

TE	ST REPORT			
Report No	CHTEW23090011	Report vertification:		
Project No:	SHT2305025605EW			
FCC ID:	OA8-TC368	Report Ro. Conference (1994) Report Ro. Conference (1994)		
Applicant's name:	Quanzhou Chierda Electroni	c Telecom Co.,Ltd.		
Address	No.8,Zian Road,Jiangnan High Zone,Quanzhou,Fujian,China	n-tech Industrial		
Test item description:	TWO WAY RADIO			
Trade Mark	chierda			
Model/Type reference	TC368			
Listed Model(s)	TC368PLUS, TC368D, TC388			
Standard:	FCC 47 CFR Part2.1093 IEEE Std C95.1, 1999 Editio IEEE 1528: 2013	'n		
Date of receipt of test sample	Aug. 10, 2023			
Date of testing:	Aug. 28, 2023			
Date of issue:	Aug. 31, 2023			
Result:	PASS			
Compiled by (position+printed name+signature):	File administrators:Xiaodong Z	hao Xiaodong Zheo		
Supervised by (position+printed name+signature):	Test Engineer: Xiaodong Z	hao Xiaodong Zhuo		
Approved by (position+printed name+signature):	Manager: Xu Yang	Thao Xiaodong Zhu		
Testing Laboratory Name	Shenzhen Huatongwei Intern	national Inspection Co., Ltd		
Address	1/F, Bldg 3, Hongfa Hi-tech Inc Tianliao, Gongming, Shenzher			
Shenzhen Huatongwei International	•			
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.				
The test report merely correspond to the	e test sample.			

Contents

<u>1.</u>	Statement of Compliance	3
<u>2.</u>	Test Standards and Report version	4
2.1.	Test Standards	4
2.2.	Report version	4
<u>3.</u>	Summary	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Radio Specification Description	6
3.4.	Test frequency list	6
3.5.	Testing Laboratory Information	6
3.6.	Environmental conditions	6
<u>4.</u>	Equipments Used during the Test	7
<u>5.</u>	Measurement Uncertainty	8
<u>6.</u>	SAR Measurements System Configuration	9
6.1.	SAR Measurement Set-up	9
6.2.	DASY5 E-field Probe System	10
6.3.	Phantoms	11
6.4.	Device Holder	11
<u>7.</u>	SAR Test Procedure	12
7.1.	Scanning Procedure	12
7.2.	Data Storage and Evaluation	14
<u>8.</u>	Position of the wireless device in relation to the phantom	16
8.1.	Front-of-face	16
8.2.	Body Position	16
<u>9.</u>	Dielectric Property Measurements & System Check	17
9.1.	Tissue Dielectric Parameters	17
9.2.	SAR System Validation	18
9.3.	System Check	18
<u>10.</u>	SAR Exposure Limits	21
<u>11.</u>	Radiated Power Measurement Results and Tune-up	22
<u>12.</u>	SAR Measurement Results	23
<u>13.</u>	Test Setup Photos	24
<u>14.</u>	External and Internal Photos of the EUT	24

1. Statement of Compliance

Maximum Reported SAR (W/kg @1g)	
RF Exposure Conditions	GMRS
Head(Dist.= 25mm)	1.173
Body-worn(Dist.= 0mm)	1.385

Note:

1. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg@1g) specified in FCC 47 CFR part 2 (2.1093) and IEEE Std C95.1,

2. This device had been tested in accordance with the measurement methods and procedures specified in IEEE 1528 and FCC KDB publications.

2. Test Standards and Report version

2.1. Test Standards

The tests were performed according to following standards:

FCC 47 Part 2.1093: Radiofrequency Radiation Exposure Evaluation:Portable Devices

<u>IEEE Std C95.1, 1999 Edition:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

<u>IEEE Std 1528™-2013</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC published RF exposure KDB procedures:

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

KDB 447498 D04 Interim General RF Exposure Guidance v01: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

TCB workshop: April, 2019; Page 19, Tissue Simulating Liquids (TSL)

2.2. Report version

Revision No.	Date of issue	Description
N/A	2023-08-31	Original

3. <u>Summary</u>

3.1. Client Information

Applicant:	Quanzhou Chierda Electronic Telecom Co.,Ltd.
Address:	No.8, Zian Road, Jiangnan High-tech Industrial Zone, Quanzhou, Fujian, China
Manufacturer:	Quanzhou Chierda Electronic Telecom Co.,Ltd.
Address:	No.8, Zian Road, Jiangnan High-tech Industrial Zone, Quanzhou, Fujian, China
Factory:	Quanzhou Chierda Electronic Telecom Co.,Ltd.
Address:	No.8, Zian Road, Jiangnan High-tech Industrial Zone, Quanzhou, Fujian, China

3.2. Product Description

Main unit			
Name of EUT:	TWO WAY RADIO		
Trade Mark:	chierda		
Model No.:	TC368		
Listed Model(s):	TC368PLUS, TC368D, TC388		
Power supply:	DC 7.4V from Battery		
Hardware version:	TC368 Ver 1.0		
Software version:	TC368 FCC program Ver 1.2.1		
Device Dimension:	Length x Width x Thickness (mm): 67 x 260 x 38(Including antenna)		
Device Category:	Portable		
Product stage:	Production unit		
RF Exposure Environment:	General Population/Uncontrolled		
HTW test sample No .:	YPHT23050256002		
Ancillary unit			
Battery information:	Model: TC368 Voltage: DC 7.4V Capacity: 2800mAh(20.72WH)		

Note:

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power.

