

Test Report

Report No.:	MTi230805003-06E4
Date of issue:	2023-08-22
Applicant:	Beijing Cozyla Technology ltd.
Product:	Cozyla Canvas
Model(s):	Cozyla CD-3M341F
FCC ID:	2BCES-CD3M341F

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	ral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	6 9 9
2	Sumr	mary of Test Result	10
3	Test I	Facilities and accreditations	11
	3.1	Test laboratory	11
4	List o	of test equipment	
5	Evalu	uation Results (Evaluation)	13
	5.1	Antenna requirement	13
6	Radio	o Spectrum Matter Test Results (RF)	13
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Conducted Emission at AC power line Duty Cycle Maximum conducted output power Power spectral density Emission bandwidth and occupied bandwidth Band edge emissions (Radiated) Undesirable emission limits (below 1GHz) Undesirable emission limits (above 1GHz)	
Pho	otogra	phs of the test setup	48
Pho	otogra	phs of the EUT	49
	6.9 6.10	Appendix A1: Emission Bandwidth Appendix A2: Occupied channel bandwidth	
Ap	pendix	k B: Duty Cycle	85
Ар	pendix	c C: Maximum conducted output power	98
Ар	pendix	x D: Maximum power spectral density	
Ар	pendix	x E: Band edge measurements	
Ар	pendix	K F: Conducted Spurious Emission	134
Ар	pendix	c G: Frequency Stability	158

Test Result Certification			
Applicant: Beijing Cozyla Technology Itd.			
Address:	Room A419 Building1, No. 12 Shangdi Information Road, Haidian District, Beijing PRC 100080		
Manufacturer:	Beijing Cozyla Technology Itd.		
Address:	Room A419 Building1, No. 12 Shangdi Information Road, Haidian District, Beijing PRC 100080		
Product description			
Product name:	Cozyla Canvas		
Trademark:	Cozyla		
Model name:	Cozyla CD-3M341F		
Series Model:	N/A		
Standards:	FCC 47 CFR Part 15.407		
Test method:	ANSI C63.10-2013 KDB 789033 D02 v02r01		
Date of Test			
Date of test:	2023-08-16 to 2023-08-22		
Test result:	Pass		

Test Engineer	:	Letter. Jan.	
		(Letter Lan)	
Reviewed By	:	(con chen	
		(Leon Chen)	
Approved By	:	Tom Kue	
		(Tom Xue)	

1 General Description

1.1 Description of the EUT

_	
Product name:	Cozyla Canvas
Model name:	Cozyla CD-3M341F
Series Model:	N/A
Model difference:	N/A
Electrical rating:	Input: DC 12V2A
Accessories:	Adaptor: Model: KA24D-1202000US Input: 100-240V~ 50/60Hz 0.6A Max Output: 12V=2000mA
Hardware version:	JHA133-DDR3-AI-C V1.0
Software version:	20230818
Test sample(s) number:	MTi230805003-06S1001
RF specification	
Bluetooth version:	V5.0
Operating frequency range:	802.11a/n(HT20)/ac(HT20)/ax(HE20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40)/ax(HE40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz;
Channel number:	802.11a/n(HT20)/ac(HT20)/ax(HE20): U-NII Band 1: 4; U-NII Band 3: 5; 802.11n(HT40)/ac(HT40)/ax(HE40): U-NII Band 1: 2; U-NII Band 3: 2;
Modulation type:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM); 802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)
Antenna(s) type:	FPC Antenna
Antenna(s) gain:	3.02dBi

1.2 Description of test modes

No.	Emission test modes	
Mode1	802.11a mode	
Mode2	802.11n20 mode	
Mode3	802.11n40 mode	
Mode4	802.11ac20 mode	
Mode5	802.11ac40 mode	
Mode6	802.11ax20 mode	
Mode7	802.11ax40 mode	

Note:

802.11ax mode only support full resource unit size.

1.2.1 Operation channel list

1.1.1 Operation channel list

20 MHz bandwidth		40 MHz bandwidth	
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)
36	5180	38	5190
40	5200	46	5230
44	5220		
48	5240		

20 MHz bandwidth		40 MHz bandwidth	
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)
149	5745	151	5755
153	5765	159	5795
157	5785		
161	5805		
165	5825		

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

The test software has been used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software:	CMD
----------------	-----

or U-NII-1 band:			
802.11a		802.11n20	
Channel	Power setting	Channel	Power setting
36	4	36	2
40	5	40	4
48	5	48	4
802	.11n40	802.11ac20	
Channel	Power setting	Channel	Power setting
38	5	36	3
46	6	40	4
		48	5
802.	11ac40	802.11ax20	
Channel	Power setting	Channel	Power setting
38	5	149	2
46	6	157	3
		165	3
802.	11ax40		
Channel	Power setting	Channel	Power setting
151	4		
159	4		

For U-NII-3 band:			
802.11a		802.11n20	
Channel	Power setting	Channel	Power setting
149	9	149	9
157	9	157	9
165	9	165	9
802.11n40		802.11ac20	
Channel	Power setting	Channel	Power setting
151	9	149	9
159	9	157	9
		165	9
802.11ac40		802.11ax20	
Channel	Power setting	Channel	Power setting
151	9	149	9

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Tel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com

Report No.: MTi230805003-06E4

159	9	157	9
		165 9	
802.1	1ax40		
Channel	Power setting	Channel	Power setting
151	9		
159	9		

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list							
Description Model Serial No. Manufacture							
/	/	/	/				
Support cable list							
Description	Length (m)	From	То				
/	/	/	/				

1.5 Measurement uncertainty

Measurement	Uncertainty
Time	±1 %
RF output power, conducted	±1 dB
Power Spectral Density, conducted	±1 dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
3	Duty Cycle	47 CFR Part 15E		Pass
4	Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(3)(i)	Pass
5	Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 47 CFR Part 15.407(a)(3)(i)	Pass
6	Emission bandwidth and occupied bandwidth 6dB bandwidth	47 CFR Part 15E	U-NII 1 U-NII 3: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
7	Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
8	Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
9	Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.					
Test site location:101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, X Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, Chin						
Telephone:	(86-755)88850135					
Fax:	(86-755)88850136					
CNAS Registration No.:	CNAS L5868					
FCC Registration No.:	448573					
IC Registration No.:	21760					
CABID:	CN0093					

4 List of test equipment

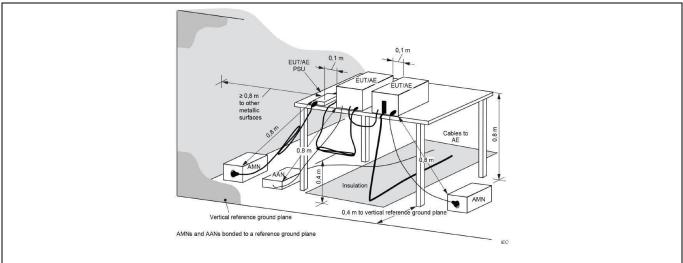
No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due				
	Duty Cycle Maximum conducted output power Power spectral density Emission bandwidth and occupied bandwidth									
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25				
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24				
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24				
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24				
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25				
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25				
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04				
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24				
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04				
		Band edge Undesirable emi	emissions (Radi ission limits (abo							
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25				
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-05-26	2024-05-25				
3	Amplifier	Agilent	8449B	3008A01120	2023-06-26	2024-06-25				
4	Multi-device Controller	TuoPu	TPMDC	/	2023-05-04	2024-05-03				
5	MXA signal analyzer	Agilent	N9020A	MY54440859	2023-05-05	2024-05-04				
		Undesirable emi	ission limits (belo	ow 1GHz)						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25				
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10				
3	Amplifier	Hewlett-Packard	8447F	3113A06184	2023-06-26	2024-06-25				
4	Multi-device Controller	TuoPu	TPMDC	/	2023-05-04	2024-05-03				
5	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2021/05/30	2024/05/29				

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

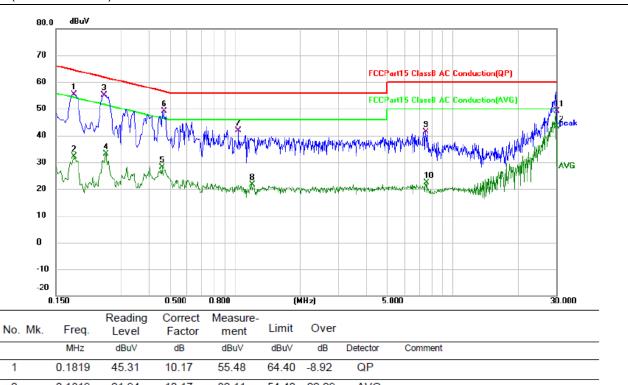
Test Requirement:	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
Description of the antenna of EUT:	The antenna of the EUT is permanently attached.
Conclusion:	The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)

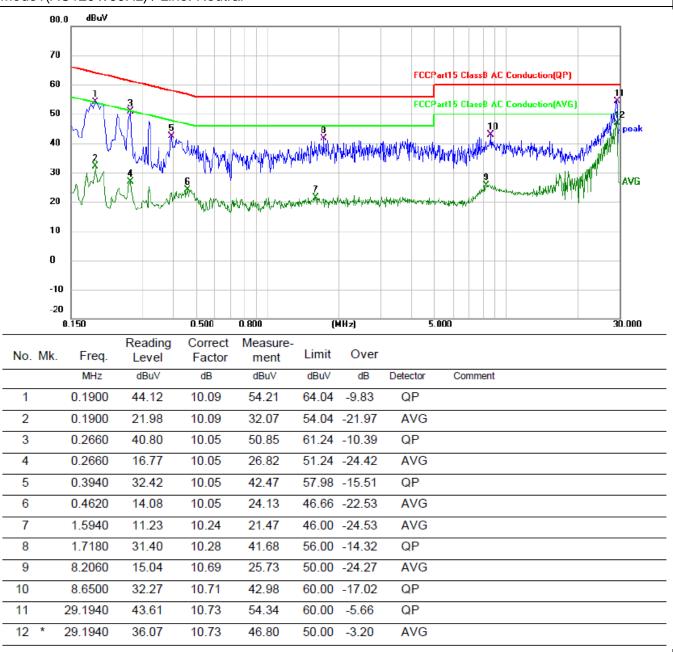

6.1 Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)		
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	*Decreases with the logarithm of	the frequency.	
Test Method:	Refer to ANSI C63.10-2013 sect line conducted emissions from u		

