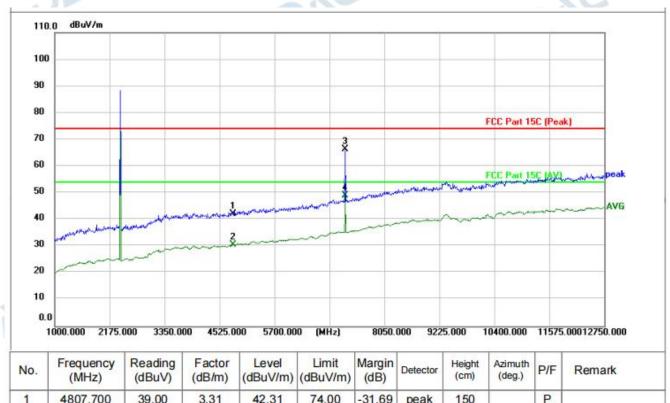
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 22 of 38



4.5.2 Test Setup Diagram:

4.5.3 Test Data:

TM1 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: L


Page 23 of 38

DAG

Report No.: DACE250103002RF001

TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: L

DAG

3

4

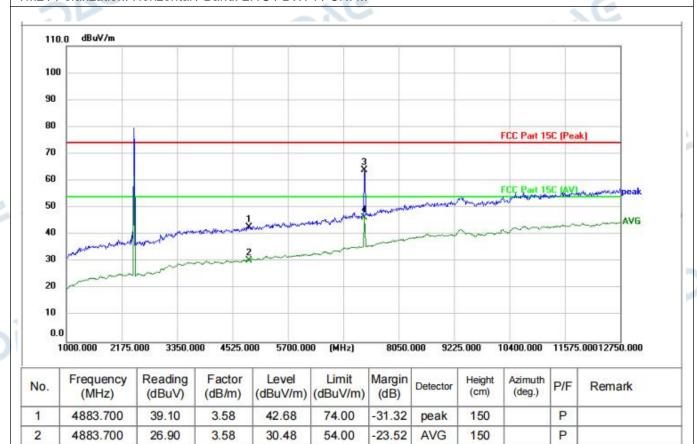
7321.500

7321.500

53.32

35.75

10.57


10.57

63.89

46.32

Report No.: DACE250103002RF001

TM2 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: M

74.00

54.00

-10.11

-7.68

peak

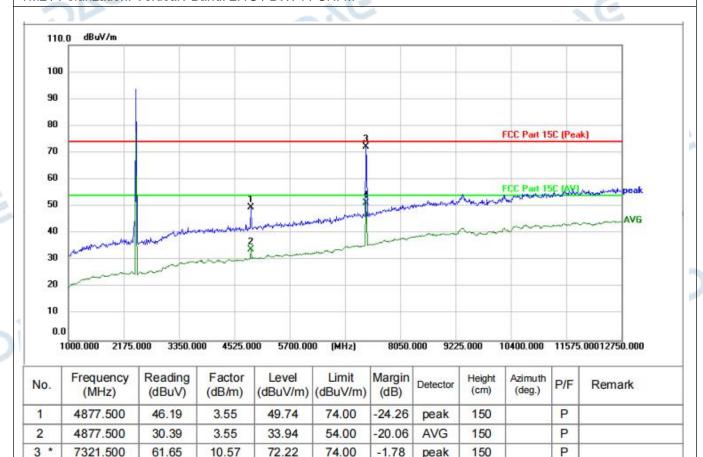
AVG

150

150

Р

P


7321.500

4

40.77

Report No.: DACE250103002RF001

TM2 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: M

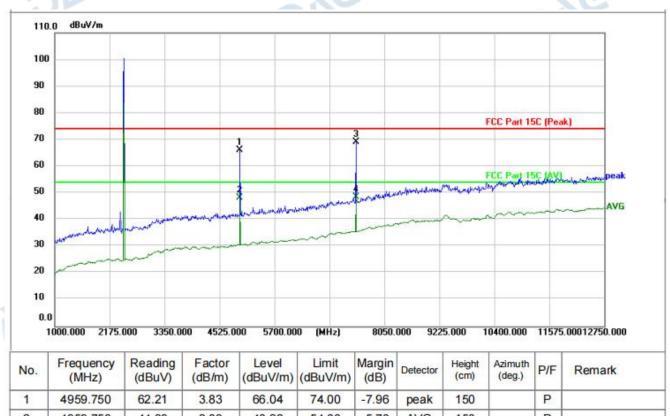
peak

AVG

150

-2.66

P


51.34

10.57

54.00

TM3 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4959.750	62.21	3.83	66.04	74.00	-7.96	peak	150		Р	
2	4959.750	44.39	3.83	48.22	54.00	-5.78	AVG	150		Р	
3 *	7439.000	58.30	10.78	69.08	74.00	-4.92	peak	150		Р	
4	7439.000	37.73	10.78	48.51	54.00	-5.49	AVG	150		Р	