3.3. Radio Specification Description

Operation Frequency Range:	462MHz Main channel:	462.5500, 462.5750, 462.6000, 462.6250, 462.6500, 462.6750, 462.7000, 462.7250MHz	
	462MHz interstitial channel:	462.5625, 462.5875, 462.6125, 462.6375, 462.6625, 462.6875, 462.7125 MHz	
	467MHz Main channel:	467.5500, 467.5750, 467.6000, 467.6250 467.6500, 467.6750, 467.7000, 467.7250MHz	
	467MHz interstitial channel:	467.5675, 467.5875, 467.6125, 467.6375, 467.6625, 467.6875, 467.7125MHz	
Rated Output Power: 🛛 High Power: 1.8W		⊠ Low Power: 0.5W	
Modulation Type:	FM		
Antenna Type:	Integral		
Remark:			
1. The maximum duty cycle supported by the device is 75%.			

3.4. Test frequency list

Test Channel	Frequency range	Туре	Frequency (MHz)
CH _{M1}	462MHz	Main	462.6500
CH _{M2}	467MHz	Main	467.6500
CH _{M3}	462MHz	Interstitial	462.6375
CH _{M4}	467MHz	Interstitial	467.6375

3.5. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Tel: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

3.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Ambient temperature	18 °C to 25 °C
Ambient humidity	30%RH to 70%RH
Air Pressure	950-1050mbar

4. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Cal. date (YY-MM-DD)	Due date (YY-MM-DD)
•	Data Acquisition Electronics DAEx	SPEAG	HTWE0313-05	DAE4	1549	2023/03/27	2024/03/26
•	E-field Probe	SPEAG	-	EX3DV4	7624	2023/07/12	2024/07/11
•	Universal Radio Communication Tester	R&S	HTWE0323	CMW500	137681	2023/05/04	2024/05/03
Tissu	e-equivalent liquids V	alidation					
•	Dielectric Assessment Kit	SPEAG	HTWE0315-02	DAK-3.5	1267	N/A	N/A
•	Network analyzer	Keysight	HTWE0331	E5071C	MY46733048	2023/08/18	2024/08/17
Syste	m Validation						
•	System Validation Dipole	SPEAG	HTWE0314-02	D450V3	1102	2021/01/20	2024/01/19
•	Signal Generator	R&S	HTWE0276	SMB100A	114360	2023/05/23	2024/05/22
•	Power Viewer for Windows	R&S		N/A	N/A	N/A	N/A
•	Power sensor	R&S	HTWE0278	NRP18A	101010	2023/05/23	2024/05/22
•	Power sensor	R&S	HTWE0389	NRP18A	101386	2023/03/29	2024/03/28
•	Power Amplifier	BONN	HTWE0336	BLWA 0160- 2M	1811887	2022/11/10	2023/11/09
•	Dual Directional Coupler	Mini-Circuits	HTWE0335	ZHDC-10- 62-S+	F975001814	2022/11/10	2023/11/09
•	Attenuator	Mini-Circuits	HTWE0333	VAT-3W2+	1819	2022/11/10	2023/11/09
•	Attenuator	Mini-Circuits	HTWE0334	VAT-10W2+	1741	2022/11/10	2023/11/09

Note:

1. The Probe, Dipole and DAE calibration reference to the Appendix E and F.

2. Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justificatio. The dipole are also not physically damaged or repaired during the interval.

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

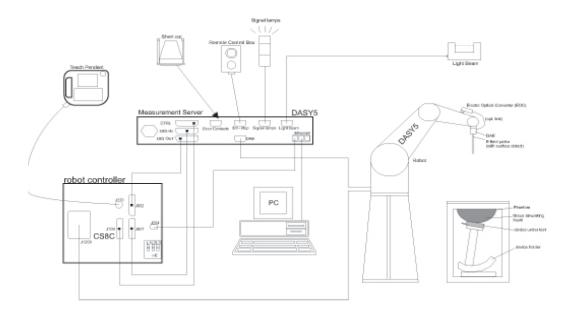
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

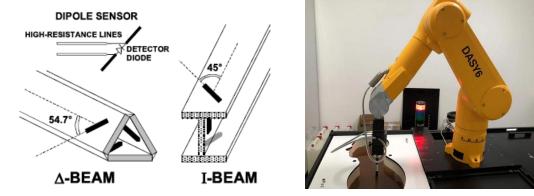
System validation dipoles allowing to validate the proper functioning of the system.

6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

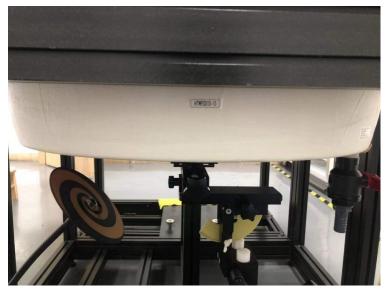
• Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)


CalibrationISO/IEC 17025 calibration service available.

Frequency	10 MHz to 10 GHz; Linearity: ± 0.2 dB (30 MHz to 10 GHz)
Directivity	\pm 0.1 dB in TSL (rotation around probe axis) \pm 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 10 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

• Isotropic E-Field Probe


The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

6.3. Phantoms

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI isfully compatible with standard and all known tissuesimulating liquids. ELI has been optimized regarding its performance and can beintegrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of thecomplete setup, including all predefined phantom positions and measurementgrids, by teaching three points. The phantom is compatible with all SPEAGdosimetric probes and dipoles.