6.1.1 E.U.T. Operation:


Operating Environment:							
Temperature:	28.7 °C	28.7 °C Humidity: 72.9 % Atmospheric Pressure: 101 kPa					
Test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7							

6.1.2 Test Setup Diagram:


Mode1(AC120V/60Hz) / Line: Line

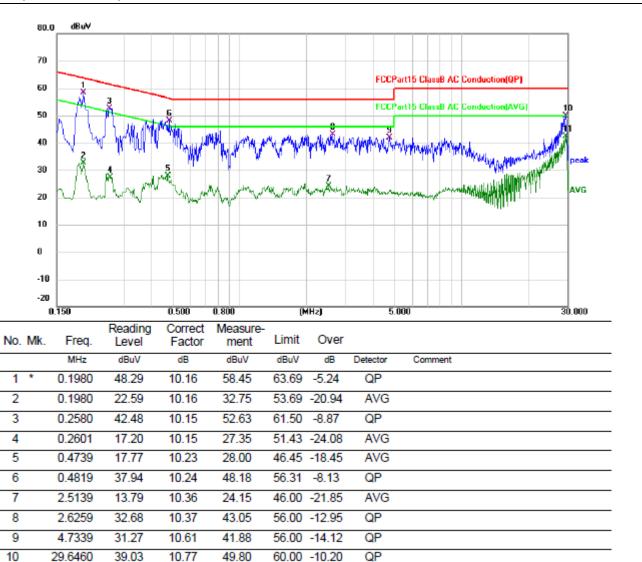
1	0.1819	45.31	10.17	55.48	64.40 -8.92	QP
2	0.1819	21.94	10.17	32.11	54.40 -22.29	AVG
3	0.2500	44.92	10.15	55.07	61.76 -6.69	QP
4	0.2540	22.90	10.15	33.05	51.63 -18.58	AVG
5	0.4620	17.83	10.22	28.05	46.66 -18.61	AVG
6	0.4700	38.90	10.23	49.13	56.51 -7.38	QP
7	1.0380	31.86	10.10	41.96	56.00 -14.04	QP
8	1.1940	11.38	10.14	21.52	46.00 -24.48	AVG
9	7.5220	30.47	10.80	41.27	60.00 -18.73	QP
10	7.5900	11.46	10.80	22.26	50.00 -27.74	AVG
11	29.8420	38.33	10.77	49.10	60.00 -10.90	QP
12 *	29.8420	32.73	10.77	43.50	50.00 -6.50	AVG

Mode1(AC120V/60Hz) / Line: Neutral

11

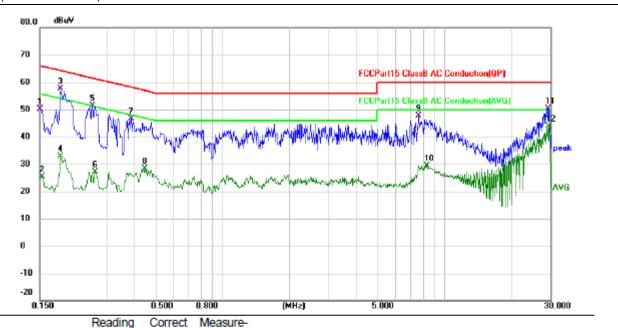
29.6460

31.65


10.77

42.42

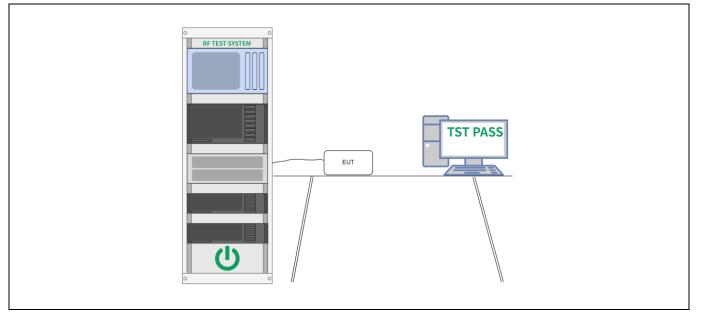
50.00 -7.58


AVG

Mode1(AC240V/60Hz) / Line: Line

Mode1(AC240V/60Hz) / Line: Neutral

No. Mk.	Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	40.09	10.14	50.23	66.00	-15.77	QP	
2	0.1539	15.20	10.14	25.34	55.79	-30.45	AVG	
3	0.1859	47.45	10.10	57.55	64.22	-6.67	QP	
4	0.1859	22.81	10.10	32.91	54.22	-21.31	AVG	
5	0.2580	41.28	10.05	51.33	61.50	-10.17	QP	
6	0.2660	17.14	10.05	27.19	51.24	-24.05	AVG	
7	0.3860	36.62	10.05	46.67	58.15	-11.48	QP	
8	0.4460	18.36	10.05	28.41	46.95	-18.54	AVG	
9	7.6737	36.93	10.68	47.61	60.00	-12.39	QP	
10	8.3459	18.80	10.69	29.49	50.00	-20.51	AVG	
11	29.2220	39.72	10.73	50.45	60.00	-9.55	QP	
12 *	29.6340	33.24	10.74	43.98	50.00	-6.02	AVG	


6.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

Operating Environment:							
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure:	101 kPa	
Test mode:		Mode Mode	, ,	Mode3, Mode4	I, Mode5, Mode6, Mode7,	Mode5, Mode6,	

6.2.2 Test Setup Diagram:

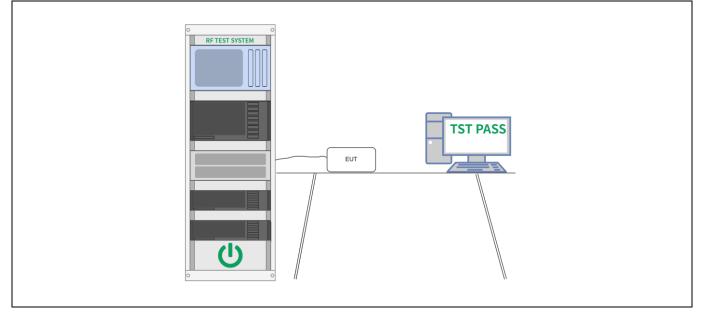
6.2.3 Test Data:

Please Refer to Appendix for Details.

6.3 Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain
	 up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters
	transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	 For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point- to-point operations.
Test Method:	ANSI C63.10-2013, section 12.3
Procedure:	Method SA-1 a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal. b) Set RBW = 1 MHz. c) Set VBW >= 3 MHz. d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin
	spacing <= RBW / 2, so that narrowband signals are not lost between frequency bins.) e) Sweep time = auto.

Page 20 of 159



f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering
only on full power pulses. The transmitter shall operate at maximum power control level for the
entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or
at duty cycle $\stackrel{-}{>}=$ 98%, and if each transmission is entirely at the maximum power control level,
then the trigger shall be set to "free run."
h) Trace average at least 100 traces in power averaging (rms) mode.
i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal
using the instrument's band power measurement function, with band limits set equal to the
EBW or OBW band edges. If the instrument does not have a band power function, then sum the
spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99%
OBW of the spectrum.

6.3.1 E.U.T. Operation:

Operating Environment:							
Temperature:	25 °C		Humidity:	59 %	Atmosphe	eric Pressure:	101 kPa
Test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode3 Mode7				Mode5, Mode6,			

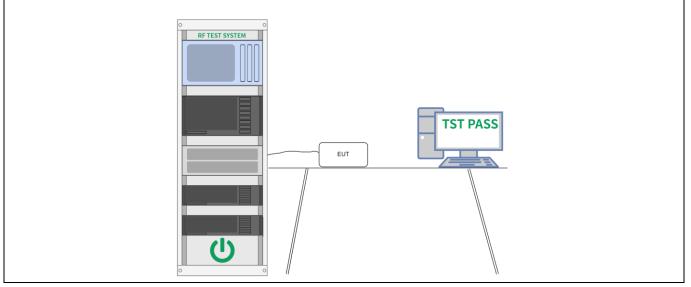
6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.

6.4 Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to- point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2013, section 12.5
Procedure:	 a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power" (This procedure is required even if the maximum conducted output power



neasurement was performed using the power meter method PM.)) Use the peak search function on the instrument to find the peak of the pectrum.
) Make the following adjustments to the peak value of the spectrum, if opplicable:
) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is he duty
cycle, to the peak of the spectrum.
 If method SA-3A was used and the linear mode was used in step h) of 2.3.2.7, add
dB to the final result to compensate for the difference between linear overaging and
ower averaging.
I) The result is the PPSD.
) The procedure in item a) through item c) requires the use of 1 MHz esolution bandwidth to
atisfy the 1 MHz measurement bandwidth specified by some regulatory uthorities.This
equirement also permits use of resolution bandwidths less than 1 MHz provided that the
neasured power is integrated to show the total power over the measurement pandwidth" (i.e.,
MHz). If measurements are performed using a reduced resolution and width and integrated
) Set RBW >= 1 / T, where T is defined in 12.2 a).) Set VBW >= $[3 \times RBW]$.
b) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

Operating Environment:							
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure:	101 kPa	
Test mode:		Mode Mode		Mode3, Mode4	, Mode5, Mode6, Mode7,	Mode5, Mode6,	

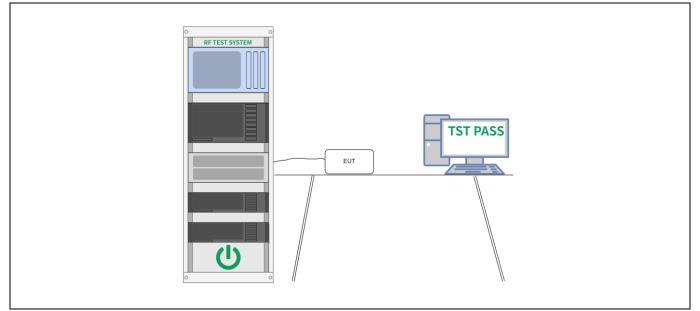
6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