4 *

7439.000

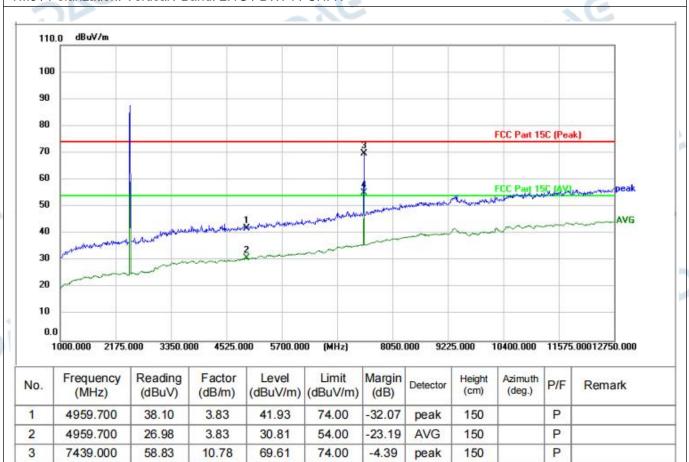
44.46

10.78

55.24

54.00

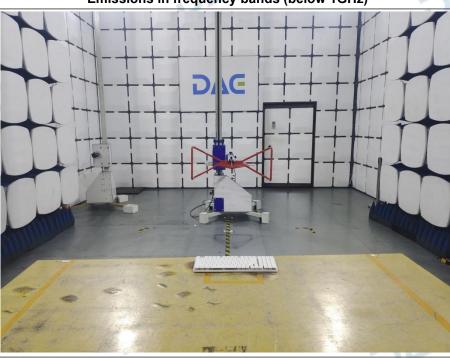
1.24


AVG

150

F

Report No.: DACE250103002RF001


TM3 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: H

5 TEST SETUP PHOTOS

Emissions in frequency bands (below 1GHz)

Emissions in frequency bands (above 1GHz)

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

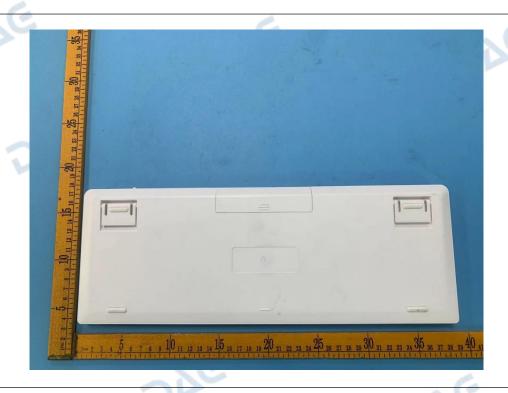
Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 29 of 38

PHOTOS OF THE EUT



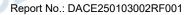
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 30 of 38 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 31 of 38

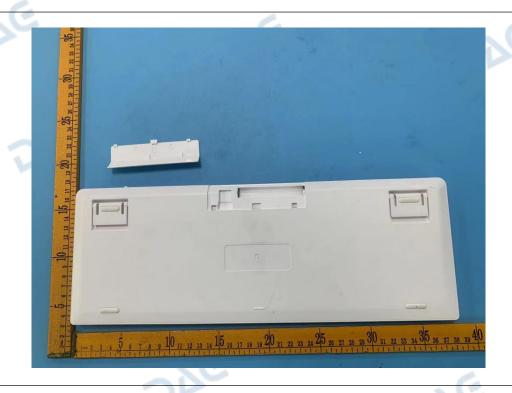

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

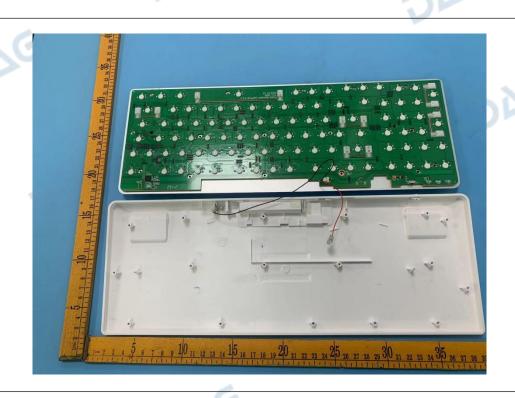
Page 32 of 38



102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613


E-mail: service@dace-lab.com

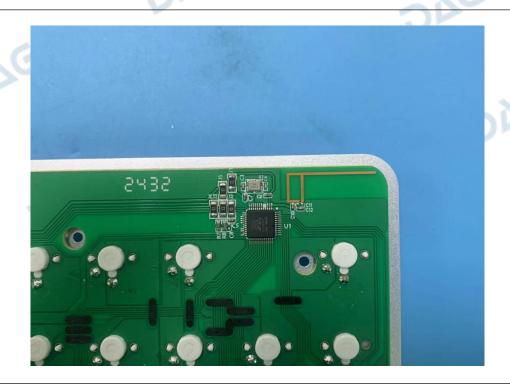
Page 34 of 38

Internal

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

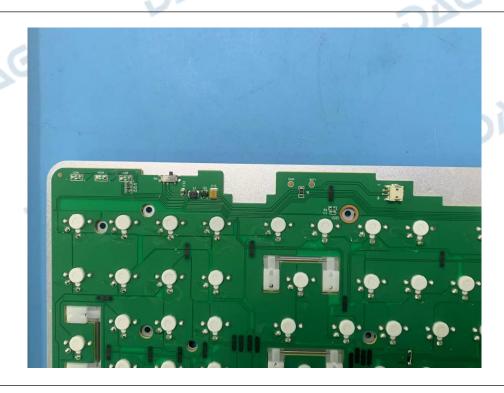
Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 35 of 38

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 36 of 38

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China


Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 37 of 38

***************** End of Report ***************

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 38 of 38