ELI4 Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

7. SAR Test Procedure

7.1. Scanning Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. Measure the local SAR at a test point within 8 mm of the phantom inner surface that is closest to the DUT. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Resolutions per FCC KDB Publication 865664 D01v04

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \hat{\delta} \cdot \ln(2) \operatorname{mm} \pm 0.5 \operatorname{mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orienta above, the measurement re corresponding x or y dimen at least one measurement p	tion, is smaller than the solution must be \leq the nsion of the test device with

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1g and 10g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 5 \text{ mm}^*$	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 5 \; \mathrm{mm}^* \\ 4-6 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm}^* \end{array}$			
	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 4 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$			
Maximum zoom scan spatial resolution, normal to phantom surface	scan spatial $\Delta z_{Zoom}(1)$: between 1 st two points close to about the points close to about		$\leq 4 \text{ mm}$	$3-4 \text{ GHz:} \leq 3 \text{ mm}$ $4-5 \text{ GHz:} \leq 2.5 \text{ mm}$ $5-6 \text{ GHz:} \leq 2 \text{ mm}$			
			$\leq 1.5 \cdot \Delta z_{Z \infty}$	om(n-1) mm			
Minimum zoom scan volume	x, y, z		\geq 30 mm	$\begin{array}{l} 3-4 \text{ GHz:} \geq 28 \text{ mm} \\ 4-5 \text{ GHz:} \geq 25 \text{ mm} \\ 5-6 \text{ GHz:} \geq 22 \text{ mm} \end{array}$			
37 . 21							

Note: \hat{o} is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. The SAR drift shall be kept within ± 5 %.

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	Sensitivity: Conversion factor:	Normi, ai0, ai1, ai2 ConvFi
	Diode compression point:	Dcpi
Device parameters:	Frequency:	f
	Crest factor:	cf
Media parameters:	Conductivity:	σ
	Density:	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

H-

Vi: compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

cf: crest factor of exciting field (DASY parameter)

dcpi: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

- fieldprobes :
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

Vi:	compensated signal of channel ($i = x, y, z$)
Normi:	sensor sensitivity of channel ($i = x, y, z$),
	[mV/(V/m)2] for E-field Probes
ConvF:	sensitivity enhancement in solution
aij:	sensor sensitivity factors for H-field probes
f:	carrier frequency [GHz]
Ei:	electric field strength of channel i in V/m
Hi:	magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR: local specific absorption rate in mW/g

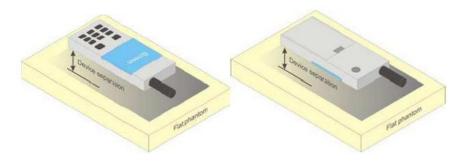
Etot: total field strength in V/m

σ: conductivity in [mho/m] or [Siemens/m]


ρ: equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

8. <u>Position of the wireless device in relation to the phantom</u>


8.1. Front-of-face

A typical example of a front-of-face device is a two-way radio that is held at a distance from the face of the user when transmitting. In these cases the device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions. If the intended use is not specified, a separation distance of 25 mm between the phantom surface and the device shall be used.

8.2. Body Position

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

9. Dielectric Property Measurements & System Check

9.1. Tissue Dielectric Parameters

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C

and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

The dielectric constant (ε_r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ε_r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Tissue dielectric parameters						
Target Frequency	ŀ	lead				
(MHz)	ε _r σ(S/m)					
450	43.5	0.87				

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Measurement Results:

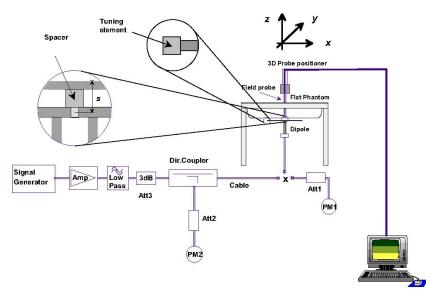
Dielectric performance of tissue simulating liquid									
Frequency		٤ _r	σ(S/m)	Delta	Delta	Limit	Temp	Date
(MHz)	Target	Measured	Target	Measured	(ε _r)	(σ)		(°C)	Dale
450	43.50	44.47	0.870	0.875	2.23%	0.57%	±5%	22.2	2023/8/28

9.2. SAR System Validation

Per FCC KDB 865664 D02,SAR system validadion status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue-equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

9.3. System Check


SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm for SAR measurements \leq 3 GHz

and ≥ 10.0 cm for measurements > 3 GHz.

- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band. The coarse grid with a grid spacing of 10 mm was aligned with
- For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- The results are normalized to 1 W input power.

System Performance Check Setup

Photo of Dipole Setup

Measurement Results:

SAR System Check Result												
Frequency		1g SAR		10g SAR		Delta	Delta Delta		Temp			
(MHz)	Target 1W	Normalize to 1W	Measured 250mW	Target 1W	Normalize to 1W	Measured 250mW	(1g)	(1g) (10g)	(10g)	Limit	(°C)	Date
450	4.60	4.56	1.14	3.09	3.02	0.755	-0.87%	-2.27%	±10%	22.7	2023/8/28	

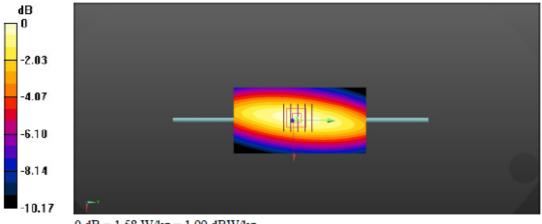
Note:

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within $\pm 10\%$ of the manufacturer calibrated dipole SAR target.

Plots of System Performance Check

SystemPerformanceCheck-Head 450MHz

Communication System: UID 0, A-CW (0); Frequency: 450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; $\sigma = 0.875$ S/m; $\varepsilon_r = 44.467$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.7°C;Liquid Temperature:22.2°C;


DASY Configuration:

- Probe: EX3DV4 SN7624; ConvF(11.75, 11.75, 11.75) @ 450 MHz; Calibrated: 7/12/2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/27/2023
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=15mm, Pin=250mW/Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.53 W/kg

Head/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 43.07 V/m; Power Drift = 0.01 dBPeak SAR (extrapolated) = 1.84 W/kgSAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.755 W/kgMaximum value of SAR (measured) = 1.58 W/kg

0 dB = 1.58 W/kg = 1.99 dBW/kg

10. SAR Exposure Limits

SAR assessments have been made in line with the requirements of FCC 47 CFR § 2.1093.