Test Deguirement	U-NII 1: No limits, only for report use.
Test Requirement:	U-NII 3: 47 CFR Part 15.407(e)
Test Limit:	U-NII 1: No limits, only for report use.
	U-NII 3: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2
Procedure:	RDB 789033 D02, Clause C.2 Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW. and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the inst
	that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the



 c) Detector = Peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. 	6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. c) Detector = Peak. d) Trace mode = max hold	total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled Tabular data may be reported in addition to the plot(s).
---	--	---

6.5.1 E.U.T. Operation:

Operating Environment:							
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure:	101 kPa	
				Mode3, Mode4	, Mode5, Mode6, Mode7,	Mode5, Mode6,	

6.5.2 Test Setup Diagram:

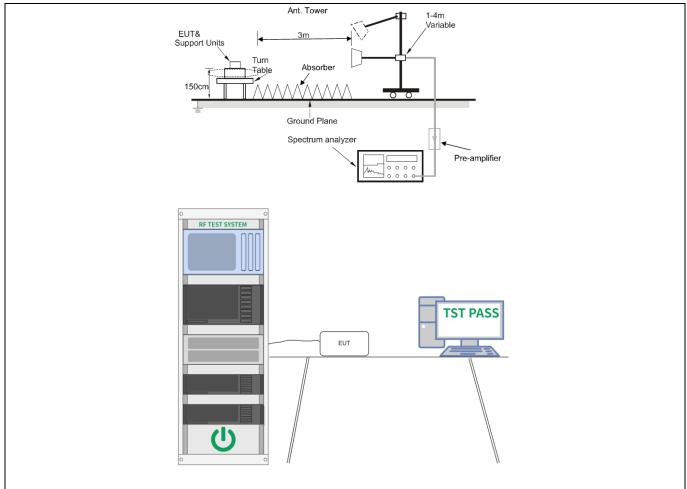
6.5.3 Test Data:

Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)						
Test Limit:	For transmitters oper of the 5.15-5.35 GHz	rating in the 5.15-5.2					
	For transmitters oper All emissions shall be above or below the be above or below the be edge increasing linear the band edge, and for linearly to a level of 2	e limited to a level of band edge increasing band edge, and from arly to a level of 15.6 from 5 MHz above or 27 dBm/MHz at the b	-27 dBm/MHz linearly to 10 d 25 MHz above dBm/MHz at 5 below the band and edge.	at 75 MHz or more Bm/MHz at 25 MHz or below the band MHz above or belov			
	MHz	MHz	MHz	GHz			
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46			
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75			
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5			
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4			
	6.31175-6.31225	123-138	2200-2300	14.47-14.5			
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4			
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
	12.51975- 12.52025	240-285	3345.8-3358	36.43-36.5			
	12.57675- 12.57725 13.36-13.41	322-335.4	3600-4400	(²)			
	¹ Until February 1, 19 ² Above 38.6 The field strength of not exceed the limits 1000 MHz, complian measurement instrur Above 1000 MHz, co demonstrated based provisions in § 15.35	emissions appearing shown in § 15.209.7 ce with the limits in § nentation employing ompliance with the er on the average valu apply to these meas	within these fre At frequencies e 15.209shall be a CISPR quasi- nission limits in e of the measur urements.	equency bands shal equal to or less than e demonstrated usin -peak detector. § 15.209shall be red emissions. The			
	Except as provided e intentional radiator s following table:						

	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Test Method:	ANSI C63.10-2013, sect	on 12.7.4, 12.7.5, 12.7.6	
		, ,	
Procedure:	meters above the ground rotated 360 degrees to d b. The EUT was set 3 me which was mounted on th c. The antenna height is ground to determine the and vertical polarizations d. For each suspected en then the antenna was tur frequency of below 30MH the rotatable table was tur maximum reading. e. The test-receiver syste Bandwidth with Maximum f. If the emission level of specified, then testing co would be reported. Other would be reported on a da g. Test the EUT in the low channel. h. The radiation measure Transmitting mode, and f case. i. Repeat above procedu Remark: 1. Level= Read Level+ C 2. Scan from 18GHz to 4 The points marked on ab when testing, so only abo spurious emissions from below the limit need not f 3. As shown in this section limits are based on avera- emission shall not excee above by more than 20 d emissions whose peak lef measurement is shown in 4. The disturbance above	the EUT in peak mode was 10 ould be stopped and the peak of wise the emissions that did no of one using peak or average of ata sheet. west channel, the middle chan ements are performed in X, Y, found the X axis positioning w res until all frequencies measu table Loss+ Antenna Factor- F 0GHz, the disturbance above pove plots are the highest emiss ove points had been displayed the radiator which are attenua- be reported. on, for frequencies above 1GH age limits. However, the peak d the maximum permitted ave IB under any condition of mod evel is lower than the average	hamber. The table was ghest radiation. ce-receiving antenna, enna tower. meters above the rength. Both horizontal ce the measurement. d to its worst case and 4 meters (for the test heights 1 meter) and egrees to find the nction and Specified OdB lower than the limit values of the EUT of have 10dB margin method as specified nel, the Highest Z axis positioning for hich it is the worst ured was complete. Preamp Factor 18GHz was very low. ssions could be found d. The amplitude of ated more than 20dB Iz, the field strength field strength of any rage limits specified ulation. For the limit, only the peak e harmonics were the


6.6.1 E.U.T. Operation:

Operating Environment:

Temperature:	25.7 °C		Humidity:	55.5 %	Atmospheric Pressure:	99 kPa		
Test mode: Mo			Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7					
Final test mode: Mo			e1					
Note: All other	Note: All other emissions are attenuated 20dB below the limit, so does not recorded.							

6.6.2 Test Setup Diagram:

Note:

- (1) All patterns are tested, and the data only shows the worst pattern A.
- (2) Note: The antenna gain and cable loss is compensated in the test plot.

6.6.3 Test Data:

Mode1 / Pola	arization: Horizo	ntal / Band: {	5G / BW: 20 /	/ CH: 36 / U-I	VII-1		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4500.000	45.81	1.99	47.80	74.00	-26.20	peak
2	4500.000	37.14	1.99	39.13	54.00	-14.87	AVG
3	5150.000	56.92	5.36	62.28	74.00	-11.72	peak
4 *	5150.000	40.48	5.36	45.84	54.00	-8.16	AVG

Mode1 / Polarization: Vertical / Band: 5G / BW: 20 / CH: 36 / U-NII-1

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4500.000	46.28	1.99	48.27	74.00	-25.73	peak
2		4500.000	36.41	1.99	38.40	54.00	-15.60	AVG
3		5150.000	47.36	5.36	52.72	74.00	-21.28	peak
4	*	5150.000	37.84	5.36	43.20	54.00	-10.80	AVG

Page 29 of 159

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		5350.000	46.35	6.35	52.70	74.00	-21.30	peak
2		5350.000	36.60	6.35	42.95	54.00	-11.05	AVG
3		5460.000	46.37	6.24	52.61	74.00	-21.39	peak
4	*	5460.000	37.71	6.24	43.95	54.00	-10.05	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		5350.000	48.81	6.35	55.16	74.00	-18.84	peak
2		5350.000	38.87	6.35	45.22	54.00	-8.78	AVG
3		5460.000	48.52	6.24	54.76	74.00	-19.24	peak
4	*	5460.000	39.46	6.24	45.70	54.00	-8.30	AVG

Page 30 of 159

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	5650.000	48.03	6.59	54.62	68.20	-13.58	peak
2		5700.000	47.55	6.68	54.23	105.20	-50.97	peak
3		5720.000	53.88	6.45	60.33	110.80	-50.47	peak
4		5725.000	58.11	6.40	64.51	122.20	-57.69	peak

	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1 *	5650.000	48.06	6.59	54.65	68.20	-13.55	peak
2	5700.000	47.52	6.68	54.20	105.20	-51.00	peak
3	5720.000	47.80	6.45	54.25	110.80	-56.55	peak
4	5725.000	49.80	6.40	56.20	122.20	-66.00	peak

Page 31 of 159

Mode1 / Polarization: Horizontal / Band: 5G / BW: 20 / CH: 165 / U-NII-3

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		5850.000	47.66	5.69	53.35	122.20	-68.85	peak
2	;	5855.000	48.42	5.72	54.14	110.80	-56.66	peak
3		5875.000	47.87	5.86	53.73	105.20	-51.47	peak
4	*	5925.000	48.20	5.99	54.19	68.20	-14.01	peak

Mode1 / Polarization: Vertical / Band: 5G / BW: 20 / CH: 165 / U-NII-3

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		5850.000	49.70	5.69	55.39	122.20	-66.81	peak
2		5855.000	47.40	5.72	53.12	110.80	-57.68	peak
3		5875.000	48.00	5.86	53.86	105.20	-51.34	peak
4	*	5925.000	48.54	5.99	54.53	68.20	-13.67	peak

6.7 Undesirable emission limits (below 1GHz)

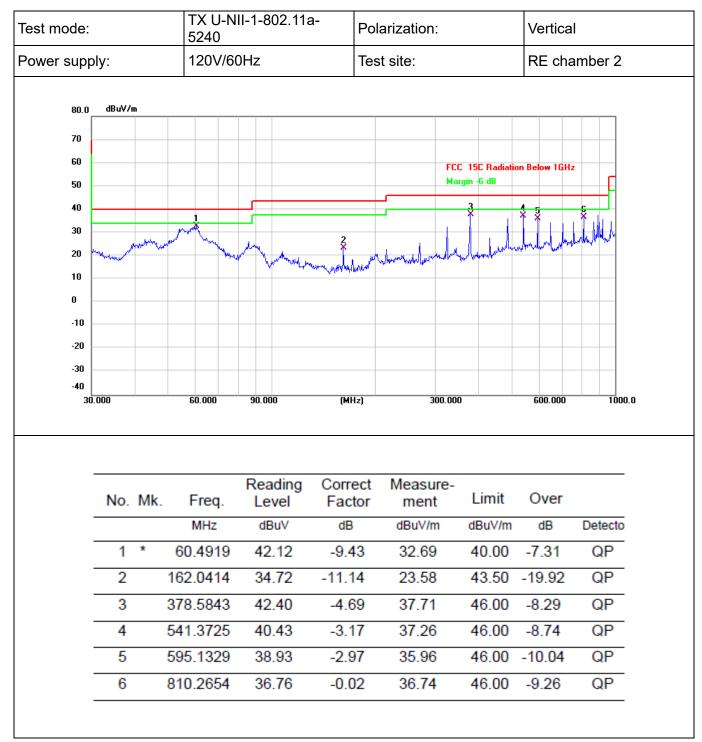
Test Requirement:	47 CFR Part 15.407(b)(9)							
Test Limit:		elow 1 GHz must comply w	ith the general field						
	strength limits set forth	••	in the general field						
	Except as provided elsewhere in this subpart, the emissions from an								
		all not exceed the field streng							
	following table:								
	Frequency (MHz)	Field strength	Measurement						
		(microvolts/meter)	distance						
			(meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6								
Procedure:	Below 1GHz:								
	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8								
	meters above the ground at a 3 meter semi-anechoic chamber. The table								
	was rotated 360 degrees to determine the position of the highest radiation.								
	b. The EUT was set 3 or 10 meters away from the interference-receiving								
	antenna, which was mounted on the top of a variable-height antenna tower.								
	c. The antenna height is varied from one meter to four meters above the								
	ground to determine the maximum value of the field strength. Both horizontal								
	and vertical polarizations of the antenna are set to make the measurement.								
	d. For each suspected emission, the EUT was arranged to its worst case and								
	then the antenna was tuned to heights from 1 meter to 4 meters (for the test								
	frequency of below 30MHz, the antenna was tuned to heights 1 meter) and								
	the rotatable table was turned from 0 degrees to 360 degrees to find the								
	maximum reading.								
	e. The test-receiver system was set to Peak Detect Function and Specified								
	Bandwidth with Maximum Hold Mode.								
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT								
	would be reported. Otherwise the emissions that did not have 10dB margin								
	would be re-tested one by one using quasi-peak method as specified and								
	then reported in a data sheet.								
	g. Test the EUT in the lowest channel, the middle channel, the Highest								
	channel.								
		urements are performed in X	(, Y, Z axis positioning for						
		d found the X axis positionir							
	Case.								
	i. Repeat above proce	dures until all frequencies m	easured was complete.						
	Remark:								
		Cable Loss+ Antenna Factor							
		30MHz, the disturbance belo							
	-	above plots are the highest							
		above points had been displ							
	-	m the radiator which are atte	enuated more than 20dB						
	below the limit need no	ot be reported.							

3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading
 maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
g. Test the EUT in the lowest channel, the middle channel, the Highest channel.h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst
case. i. Repeat above procedures until all frequencies measured was complete. Remark:
 Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak
measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

6.7.1 E.U.T. Operation:

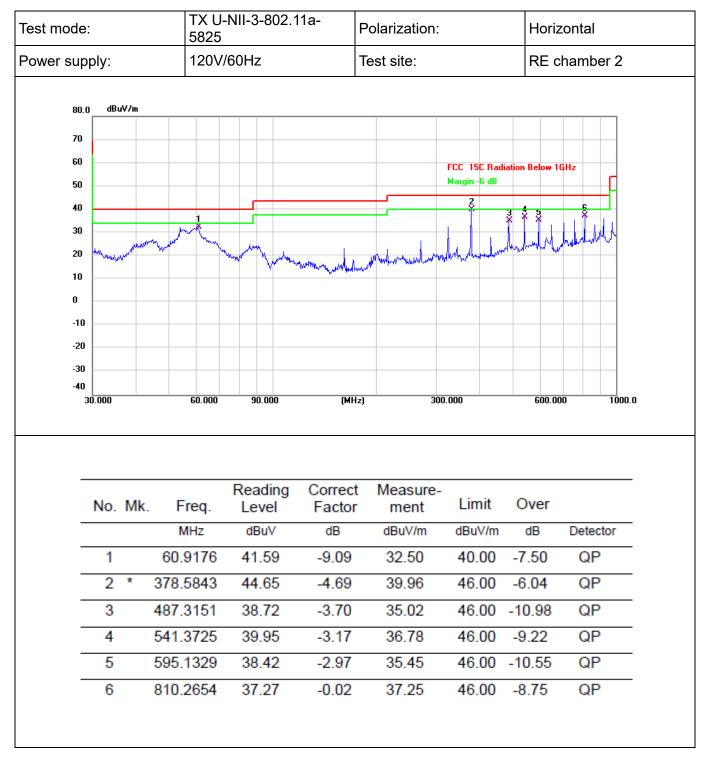
Operating Environment:								
Temperature:	15.7 °C		Humidity:	25.5 %	Atmospheric Pressure:	99 kPa		
Test mode:		Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode5, Mode6, Mode7						
Final test mode	e:	Mode	e1					

6.7.2 Test Setup Diagram:

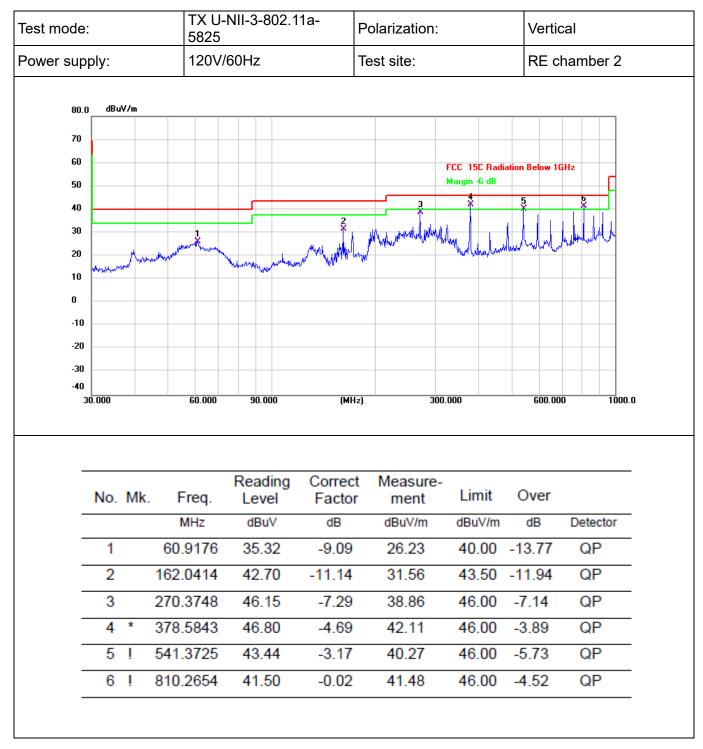


Report No.: MTi230805003-06E4

est mode:	:	5240	NII-1-802.11		olarization:		Horiz	contal
ower sup	ply:	120V/	60Hz	Te	est site:		RE c	hamber 2
80.0	dBuV/m							
70								
60						FCC 15C Radi	1	
50						Margin -6 dB		
40					3	4 X	5	6
30		<u>1</u>		×	N. J. Marcheller			
20	whow show all with	many marking	M. M. Manual	1-man Martine	planta provident and the	Wed with the man	1 March	Mum
10	whow what we want		American and a second	ΨΙ				
0								
-10								
-20								
-30								
-30 -40	0.000	60.000	90.000	(MHz)	300.	.000	600.00	0 1000.0
-30 -40	0.000 No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
-30 - 4 0		. Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Over dB	Detector
-30 - 4 0	No. Mk	. Freq. MHz 61.1316	Reading Level dBuV 35.12	Correct Factor dB -9.08	Measure- ment dBuV/m 26.04	Limit dBuV/m 40.00	Over dB -13.96	
-30 - 4 0	No. Mk	. Freq. MHz	Reading Level dBuV 35.12	Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m 40.00	Over dB	Detector
-30 -40	No. Mk	. Freq. MHz 61.1316	Reading Level dBuV 35.12	Correct Factor dB -9.08	Measure- ment dBuV/m 26.04	Limit dBuV/m 40.00	Over dB -13.96	Detector QP
-30 -40	No. Mk 1 2	. Freq. MHz 61.1316 162.0414	Reading Level dBuV 35.12 44.29	Correct Factor dB -9.08 -11.14	Measure- ment dBuV/m 26.04 33.15	Limit dBuV/m 40.00 43.50	Over dB -13.96 -10.35	Detector QP QP
-30 -40	No. Mk 1 2 3	. Freq. MHz 61.1316 162.0414 270.3748	Reading Level dBuV 35.12 44.29 46.71	Correct Factor dB -9.08 -11.14 -7.28	Measure- ment dBuV/m 26.04 33.15 39.43	Limit dBuV/m 40.00 43.50 46.00	Over dB -13.96 -10.35 -6.57	Detector QP QP QP