	Limit (W/kg)				
Type Exposure	General Population / Uncontrolled Exposure Environment	Occupational / Controlled Exposure Environment			
Spatial Average SAR (whole body)	0.08	0.4			
Spatial Peak SAR (1g cube tissue for head and trunk)	1.6	8.0			
Spatial Peak SAR (10g for limb)	4.0	20.0			

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

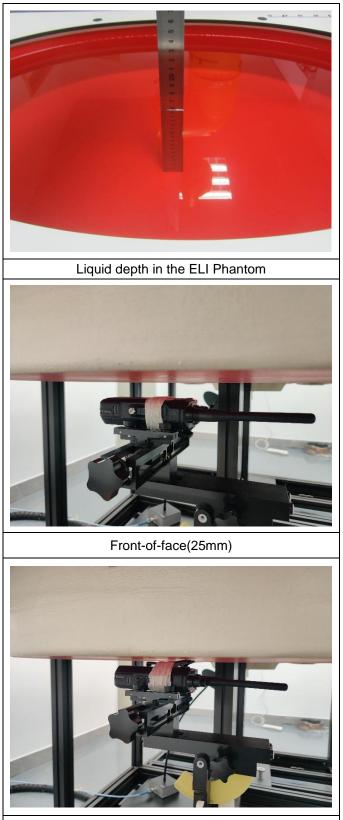
Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

11. Radiated Power Measurement Results and Tune-up

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D04

Please refer to Appendix Report

12. SAR Measurement Results


Please refer to Appendix Report

SAR Test Data Plots refer to the Appendix D.

Note:

- 1. The distance of the front-of-face test is 25mm, the distance of the Body-worn test is 0mm.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. The Body-worn SAR evaluation was performed with the Leather Case body-worn accessory attached to the DUT and touching the outer surface of the planar phantom.

13. Test Setup Photos

Body-worn(0mm)

14. External and Internal Photos of the EUT

Please refer to the test report No.: CHTEW23090009

-----End of Report-----

Project No.	SHT2305025605EW						
Test sample No.	YPHT23050256002	Model No.	TC368				
Start test date	2023/8/28	Finish date	2023/8/28				
Temperature	22.7°C	Humidity	55%				
Test Engineer	Xiaodong Zhao	Auditor	In. Jong				

Appendix clause	Test Item	Result
А	Conducted Power Measurement Results	PASS
В	SAR Measurement Results	PASS

Appendix A:Power Measurement Results

Power									
Mode	Authorized	Frequ	uency		Tune up limit				
wode	bandwidths	Channel	MHz	Power (dBm)	(dBm)				
Analog	20kHz	CH _{M1}	462.6500	32.51	32.55				
		CH _{M2}	467.6500	32.21	32.55				
		CH _{M3}	462.6375	32.15	32.55				
	12.5kHz	CH _{M4}	467.6375	25.87	27.00				

Appendix B:SAR Measurement Results

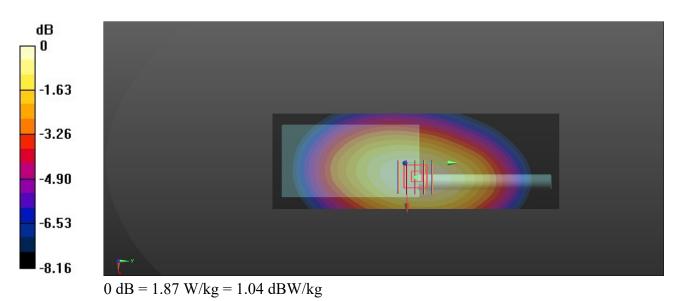
	Front-of-face										
Mode	Authorized	-	uency	Power	limit scaling	Power	Measured SAR(1g)	Report SAR(1g)	75% Duty SAR(1g)	Plot No.	
Mode	bandwidths	dwidths CH MHz (dBm) (dBm) factor	0	Drift(dB)	(W/kg)	(W/kg)	(W/kg)	FIOT NO.			
		$\rm CH_{M1}$	462.6500	32.51	32.55	1.009	-0.090	1.550	1.564	1.173	1
Analog	20kHz	CH _{M2}	467.6500	32.21	32.55	1.081	-0.140	1.440	1.557	1.168	-
Analog		CH _{M3}	462.6375	32.15	32.55	1.096	-0.030	1.410	1.546	1.160	-
	12.5kHz	CH_{M4}	467.6375	25.87	27.00	1.297	-0.110	0.685	0.889	0.666	-

	Body-worn										
Mode	Authorized	Frequ	uency	Power	Tune up Tune up limit scaling	Power	Measured SAR(1g)	Report SAR(1g)	75% Duty SAR(1g)	Plot No.	
Mode	bandwidths	CH MHz (dBm) (dBm) factor		Drift(dB)	(W/kg)	(W/kg)	(W/kg)	PIOLINO.			
		CH _{M1}	462.6500	32.51	32.55	1.009	-0.18	1.830	1.847	1.385	2
Analog	20kHz	CH_{M2}	467.6500	32.21	32.55	1.081	0.01	1.690	1.828	1.371	-
Analog		CH _{M3}	462.6375	32.15	32.55	1.096	-0.16	1.650	1.809	1.357	-
	12.5kHz	CH_{M4}	467.6375	25.87	27.00	1.297	-0.09	0.911	1.182	0.886	-

Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab

Analog-CH1 Front of face

Communication System: UID 0, Analog (0); Frequency: 462.65 MHz;Duty Cycle: 1:1 Medium parameters used: f = 463 MHz; $\sigma = 0.883$ S/m; $\varepsilon_r = 44.284$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.7°C;Liquid Temperature:22.2°C;


DASY Configuration:

- Probe: EX3DV4 SN7624; ConvF(11.75, 11.75, 11.75) @ 462.65 MHz; Calibrated: 7/12/2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/27/2023
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front 25mm/CH1/Area Scan (61x181x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.87 W/kg

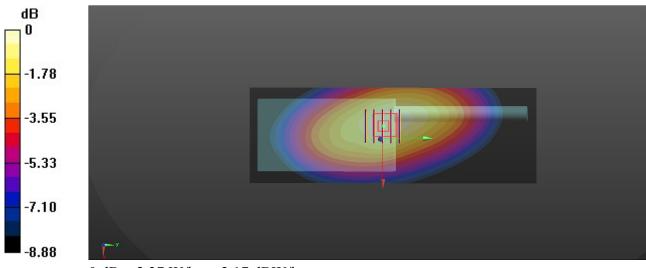
Front 25mm/CH1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm Reference Value = 40.8 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 3.29 W/kg SAR(1 g) = 1.55 W/kg; SAR(10 g) = 0.743 W/kg Maximum value of SAR (measured) = 1.84 W/kg

Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab

Analog-CH1 Body-worn

Communication System: UID 0, Analog (0); Frequency: 462.65 MHz;Duty Cycle: 1:1 Medium parameters used: f = 463 MHz; $\sigma = 0.883$ S/m; $\varepsilon_r = 44.284$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.7°C;Liquid Temperature:22.2°C;


DASY Configuration:

- Probe: EX3DV4 SN7624; ConvF(11.75, 11.75, 11.75) @ 462.65 MHz; Calibrated: 7/12/2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/27/2023
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear 0mm/CH1/Area Scan (61x181x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.27 W/kg

Rear 0mm/CH1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.5 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 3.93 W/kg SAR(1 g) = 1.83 W/kg; SAR(10 g) = 1.04 W/kg Maximum value of SAR (measured) = 2.31 W/kg

0 dB = 2.37 W/kg = 2.17 dBW/kg

1.1.1. DAE4 Calibration Certificate

E-mail: emf@caict.ac.cn Client : HTV	http://www.caict.ac.c		ate No: J23Z60202
CALIBRATION	CERTIFICAT	ГЕ	
Dbject	DAE4	- SN: 1549	
Calibration Procedure(s)			
	FF-Z1	1-002-01 ation Procedure for the Data Ac	quisition Electronics
Calibration date:	Distant States	27, 2023	
This calibration Certifica measurements(SI). The pages and are part of the	measurements and	traceability to national standards, the uncertainties with confidence p	which realize the physical units of probability are given on the following
	een conducted in	the closed laboratory facility: en	vironment temperature(22±3) $^{\circ}\mathrm{C}$ and
numidity<70%.			vironment temperature(22±3) $^\circ\!\mathrm{C}$ and
numidity<70%. Calibration Equipment us	sed (M&TE critical		
numidity<70%. Calibration Equipment us Primary Standards	sed (M&TE critical	for calibration)	b.) Scheduled Calibration
numidity<70%. Calibration Equipment us Primary Standards	sed (M&TE critical ID # Ca 1971018	for calibration) al Date(Calibrated by, Certificate No 14-Jun-22 (CTTL, No.J22X04180)	b.) Scheduled Calibration
numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	sed (M&TE critical ID # Ca 1971018 Name	for calibration) al Date(Calibrated by, Certificate No 14-Jun-22 (CTTL, No.J22X04180) Function	b.) Scheduled Calibration
numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by:	sed (M&TE critical ID # Ca 1971018	for calibration) al Date(Calibrated by, Certificate No 14-Jun-22 (CTTL, No.J22X04180)	b.) Scheduled Calibration
numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by:	sed (M&TE critical ID # Ca 1971018 Name	for calibration) al Date(Calibrated by, Certificate No 14-Jun-22 (CTTL, No.J22X04180) Function	b.) Scheduled Calibration
numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by: Reviewed by:	sed (M&TE critical ID # Ca 1971018 Name Yu Zongying	for calibration) al Date(Calibrated by, Certificate No 14-Jun-22 (CTTL, No.J22X04180) Function SAR Test Engineer	b.) Scheduled Calibration
numidity<70%. Calibration Equipment us primary Standards process Calibrator 753 Calibrated by: Reviewed by: Approved by:	sed (M&TE critical ID # Ca 1971018 Name Yu Zongying Lin Hao Qi Dianyuan	for calibration) al Date(Calibrated by, Certificate No 14-Jun-22 (CTTL, No.J22X04180) Function SAR Test Engineer SAR Test Engineer SAR Project Leader	b.) Scheduled Calibration Jun-23 Signature THT-HB Jun-23
numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	sed (M&TE critical ID # Ca 1971018 Name Yu Zongying Lin Hao Qi Dianyuan	for calibration) al Date(Calibrated by, Certificate No 14-Jun-22 (CTTL, No.J22X04180) Function SAR Test Engineer SAR Test Engineer SAR Project Leader	b.) Scheduled Calibration Jun-23 Signature H.H. Issued: March 28, 2023
humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	sed (M&TE critical ID # Ca 1971018 Name Yu Zongying Lin Hao Qi Dianyuan	for calibration) al Date(Calibrated by, Certificate No 14-Jun-22 (CTTL, No.J22X04180) Function SAR Test Engineer SAR Test Engineer	b.) Scheduled Calibration Jun-23 Signature THT-HB Jun-23