Radiated emissions between 30MHz – 1GHz

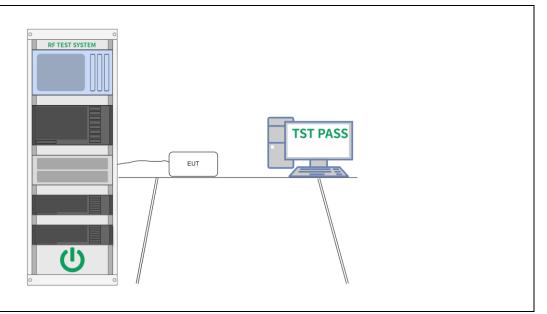


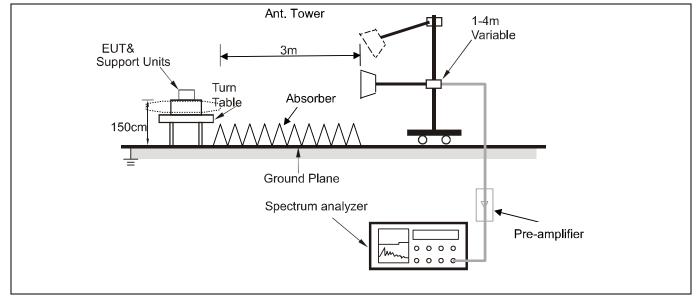
Radiated emissions between 30MHz – 1GHz

Radiated emissions between 30MHz – 1GHz

6.8 Undesirable emission limits (above 1GHz)

the 5.15-5.35 GHz or transmitters oper l emissions shall be ove or below the b love or below the b lge increasing linea e band edge, and fi	ating in the 5.15-5.2 band shall not excer ating solely in the 5. e limited to a level of and edge increasing and edge, and from arly to a level of 15.6 rom 5 MHz above or 7 dBm/MHz at the b MHz 16.42-16.423	ed an e.i.r.p. of 725-5.850 GHz ~27 dBm/MHz linearly to 10 d 25 MHz above dBm/MHz at 5 below the banc	-27 dBm/MHz. band: at 75 MHz or more Bm/MHz at 25 MH or below the band MHz above or belo d edge increasing
l emissions shall be ove or below the b ove or below the b lge increasing linea e band edge, and fi early to a level of 2 //Hz .090-0.110	e limited to a level of and edge increasing and edge, and from arly to a level of 15.6 rom 5 MHz above or 7 dBm/MHz at the b MHz	-27 dBm/MHz linearly to 10 d 25 MHz above dBm/MHz at 5 below the band and edge.	at 75 MHz or more Bm/MHz at 25 MH or below the band MHz above or belo d edge increasing
.090-0.110		MHz	
	16 12 16 122	1	GHz
0 495-0 505	10.42-10.423	399.9-410	4.5-5.15
	16.69475- 16.69525	608-614	5.35-5.46
.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
.125-4.128	25.5-25.67	1300-1427	8.025-8.5
.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
.215-6.218	74.8-75.2	1660-1710	10.6-12.7
.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
.31175-6.31225	123-138	2200-2300	14.47-14.5
.291-8.294	149.9-150.05	2310-2390	15.35-16.2
.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
2.29-12.293	167.72-173.2	3332-3339	31.2-31.8
2.51975- 2.52025	240-285	3345.8-3358	36.43-36.5
2.57675- 2.57725	322-335.4	3600-4400	(2)
3.36-13.41			
	.125-4.128 .17725-4.17775 .20725-4.20775 .20725-4.20775 .215-6.218 .26775-6.26825 .31175-6.31225 .291-8.294 .362-8.366 .37625-8.38675 .41425-8.41475 2.29-12.293 2.51975- 2.52025 2.57675- 2.57725 3.36-13.41	16.80475 .125-4.128 25.5-25.67 .17725-4.17775 37.5-38.25 .20725-4.20775 73-74.6 .215-6.218 74.8-75.2 .26775-6.26825 108-121.94 .31175-6.31225 123-138 .291-8.294 149.9-150.05 .362-8.366 156.52475- .37625-8.38675 156.7-156.9 .41425-8.41475 162.0125-167.17 2.29-12.293 167.72-173.2 2.51975- 240-285 2.57675- 322-335.4 2.57725 3.36-13.41	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


	following table:		
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Test Method:	ANSI C63.10-2013, se	ction 12.7.4, 12.7.5, 12.7.6	
Procedure:	Above 1GHz:		
	 meters above the group rotated 360 degrees to b. The EUT was set 3 methods which was mounted on c. The antenna height if ground to determine the and vertical polarization d. For each suspected then the antenna was the frequency of below 300 the rotatable table was maximum reading. e. The test-receiver system and with the method in the antenna was the frequency of below 300 the rotatable table was maximum reading. e. The test-receiver system and with the method is the rotatable table was maximum reading. e. The test-receiver system and with the method is the rotatable table was maximum reading. e. The test-receiver system and with the method is the report of the specified, then testing of would be reported. Othe would be reported in a g. Test the EUT in the function measurement. h. The radiation measurement is shown in this section. i. Repeat above proceed Remark: Level= Read Level+ Scan from 18GHz to The points marked on a when testing, so only a spurious emissions from below the limit need not a show by more than 20 emission shall not excert above by more than 20 emissions whose peak measurement is shown 4. The disturbance above by more than 20 emissions whose peak measurement is shown 4. The disturbance above by more than 20 emissions whose peak measurement is shown 4. The disturbance above by more than 20 emissions whose peak measurement is shown 4. The disturbance above by more than 20 emissions whose peak measurement is shown 4. The disturbance above by more than 20 emissions whose peak measurement is shown 4. The disturbance above by more than 20 emissions whose peak measurement is shown 4. The disturbance above by more than 20 emissions whose peak measurement is shown 4. The disturbance above by more than 20 emissions whose peak measurement is shown 4. The disturbance above by more than 20 emissions whose peak measurement is shown 4. The disturbance above by more than 20 emissions whose peak measurement is shown 4. The distu	of the EUT in peak mode was could be stopped and the pea erwise the emissions that did by one using peak or average data sheet. owest channel, the middle ch irements are performed in X, d found the X axis positioning dures until all frequencies me Cable Loss+ Antenna Factor 40GHz, the disturbance abo above plots are the highest e above points had been display in the radiator which are attend to be reported. tion, for frequencies above 1 erage limits. However, the pea- eed the maximum permitted a 0 dB under any condition of m level is lower than the avera	c chamber. The table was e highest radiation. rence-receiving antenna, antenna tower. our meters above the strength. Both horizontal nake the measurement. nged to its worst case and to 4 meters (for the test to heights 1 meter) and 0 degrees to find the Function and Specified a 10dB lower than the limit ak values of the EUT d not have 10dB margin ge method as specified hannel, the Highest Y, Z axis positioning for g which it is the worst asured was complete. r- Preamp Factor ove 18GHz was very low. missions could be found yed. The amplitude of nuated more than 20dB GHz, the field strength ak field strength of any average limits specified hodulation. For the ge limit, only the peak


6.8.1 E.U.T. Operation:

Operating Env	ironment:					
Temperature:	15.7 °C		Humidity:	25.5 %	Atmospheric Pressure:	99 kPa
Test mode:		Mod Mod		Mode3, Mode4	, Mode5, Mode6, Mode7,	Mode5, Mode6,
Final test mode	e:	Mode	e1			
attenuated mo	re than 20) dB b	elow the lim	its are not repo	e amplitude of spurious en orted. I only the worst-case resu	

6.8.2 Test Setup Diagram:

6.8.3 Test Setup Diagram:

Page 42 of 159

Mode1 / F	Polariz	atio	n: Horizonta	I / Band: 5G	G / BW: 20 /	/ CH: 36 / U-	NII 1		
-	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
-			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
-	1		10360.000	43.05	13.10	56.15	68.20	-12.05	peak
-	2		10360.000	32.26	13.10	45.36	54.00	-8.64	AVG
-	3		15540.000	11.36	47.56	58.92	74.00	-15.08	peak
-	4	*	15540.000	-0.14	47.56	47.42	54.00	-6.58	AVG

Mode1 / Polarization:	Vertical /	Band: 5G	/ BW · 20 /	CH: 36 / U-NII 1
	v crticar /	Dana. 50 /	DVV. 207	01.00/0-1011

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		10360.000	43.53	13.10	56.63	68.20	-11.57	peak
2		10360.000	32.18	13.10	45.28	54.00	-8.72	AVG
3		15540.000	12.69	47.56	60.25	74.00	-13.75	peak
4	*	15540.000	2.53	47.56	50.09	54.00	-3.91	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detecto
1	1	0440.000	43.07	13.04	56.11	68.20	-11.89	peal
2	1	0440.000	32.24	13.04	45.28	54.00	-8.72	AVG
3	1	5660.000	11.38	46.87	58.25	74.00	-15.75	peal
4	* 1	5660.000	0.94	46.87	47.81	54.00	-6.19	AVG

Mode1 /	[/] Polariz	ation: Vertic	al / Band: 5G	/ BW: 20 / CH	l: 44/ U-NII 1			
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	10	440.000	42.23	13.04	55.27	68.20	-12.93	peak
2	10	440.000	31.82	13.04	44.86	54.00	-9.14	AVG
3	15	660.000	11.77	46.87	58.64	74.00	-15.36	peak
4	* 15	660.000	1.42	46.87	48.29	54.00	-5.71	AVG

Mode1 / Polai	riza	tion: Horizonta	al / Band: 5	5G / BW: 20	/ CH: 48 /	U-NII 1	
		MHz	dBuV	dB	dBuV/m	dBuV/m dB	Detector
1		10480.000	42.89	12.94	55.83	68.20 -12.37	peak
2		10480.000	32.67	12.94	45.61	54.00 -8.39	AVG
3		15720.000	11.53	46.86	58.39	74.00 -15.61	peak
4	*	15720.000	0.99	46.86	47.85	54.00 -6.15	AVG

No.	Μ	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		10480.000	42.40	12.94	55.34	68.20	-12.86	peak
2		10480.000	32.38	12.94	45.32	54.00	-8.68	AVG
3		15720.000	11.39	46.86	58.25	74.00	-15.75	peak
4	*	15720.000	0.96	46.86	47.82	54.00	-6.18	AVG

Mode1 /	[/] Polariz	ation: Horizo	ontal / Band: 50	G / BW: 20 / C	CH: 149 / U-NII 3	3		
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	11	490.000	10.00	48.62	58.62	74.00	-15.38	peak
2	11	490.000	-1.37	48.62	47.25	54.00	-6.75	AVG
3	17	235.000	12.49	48.39	60.88	74.00	-13.12	peak
4	* 17	235.000	2.25	48.39	50.64	54.00	-3.36	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	11	490.000	9.42	48.62	58.04	74.00	-15.96	peak
2	11	490.000	-0.98	48.62	47.64	54.00	-6.36	AVG
3	17	235.000	12.32	48.39	60.71	74.00	-13.29	peak
4	* 17	235.000	1.88	48.39	50.27	54.00	-3.73	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	11	568.000	10.28	48.34	58.62	74.00	-15.38	peak
2	11	568.000	-1.09	48.34	47.25	54.00	-6.75	AVG
3	17	355.000	12.56	48.58	61.14	74.00	-12.86	peak
4	* 17	355.000	2.08	48.58	50.66	54.00	-3.34	AVG

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		11568.000	9.62	48.34	57.96	74.00	-16.04	peak
2		11568.000	-1.09	48.34	47.25	54.00	-6.75	AVG
3		17355.000	13.63	48.58	62.21	74.00	-11.79	peak
4	*	17355.000	2.16	48.58	50.74	54.00	-3.26	AVG

Page 47 of 159

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		11650.000	9.87	47.96	57.83	74.00	-16.17	peak
2		11650.000	-1.71	47.96	46.25	54.00	-7.75	AVG
3		17475.000	12.00	48.95	60.95	74.00	-13.05	peak
4	*	17475.000	1.46	48.95	50.41	54.00	-3.59	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	11	650.000	9.98	47.96	57.94	74.00	-16.06	peak
2	11	650.000	-1.60	47.96	46.36	54.00	-7.64	AVG
3	17	475.000	11.56	48.95	60.51	74.00	-13.49	peak
4	* 17	475.000	0.81	48.95	49.76	54.00	-4.24	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

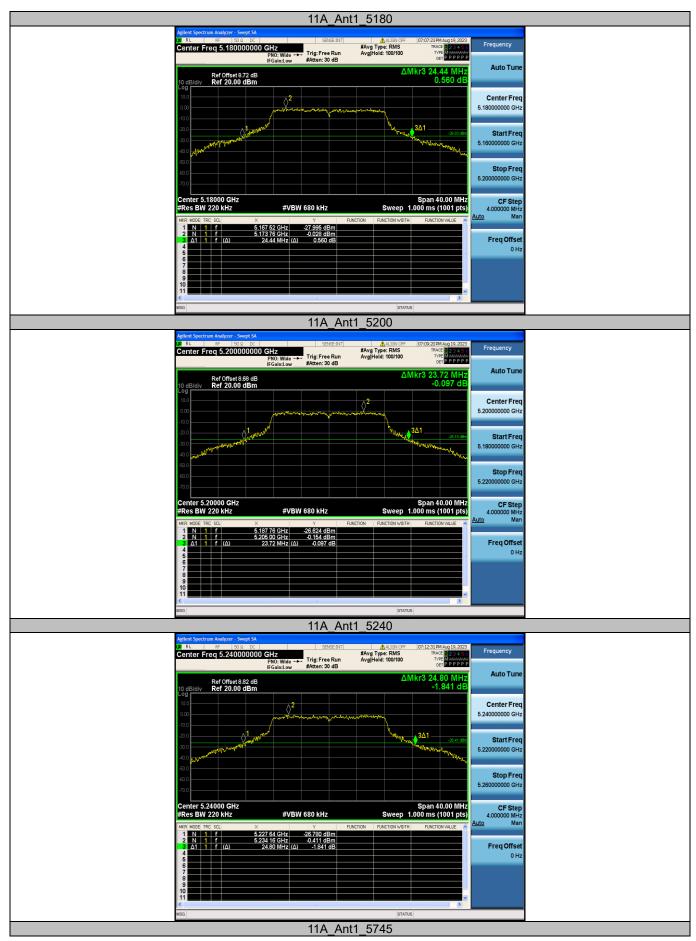
Page 49 of 159

Photographs of the EUT

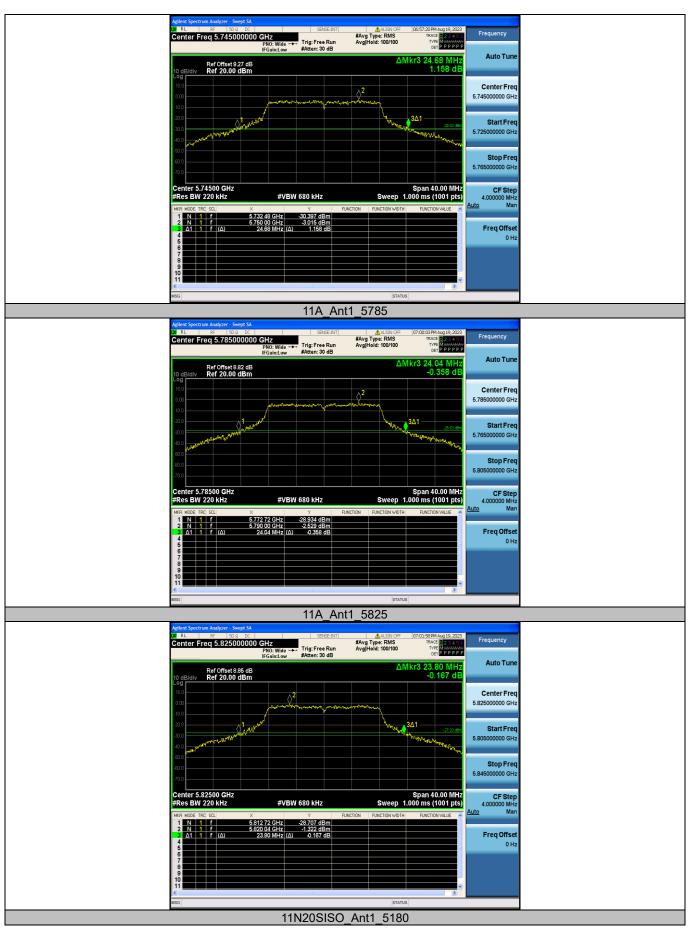
Refer to Appendix – EUT Photos

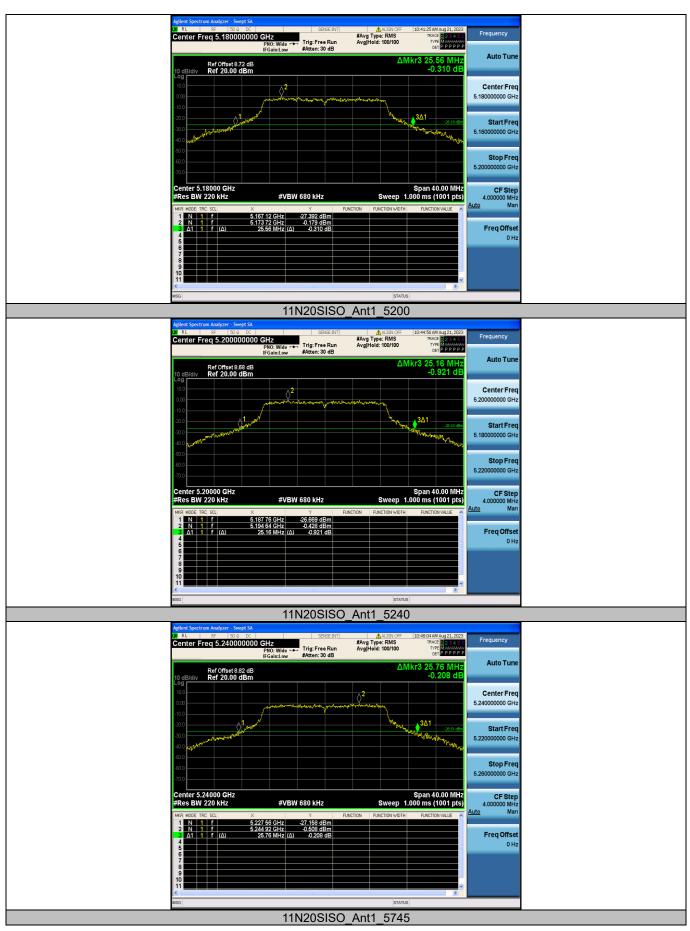
Appendix

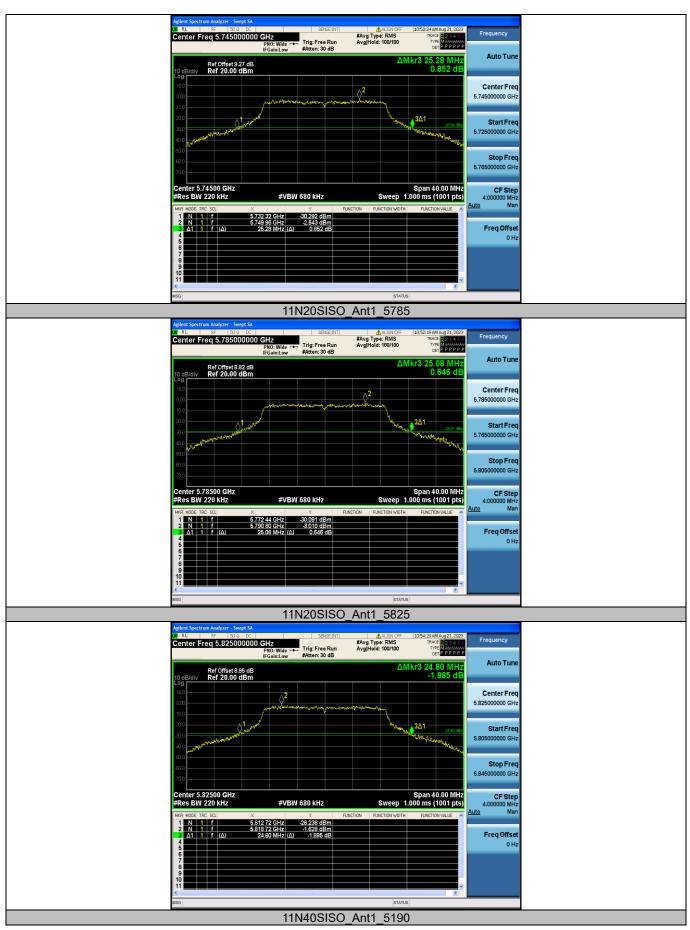
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com

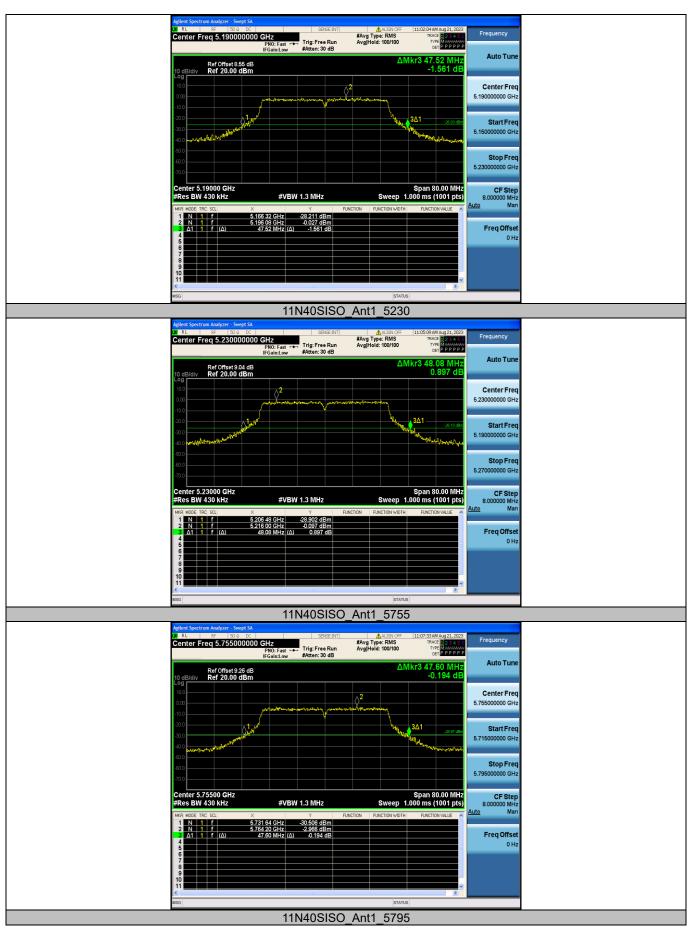

6.9 Appendix A1: Emission Bandwidth

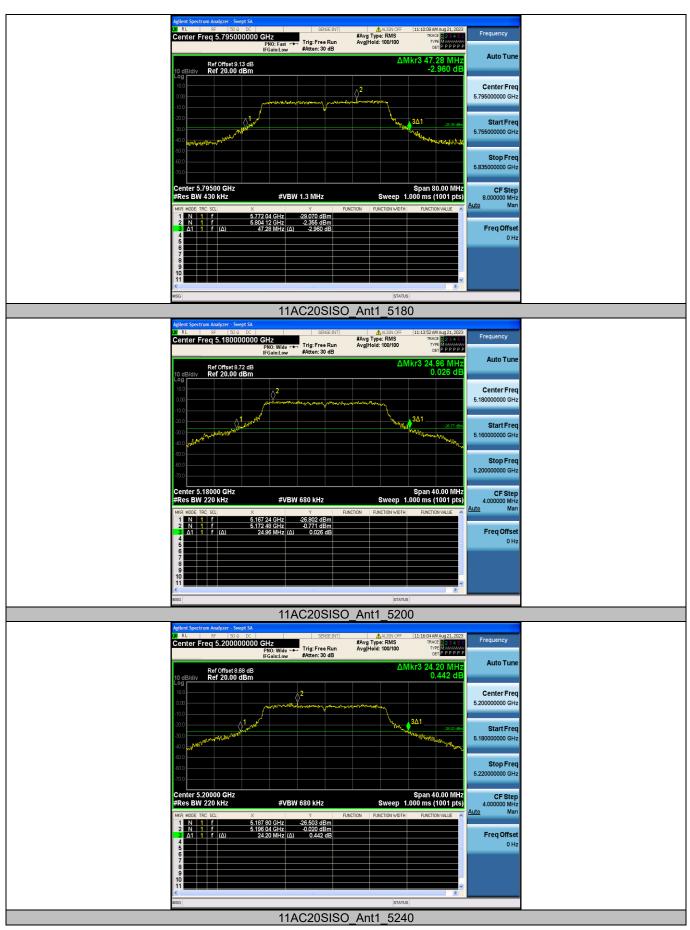
6.9.1 Test Result

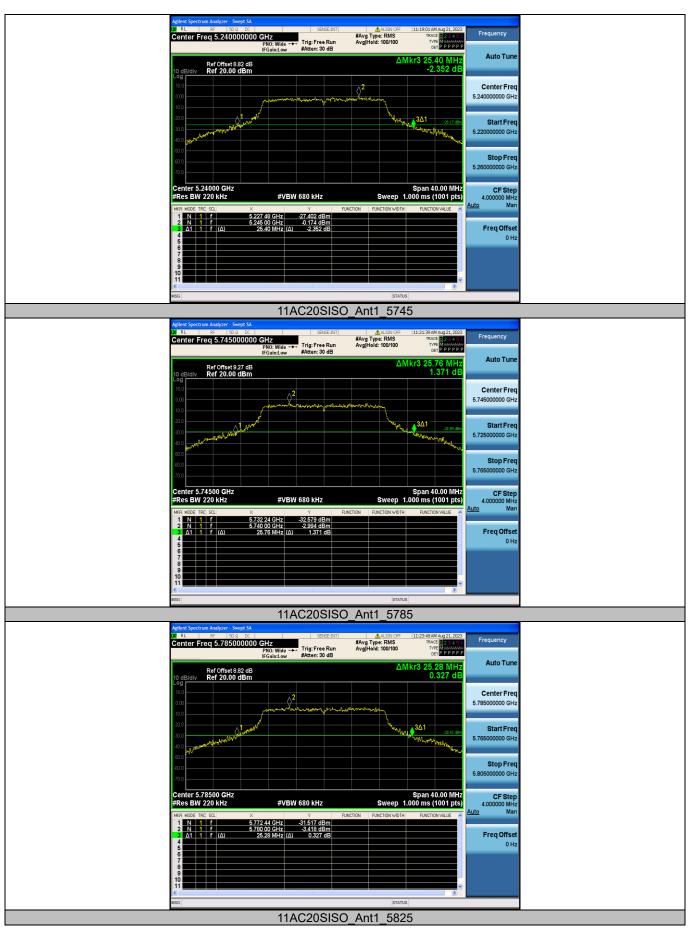

TestMode	Antenna	Freq(MHz)	26db EBW [MHz]
	Ant1	5180	24.440
		5200	23.720
11A		5240	24.800
IIA		5745	24.680
		5785	24.040
		5825	23.800
		5180	25.560
		5200	25.160
4411000100	A 14	5240	25.760
11N20SISO	Ant1	5745	25.280
		5785	25.080
		5825	24.800
		5190	47.520
	Ant1	5230	48.080
11N40SISO		5755	47.600
		5795	47.280
		5180	24.960
		5200	24.200
		5240	25.400
11AC20SISO	Ant1	5745	25.760
		5785	25.280
		5825	24.920
		5190	47.920
	• • •	5230	46.960
11AC40SISO	Ant1	5755	47.040
		5795	49.360
		5180	24.840
		5200	24.400
		5240	25.880
11AX20SISO	Ant1	5745	24.280
		5785	23.840
		5825	24.600
		5190	45.840
	• • •	5230	45.680
11AX40SISO	Ant1	5755	45.200
		5795	45.760

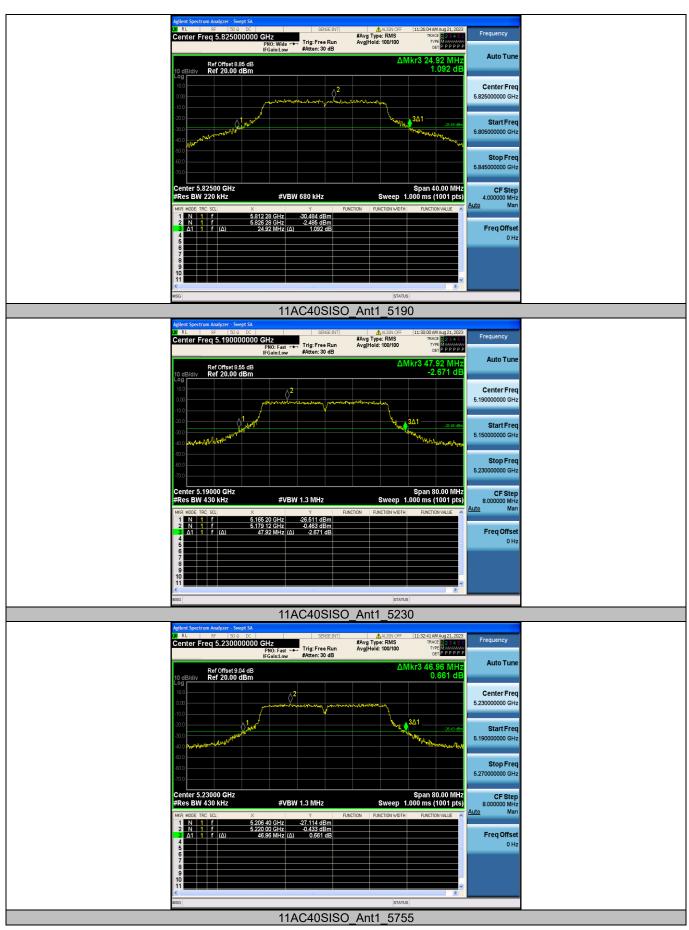

6.9.2 Test Graphs

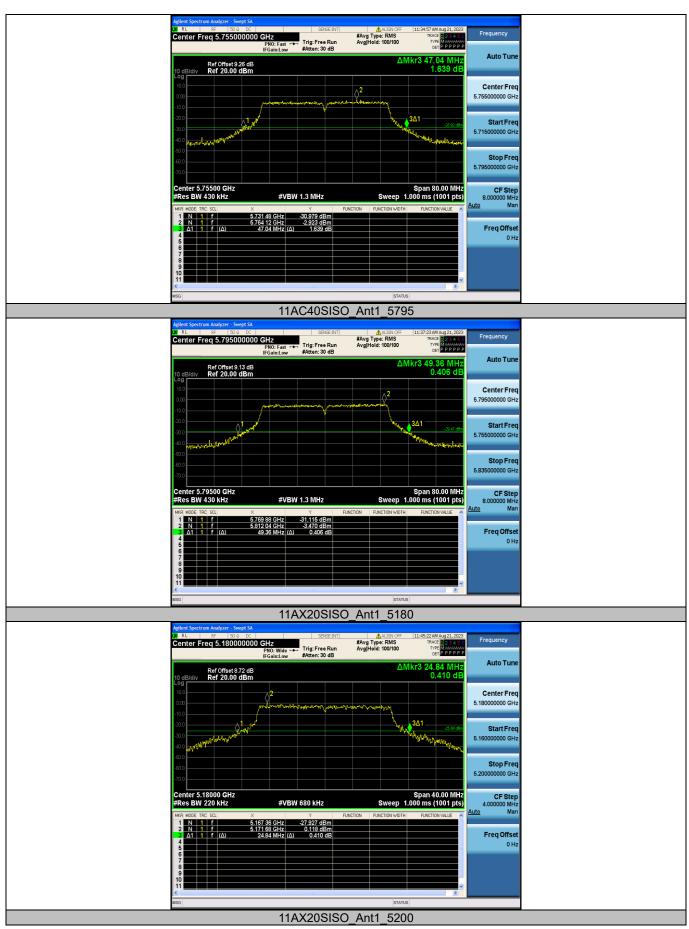


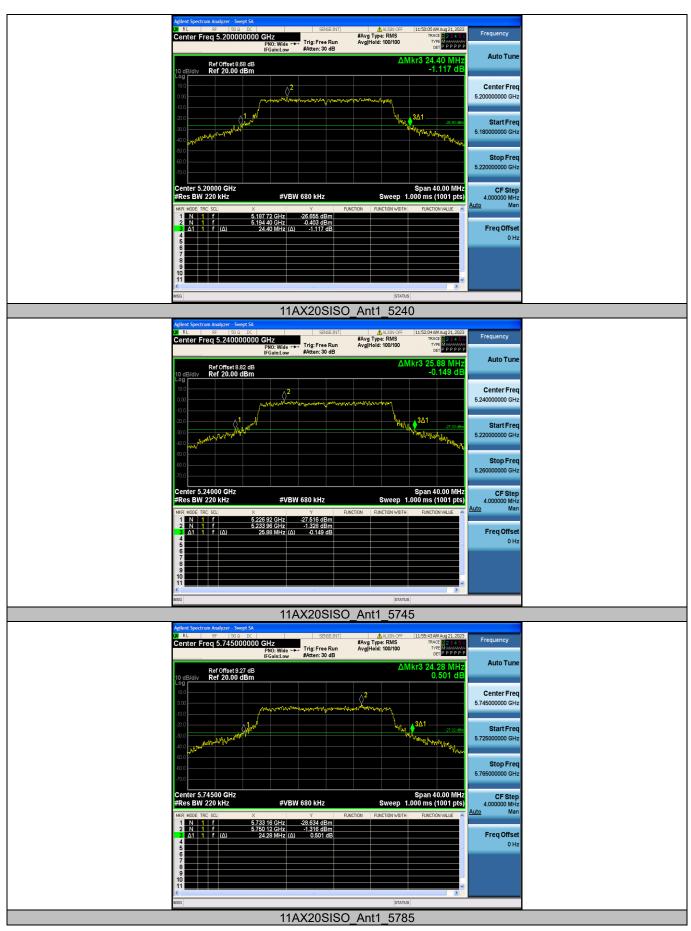


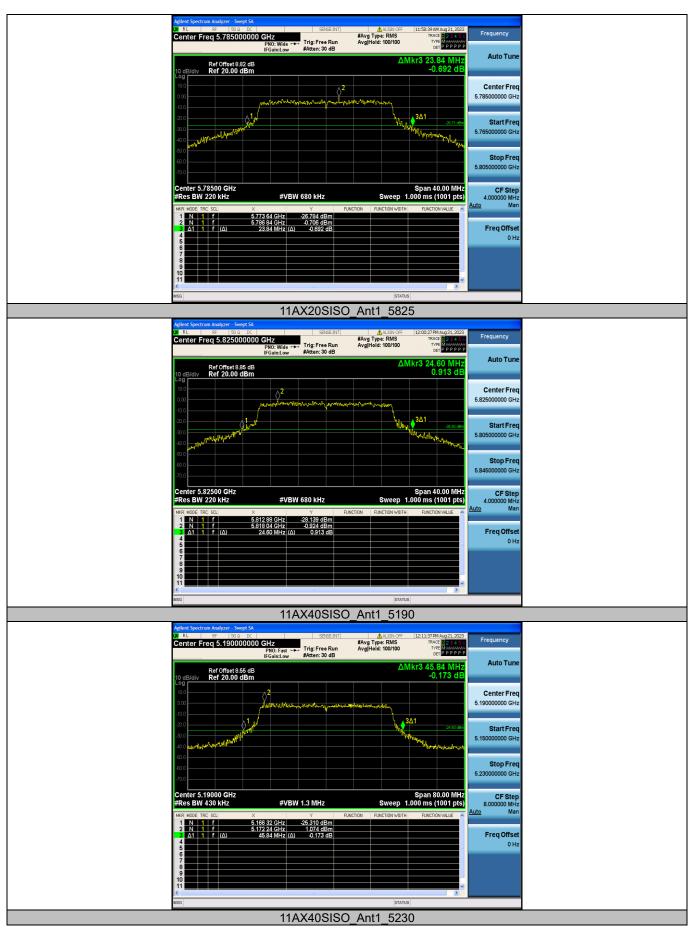


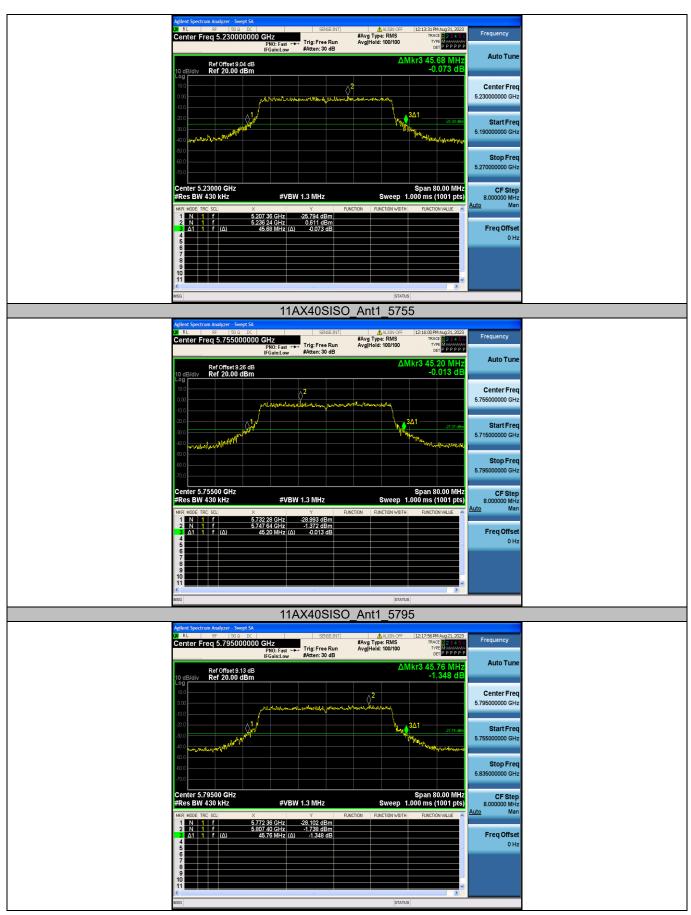


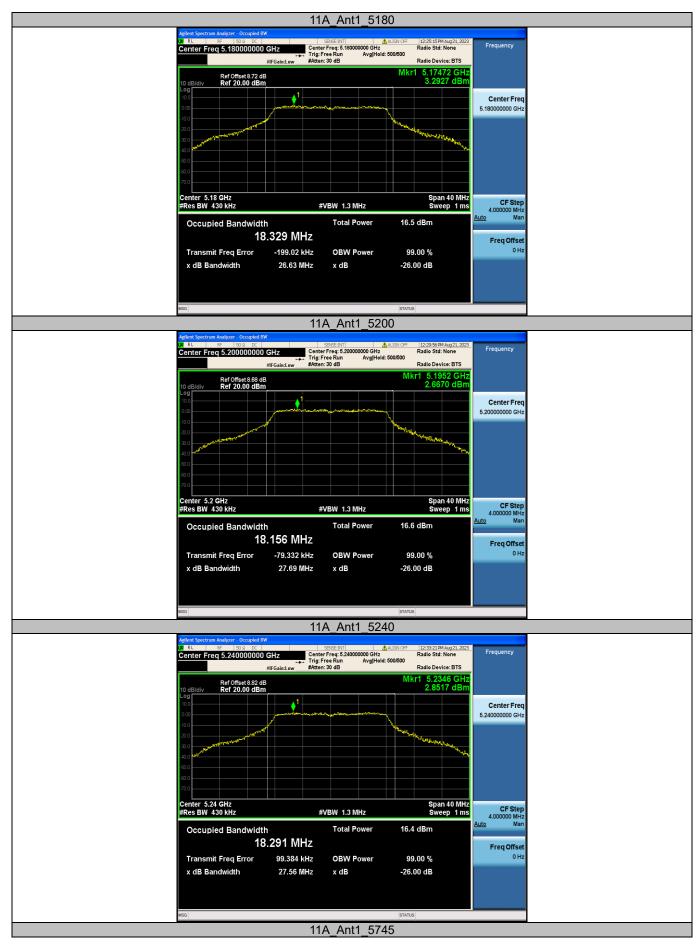











6.10 Appendix A2: Occupied channel bandwidth

6.10.1 Test Result

TestMode	Antenna	Freq(MHz)	OCB [MHz]	FL[MHz]	FH[MHz]
		5180	18.329	5170.6365	5188.9655
		5200	18.156	5190.8427	5208.9987
11A	Ant1	5240	18.291	5230.9539	5249.2449
IIA	Anti	5745	18.305	5735.7286	5754.0336
		5785	18.115	5775.9194	5794.0344
		5825	17.889	5815.9495	5833.8385
		5180	19.259	5170.2845	5189.5435
		5200	19.143	5190.4413	5209.5843
111000100	A	5240	19.330	5230.4801	5249.8101
11N20SISO	Ant1	5745	19.226	5735.4438	5754.6698
		5785	19.184	5775.4779	5794.6619
		5825	19.098	5815.4352	5834.5332
		5190	37.540	5171.1840	5208.7240
441400100	Ant1	5230	37.623	5211.3141	5248.9371
11N40SISO		5755	37.597	5736.2111	5773.8081
		5795	37.629	5776.3166	5813.9456
		5180	19.295	5170.2605	5189.5555
		5200	19.116	5190.4380	5209.5540
11AC20SISO	Ant1	5240	19.248	5230.5297	5249.7777
TIAC203130	Anti	5745	19.268	5735.3525	5754.6205
		5785	19.158	5775.4479	5794.6059
		5825	19.100	5815.3955	5834.4955
		5190	37.612	5171.1033	5208.7153
11AC40SISO	Ant1	5230	37.609	5211.2429	5248.8519
TIAC403130	Anti	5755	37.678	5736.1773	5773.8553
		5795	37.658	5776.3277	5813.9857
		5180	19.697	5170.1313	5189.8283
		5200	19.637	5190.2303	5209.8673
11AX20SISO	Ant1	5240	19.720	5230.2638	5249.9838
1147203130	Anti	5745	19.658	5735.1907	5754.8487
		5785	19.594	5775.2528	5794.8468
		5825	19.632	5815.1975	5834.8295
		5190	38.364	5170.7006	5209.0646
11AX40SISO	Ant1	5230	38.401	5210.8234	5249.2244
1147403130	AILU	5755	38.376	5735.8088	5774.1848
		5795	38.391	5775.8325	5814.2235

6.10.2 Test Graphs