TTL sp	e a g	CAICI
CALIBRAT	TON LABORATORY	
Add: No.52 HuaYuan Tel: +86-10-62304633	Bei Road, Haidian District, Beijing, 100191, China	
E-mail: emf@caict.ac	.cn <u>http://www.caict.ac.cn</u>	
Glossary:		
DAE	data acquisition electronics	
Connector angle	information used in DASY system to ali to the robot coordinate system.	gn probe sensor X
Methods Applied	and Interpretation of Parameters:	
 DC Voltage Me system by com standards. The 	easurement: Calibration Factor assessed for aparison with a calibrated instrument traces of figure given corresponds to the full scale or respective range.	able to national
	le: The angle of the connector is assessed ically by a tool inserted. Uncertainty is not	
The report pro performance to	vide only calibration results for DAE, it doe est results.	s not contain other

Certificate No: J23Z60202

Page 2 of 3

Tel: +86-10-62304633-2 E-mail: emf@caict.ac.cn	i Road, Haidian District, Beijing, 117	100191, China	
	http://www.caict.ac.cn		
OC Voltage Measurem	ent		
	$SB = 6.1 \mu V$, full r	ange = -100+300 m	١V
Low Range: 1L DASY measurement para	SB = 61nV, full n ameters: Auto Zero Time: 3 s	ange = -1+3mV sec; Measuring time: 3 sec	
Calibration Factors	x	Y	z
High Range	406.340 ± 0.15% (k=2)	406.011 ± 0.15% (k=2)	406.173 ± 0.15% (k=2)
Low Range	3.98404 ± 0.7% (k=2)	3.99064 ± 0.7% (k=2)	3.99140 ± 0.7% (k=2)
Connector Angle			
Connector Angle to be	used in DASY system		18.5° ± 1 °
			2.35360433063.159TM 12.1

1.2. Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Client Morefast Shanghai

Certificate No.

EX-7624_Jul23

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7624

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes

Calibration date

July 12, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	
Power meter NRP2	SN: 104778		Scheduled Calibration
Power sensor NRP-Z91		30-Mar-23 (No. 217-03804/03805)	Mar-24
	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	
Reference 20 dB Attenuator	SN: CC2552 (20x)	20-001-22 (0CF-DAK12-1016_0Ct22)	Oct-23
DAE4		30-Mar-23 (No. 217-03809)	Mar-24
	SN: 660	16-Mar-23 (No. DAE4-660 Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24
		, perecond_dan20)	Uai 1-2-4

Secondary Standards	ID		
Power meter E4419B		Check Date (in house)	Scheduled Check
	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	OF Apr 16 (in house she is in the	
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
		06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	
Network Analyzer E8358A	SN: US41080477	of Hug 55 (in house check Jun-22)	In house check: Jun-24
E0000A	311.0341080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

Calibrated by	Name Aidonia Georgiadou	Function Laboratory Technician	Signature
Approved by	Sven Kühn	Technical Manager	S.G
This calibration certificat	te shall not be reproduced except in fu	Il without written approval of the lal	Issued: July 12, 2023 poratory.

Certificate No: EX-7624_Jul23

Page 1 of 9

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst S С

Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL NORMX,y,z ConvF DCP CF A, B, C, D Polarization φ Polarization ϑ Connector Angle	tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters φ rotation around probe axis ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system
---	--

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human
- Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- · Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis).
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page 2 of 9

EX3DV4 - SN:7624

Parameters of Probe: EX3DV4 - SN:7624

Basic Calibration Parameters

	Sensor X	-		
Norm $(\mu V/(V/m)^2)^A$	Sensor X	Sensor Y	Sensor Z	Unc $(k=2)$
	0.57	0.57	0.56	
DCP (mV) ^B	108.5		0.00	±10.1%
	100.5	107.7	104.9	±4.7%

Calibration Results for Modulation Response

	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E
0	CW	X	0.00	0.00	1.00	0.00	154.4	±3.5%	<i>k</i> = 2 ±4.7%
		Y	0.00	0.00	1.00		177.5	10.070	14.7 /0
		Z	0.00	0.00	1.00		156.5		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). ^B Linearization parameter uncertainty for maximum specified field strength. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page 3 of 9

ĩ

July 12, 2023

July 12, 2023

EX3DV4 - SN:7624

Parameters of Probe: EX3DV4 - SN:7624

Other Probe Parameters

Sensor Arrangement	
Connector Angle	Triangular
Mechanical Surface Detection Mode	156.1°
Optical Surface Detection Mode	enabled
Probe Overall Length	disabled
Probe Body Diameter	337 mm
Tip Length	10 mm
Tip Diameter	9 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1 mm
ote: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-7624_Jul23

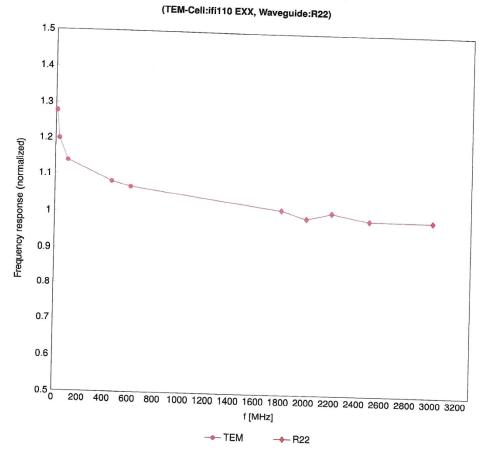
Page 4 of 9

July 12, 2023

Parameters of Probe: EX3DV4 - SN:7624

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative	ConductivityF	ConvF X	ConvF Y			T	
150	Permittivity ^F	(S/m)		CONF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
450	43.5	0.87	11.75	11.75	11.75	0.10		(n-4)
600	42.7	0.88			11.75	0.16	1.30	±13.3%
		0.00	10.95	10.95	10.95	0.10	1.25	±13.3%

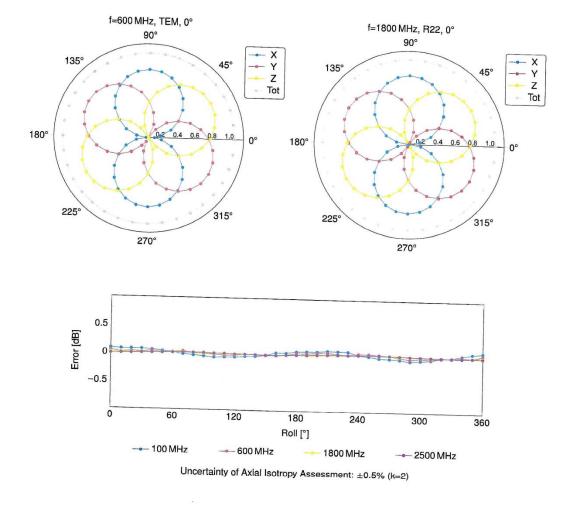

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than \pm 5% from the target values (typically better than \pm 3%) are valid for TSL with deviations of up to \pm 10%. If TSL with deviations from the target of less than \pm 5% are used, the calibration uncertainties are 11.1% G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the

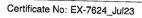
Certificate No: EX-7624_Jul23

Page 5 of 9

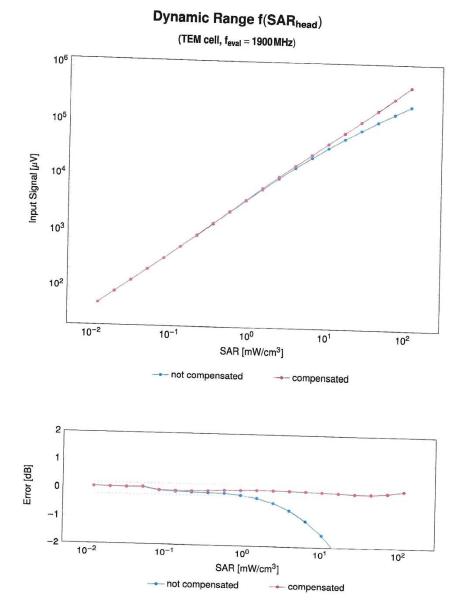
July 12, 2023


Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k-2)

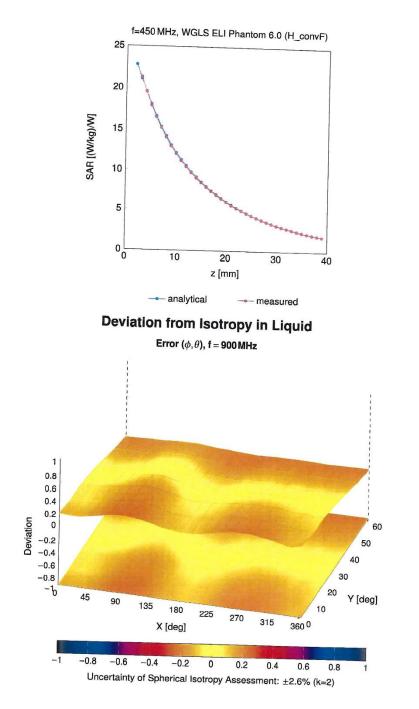

Certificate No: EX-7624_Jul23

Page 6 of 9


July 12, 2023

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

July 12, 2023


Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

Certificate No: EX-7624_Jul23

Page 8 of 9

July 12, 2023

Certificate No: EX-7624_Jul23

Page 9 of 9

1.1. D450V3 Dipole Calibration Certificate

he Swiss Accreditation Service is Aultilateral Agreement for the reco Client HTW (Auden)			
lient HTW (Auden)			
		Certificate No	: D450V3-1102_Jan21
CALIBRATION CE	ERTIFICATE		
Object	D450V3 - SN:110	2	
Calibration procedure(s)	QA CAL-15.v9 Calibration Proce	dure for SAR Validation Sources	below 700 MHz
Calibration date:	January 20, 2021		
The measurements and the uncerta	ed in the closed laborator	obability are given on the following pages ar y facility: environment temperature (22 \pm 3)°(
The measurements and the uncerta	ed in the closed laborator	obability are given on the following pages an	d are part of the certificate.
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE	ed in the closed laborator critical for calibration) ID # SN: 104778	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	obability are given on the following pages ar y facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100)03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101)	d are part of the certificate. C and humidity < 70%. <u>Scheduled Calibration</u> Apr-21 Apr-21 Apr-21 Apr-21
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	cobability are given on the following pages ar y facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ed in the closed laborator critical for calibration) ID # SN: 104776 SN: 103244 SN: 103245 SN: 203245 SN: CC2552 (20x) SN: 310982 / 06327	coability are given on the following pages ar y facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	cobability are given on the following pages ar y facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: C2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID #	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 03245 SN: 02552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874	coability are given on the following pages are gtacility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. 217-03104) 30-Dec-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 03245 SN: 02552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: MY41498087	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. 217-03104) 30-Dec-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	ed in the closed laborator critical for calibration) ID # SN: 104776 SN: 103244 SN: 103245 SN: 0245 SN: 0245 SN: 0245 SN: 0245 SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: MY41498087 SN: 000110210	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103245 SN: 03245 SN: 02552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 01-Apr-20 (No. 217-03104) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 310982 / 06327 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: 000110210 SN: US3642U01700 SN: US41080477	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. 217-03104) 30-Dec-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-24 In hous
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 02552 (20x) SN: 310982 / 06327 SN: 654 ID # SN: 654 ID # SN: 654 SN: 654 SN: 000110210 SN: US342U01700 SN: US41080477 Name	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. 217-03104) 30-Dec-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 310982 / 06327 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: 000110210 SN: US3642U01700 SN: US41080477	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. 217-03104) 30-Dec-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-24 In hous

Certificate No: D450V3-1102_Jan21

Page 1 of 6

Engi	d & Partner ineering AG isstrasse 43, 8004 Zurich, Switzerland	Hac-MRA	The second	C Servizio svizzero di taratura S Swiss Calibration Service
		satabay.	\sim	Accreditation No.: SCS 0108
	ed by the Swiss Accreditation Service (SAS) ss Accreditation Service is one of the signatorie	es to the FA		Accreditation No.: SCS 0100
	eral Agreement for the recognition of calibration			
Gloss	ary:			
TSL	tissue simulating liq			
ConvF				
N/A	not applicable or no	ot measured		
Calibr	ration is Performed According to	o the Followi	ng Standards:	
a)	IEEE Std 1528-2013, "IEEE Reco	ommended Pr	actice for Deter	mining the Peak Spatial-
<i>.</i>	Averaged Specific Absorption Ra	ate (SAR) in th	e Human Head	from Wireless
	Communications Devices: Measu	urement Tech	niques", June 2	013
b)	IEC 62209-1, "Measurement prod	cedure for the	assessment of	Specific Absorption Hate
	(SAR) from hand-held and body- 300 MHz to 6 GHz)", July 2016	mounted devi	ces used next to	o me ear (nequency range o
	IEC 62209-2, "Procedure to dete	mine the Sne	cific Absorption	Rate (SAR) for wireless
0)	communication devices used in o	close proximity	to the human l	ody (frequency range of 30
	MHz to 6 GHz)", March 2010	F		
d)	KDB 865664, "SAR Measuremen	nt Requiremer	nts for 100 MHz	to 6 GHz"
	ional Documentation:			
e)	DASY4/5 System Handbook			
Meth	ods Applied and Interpretation of	of Parameters		
	Measurement Conditions: Furthe	er details are a	vailable from th	e Validation Report at the e
	of the certificate. All figures state	ed in the certifi	cate are valid a	t the frequency indicated.
	Antenna Parameters with TSL: T	he dipole is n	nounted with the	spacer to position its feed
	point exactly below the center ma	arking of the f	lat phantom sec	tion, with the arms oriented
	parallel to the body axis.			
•	Feed Point Impedance and Retu positioned under the liquid filled	In Loss: Thes	e parameters a	ted is transformed from the
	measurement at the SMA conne	phantom. The	d point The Be	turn Loss ensures low
	reflected power. No uncertainty r		a point. The ne	
	Electrical Delay: One-way delay	between the S	SMA connector	and the antenna feed point.
	No uncertainty required.			
	SAR measured: SAR measured	at the stated	antenna input p	ower.
	SAR normalized: SAR as measu	red, normalize	ed to an input p	ower of 1 W at the antenna
	connector.			
•	SAR for nominal TSL parameter nominal SAR result.	s: The measu	red TSL parame	eters are used to calculate the
The	reported uncertainty of measurem	nent is stated	as the standard	uncertainty of measuremen
mult	tiplied by the coverage factor k=2,	which for a no	ormal distributio	n corresponds to a coverage
prob	bability of approximately 95%.			
1				

Measurement Conditions DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.7 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.60 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.771 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.09 W/kg ± 17.6 % (k=2)

Certificate No: D450V3-1102_Jan21

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.4 Ω - 3.8 jΩ
Return Loss	- 22.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.346 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG

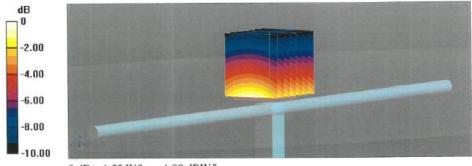
Certificate No: D450V3-1102_Jan21

Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 20.01.2021

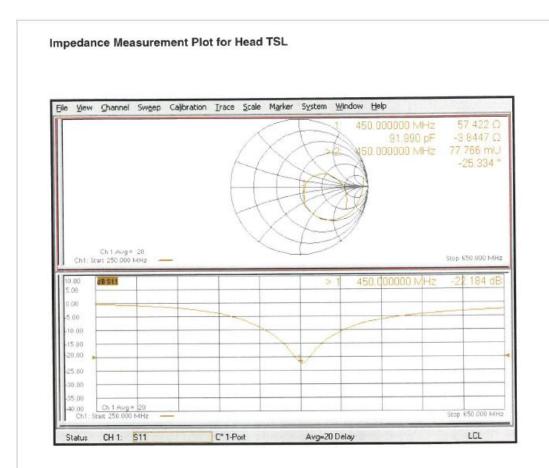
Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1102

Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; σ = 0.87 S/m; ϵ_r = 43.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 26.06.2020
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)


Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.07 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 1.78 W/kg SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.771 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30mm) Ratio of SAR at M2 to SAR at M1 = 64.6% Maximum value of SAR (measured) = 1.55 W/kg

0 dB = 1.55 W/kg = 1.90 dBW/kg

Certificate No: D450V3-1102_Jan21

Page 5 of 6

Certificate No: D450V3-1102_Jan21

Page 6 of 6

Extended Dipole Calibrations

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Head-450								
Date of measurement	Return-loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary impedance (ohm)	Delta (ohm)		
2021-01-20	-22.2		57.4		-3.80			
2022-01-17	-22.7	2.70	56.9	0.5	-3.66	0.24		
2023-01-15	-22.9	3.15	57.1	0.3	-3.77	0.03		

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration.