

FCC PART 15C TEST REPORT No.24T04Z100816-016

for

Shenzhen Tinno Mobile Technology Corp.

Smart Phone

U655AA, U655AC

FCC ID: XD6U655AA

with

Hardware Version: V1.0

Software Version: U655AAV01.03_9.10/U655ACV01.02.10

Issued Date: 2024-07-05

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL-Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191. Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504 Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
24T04Z100816-016	Rev.0	1st edition	2024-07-05

Note: the latest revision of the test report supersedes all previous version.

CONTENTS

1.	TE	ST LABORATORY	. 5
1	.1.	INTRODUCTION & ACCREDITATION	. 5
1	.2.	TESTING LOCATION	. 5
1	.3.	Testing Environment	. 5
1	.4.	PROJECT DATE	. 5
1	.5.	SIGNATURE	. 5
2.	CL	IENT INFORMATION	. 6
2	.1.	Applicant Information	6
		MANUFACTURER INFORMATION	
3.		UIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	
	-		
	.1.	ABOUT EUT	
_	.2.	INTERNAL IDENTIFICATION OF EUT	
-	.3.	INTERNAL IDENTIFICATION OF AE	
_	.4.	GENERAL DESCRIPTION	
3	.5.	INTERPRETATION OF THE TEST ENVIRONMENT	. 8
4.	RE	FERENCE DOCUMENTS	. 9
4	.1.	DOCUMENTS SUPPLIED BY APPLICANT	. 9
4	.2.	REFERENCE DOCUMENTS FOR TESTING	. 9
5.	LA	BORATORY ENVIRONMENT	10
6.	ТЕ	ST RESULTS	11
6	.1.	SUMMARY OF TEST RESULTS	11
-	.2.	STATEMENTS.	
6	.3.	TEST CONDITIONS	11
7.	те	ST FACILITIES UTILIZED	
8.	MF	ASUREMENT UNCERTAINTY	13
8	.1.	MAXIMUM OUTPUT POWER	13
8	.2.	PEAK POWER SPECTRAL DENSITY	13
8	.3.	DTS 6-DB SIGNAL BANDWIDTH	13
8	.4.	BAND EDGES COMPLIANCE	
8	.5.	TRANSMITTER SPURIOUS EMISSION	
8	.6.	RADIATED UNWANTED EMISSION	
8	.7.	AC POWER-LINE CONDUCTED EMISSION	13
AN	NEX	A: DETAILED TEST RESULTS	14
A.1	. ME	ASUREMENT METHOD	14
A.2	. MA	XIMUM OUTPUT POWER	15
©Co	opyrig	ht. All rights reserved by CTTL. Page 3 of 68	

A.2.1 ANTENNA GAIN	
A.2.2. PEAK OUTPUT POWER-CONDUCTED	15
A.3. PEAK POWER SPECTRAL DENSITY	17
A.4. DTS 6-DB SIGNAL BANDWIDTH	23
A.5. BAND EDGES COMPLIANCE	29
A.6. TRANSMITTER SPURIOUS EMISSION	33
A.6.1 TRANSMITTER SPURIOUS EMISSION – CONDUCTED	33
A.7. RADIATED UNWANTED EMISSION	49
A.8. AC POWER-LINE CONDUCTED EMISSION	64
ANNEX B: EUT PARAMETERS	68
ANNEX C: ACCREDITATION CERTIFICATE	68

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2017 accredited test laboratory under American Association for Laboratory Accreditation (A2LA) with lab code 7049.01, and is also an FCC accredited test laboratory (CN1349), and ISED accredited test laboratory (CAB identifier:CN0066). The detail accreditation scope can be found on A2LA website.

1.2. Testing Location

Location 1:CTTL(Hu	uayuan North Road)
Address:	No. 52, Huayuan North Road, Haidian District, Beijing,
	P. R. China100191
Location 2:CTTL(Sh	nouxiang)
Address:	No.18A, Kangding Street, Beijing Economic-Technology
	Development Area, Beijing, P. R. China 100176

1.3. Testing Environment

Normal Temperature:	15-35°C
Relative Humidity:	20-75%

1.4. Project date

Testing Start Date:	2024-05-10
Testing End Date:	2024-07-04

1.5. Signature

Zenafe_

Dong Jiaxuan (Prepared this test report)

20 %

Zheng Wei (Reviewed this test report)

Pang Shuai (Approved this test report)

2. <u>Client Information</u>

2.1. Applicant Information

Company Name:	Shenzhen Tinno Mobile Technology Corp.	
	27-001, South Side of Tianlong Mobile Headquarters Building,	
Address:	Tongfa South Road, Xili Community, Xili Street, Nanshan District, Sh	
	enzhen, PRC	
Contact:	xiaoping.li	
Email:	xiaoping.li@tinno.com	
Telephone:	0755-86095550	
Fax:	0755-86095551	

2.2. Manufacturer Information

Company Name:	Shenzhen Tinno Mobile Technology Corp.	
	27-001, South Side of Tianlong Mobile Headquarters Building,	
Address:	Tongfa South Road, Xili Community, Xili Street, Nanshan District, Sh	
	enzhen, PRC	
Contact:	xiaoping.li	
Email:	xiaoping.li@tinno.com	
Telephone:	0755-86095550	
Fax:	0755-86095551	

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description	Smart Phone
Model name	U655AA, U655AC
FCC ID	XD6U655AA
With WLAN Function	Yes
Frequency Band	ISM 2400MHz~2483.5MHz
Type of Modulation	DSSS/CCK/OFDM
Number of Channels	11
Antenna	Integral Antenna
MAX Conducted Power	25.04dBm
Nominal Voltage	3.85V

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
UT36a	861709070010412	V1.0	U655AAV01.03_9.10	2024-05-15
UT43a	861709070008598	V1.0	U655AAV01.03_9.10	2024-05-15
UT44a	861709070008689	V1.0	U655AAV01.03_9.10	2024-05-15

*EUT ID: is used to identify the test sample in the lab internally.

UT36a is used for Conduction test, UT43a and UT44a is used for Radiation test.

3.3. Internal Identification of AE

AE ID*	Description	Model	Manufacturer
AE1-1	Battery	486786	Guangdong Fenghua New Energy Co.,Ltd.
AE2-1	Charger	TN-050200U3	Guangdong Beicom Electronics Co.,Ltd
AE3-1	USB Cable	T365-011B-1	Shenzhen Yihuaxing Electronics Co. Ltd.
AE3-2	USB Cable	336275	SUNTOPS (SHENZHEN) ELECTRONICS CO., LTD.

*AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of Smart Phone with integrated antenna and inbuilt battery.

It consists of normal options: travel charger, USB cable.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

3.5. Interpretation of the Test Environment

For the test methods, the test environment uncertainty figures correspond to an expansion factor k=2.

Measurement Uncertainty

Parameter	Uncertainty
temperature	0.48°C
humidity	2 %
DC voltages	0.003V

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	2021
	15.247 Operation within the bands 902-928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
ANSI C03.10	Testing of Unlicensed Wireless Devices	2013
	Federal Communications Commission Office of	
	Engineering and Technology Laboratory Division	
	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON	
KDB 558074 D01	DIGITAL TRANSMISSION SYSTEM, FREQUENCY	2019
	HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID	
	SYSTEM DEVICES OPERATING UNDER SECTION	
	15.247 OF THE FCC RULES	

5. LABORATORY ENVIRONMENT

Conducted RF performance testing is performed in shielding room.

EMC performance testing is performed in Semi-anechoic chamber.

6. Test Results

6.1. Summary of Test Results

SUMMARY OF MEASUREMENT RESULTS	Sub-clause of Part15C	Sub-clause of IC	Verdict
Maximum Peak Output Power	15.247 (b)	1	Р
Peak Power Spectral Density	15.247 (e)	1	Р
Occupied 6dB Bandwidth	15.247 (a)	1	Р
Band Edges Compliance	15.247 (d)	1	Р
Transmitter Spurious Emission - Conducted	15.247 (d)	1	Р
Radiated Unwanted Emission	15.247, 15.205, 15.209	1	Р
AC Powerline Conducted Emission	15.107, 15.207	1	Р

Please refer to **ANNEX A** for detail.

Terms used in Verdict column

Р	Pass, The EUT complies with the essential requirements in the standard.		
NP	Not Perform, The test was not performed by CTTL		
NA	Not Applicable, The test was not applicable		
F	Fail, The EUT does not comply with the essential requirements in the standard		

6.2. <u>Statements</u>

CTTL has evaluated the test cases as listed in section 6.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.

This report only deals with the WLAN function among the features described in section 3.

6.3. Test Conditions

For this report, all the test cases are tested under normal temperature and normal voltage, and also under norm humidity, the specific condition is shown as follows:

Temperature	26°C
Voltage	3.85V
Humidity	44%

7. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial	Manufacturer	Calibration	Calibration
NO.	Equipment	WOUEI	Number	Manuacturer	Period	Due date
1	Vector Signal	FSQ40	200089	Rohde &	1 voor	2024-07-04
	Analyzer	F3Q40	200069	Schwarz	1 year	2024-07-04
2	Vector Signal	FSW67	104051	Rohde &	1 voor	2025-04-06
2	Analyzer	F3W07	104051	Schwarz	1 year	2025-04-06
3	Test Receiver	ESCI 3	100766	R&S	1 year	2025-05-18
4	LISN	ENV216	101459	R&S	1 year	2025-06-16
5	Attenuator	10dB/2W	/	Rosenberger	/	/
6	Shielding Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Test Receiver	FSV40	101047	R&S	1 year	2025-03-06
2	Test Receiver	ESU26	100376	R&S	1 year	2024-11-08
3	EMI Antenna	VULB 9163	302	SCHWARZBE CK	1 year	2024-08-28
4	EMI Antenna	3117	00119024	ETS-Lindgren	1 year	2024-08-13
5	EMI Antenna	LB-180400 -25-C-KF	J211060826	A-INFO	1 year	2024-07-11

8. <u>Measurement Uncertainty</u>

8.1. Maximum Output Power

Measurement Uncertainty: 0.387dB,k=1.96

8.2. Peak Power Spectral Density

Measurement Uncertainty: 0.705dB,k=1.96

8.3. DTS 6-dB Signal Bandwidth

Measurement Uncertainty: 60.80Hz,k=1.96

8.4. Band Edges Compliance

Measurement Uncertainty : 0.62dB,k=1.96

8.5. Transmitter Spurious Emission

Conducted (k=1.96)

Frequency Range	Uncertainty(dB)
30MHz ≤ f ≤ 2GHz	1.22
2GHz ≤ f ≤3.6GHz	1.22
3.6GHz ≤ f ≤8GHz	1.22
8GHz ≤ f ≤12.75GHz	1.51
12.75GHz ≤ f ≤26GHz	1.51
26GHz ≤ f ≤40GHz	1.59

8.6. Radiated Unwanted Emission

Frequency Range	Uncertainty(dB) k=2
9kHz-30MHz	/
30MHz ≤ f ≤ 1GHz	5.73
1GHz ≤ f ≤18GHz	5.58
18GHz ≤ f ≤40GHz	3.37

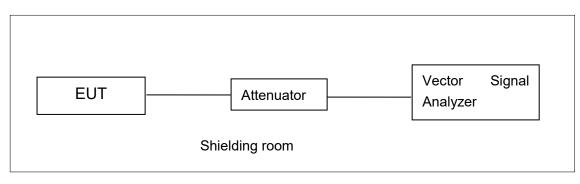
8.7. AC Power-line Conducted Emission

Measurement Uncertainty : 3.10dB,k=2

ANNEX A: Detailed Test Results

A.1. Measurement Method

A.1.1. Conducted Measurements


Connect the EUT to the test system as Fig.A.1.1.1 shows.

Set the EUT to the required work mode.

Set the EUT to the required channel.

Set the Vector Signal Analyzer and start measurement.

Record the values. Vector Signal Analyzer

Fig.A.1.1.1: Test Setup Diagram for Conducted Measurements

A.1.2. Radiated Emission Measurements

The measurement is made according to ANSI C63.10

The radiated emission test is performed in semi-anechoic chamber. The EUT was placed on a non-conductive table with 80cm above the ground plane for measurement below 1GHz and 1.5m above the ground plane for measurement above 1GHz. The measurement antenna was placed at a distance of 3 meters from the EUT. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated from 0° to 360° and the measurement antenna is moved from 1m to 4m to get the maximization result. The maximization process was repeated with the EUT positioned in each of its three orthogonal orientation.

A.2. Maximum Output Power

Method of Measurement: See ANSI C63.10-2013-clause 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)	< 30

A.2.1 Antenna Gain

Antenna gain is 1.35dBi and the value is supplied by the applicant or manufacturer.

A.2.2. Peak Output Power-conducted

EUT ID: UT36a

Measurement Results:

802.11b/g mode

	Data Rate	Test Result (dBm)		
Mode	(Mbps)	2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)
	1	21.37	21.91	21.82
802.11b	2	/	1	/
002.110	5.5	/	1	/
	11	/	1	/
	6	23.00	25.04	21.68
	9	/	1	/
	12	/	1	/
002.11~	18	/	1	/
802.11g -	24	/	1	/
	36	/	1	/
	48	/	1	/
	54	/	1	/

The data rate 1Mbps and 6Mbps are selected as worst condition, and the following cases are performed with this condition.

802.11n-HT20 mode

Mode	Data Rate	Test Result (dBm)		
	(Index)	2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)
	MCS0	22.36	24.68	21.19
	MCS1	/	/	/
	MCS2	1	/	/
802.11n	MCS3	/	/	/
(20MHz)	MCS4	/	/	/
	MCS5	1	/	/
	MCS6	/	/	/
	MCS7		/	/

The data rate MCS0 is selected as worst condition, and the following cases are performed with this condition.

duty cycle

Mode	11b	11g	11n- 20M
Duty Cycle	100%	100%	100%

Conclusion: Pass

A.3. Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-2013-clause 11.10.2

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to RBW = 3 kHz.
- d) Set the VBW = 10 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247(e)	< 8 dBm/3 kHz

EUT ID: UT36a

Measurement Results:

802.11b/g mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion
	1	Fig.A.3.1	-3.74	Р
802.11b	6	Fig.A.3.2	-2.94	Р
	11	Fig.A.3.3	-2.76	Р
	1	Fig.A.3.4	-8.24	Р
802.11g	6	Fig.A.3.5	-7.79	Р
	11	Fig.A.3.6	-10.30	Р

802.11n-HT20 mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion
802.11n	1	Fig.A.3.7	-8.23	Р
(HT20)	6	Fig.A.3.8	-7.77	Р
(H120)	11	Fig.A.3.9	-11.17	Р

Test graphs as below:

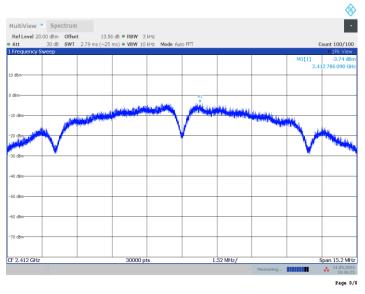


Fig.A.3.1 Power Spectral Density(802.11b,Ch1)

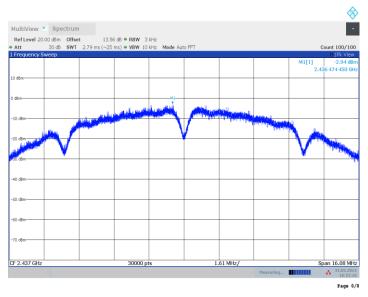


Fig.A.3.2 Power Spectral Density (802.11b, Ch 6)

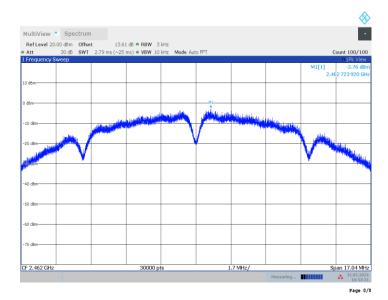


Fig.A.3.3 Power Spectral Density (802.11b, Ch 11)

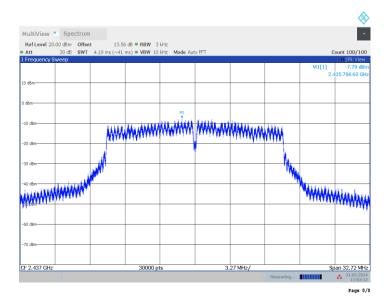


Fig.A.3.5 Power Spectral Density (802.11g, Ch 6)

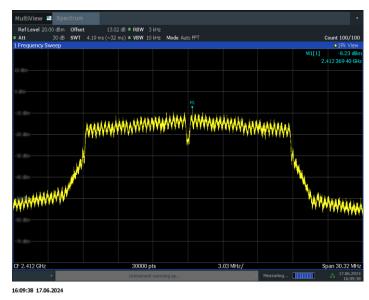


Fig.A.3.7 Power Spectral Density (802.11n-HT20, Ch 1)

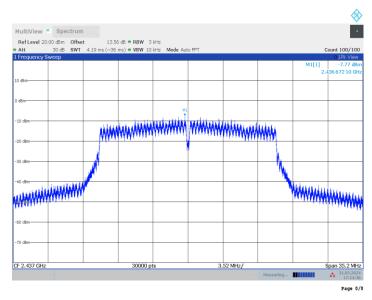


Fig.A.3.8 Power Spectral Density (802.11n-HT20, Ch 6)

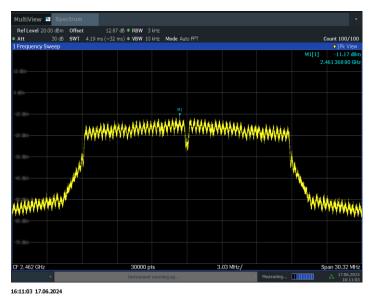


Fig.A.3.9 Power Spectral Density (802.11n-HT20, Ch 11)

Conclusion: Pass

A.4. DTS 6-dB Signal Bandwidth

Method of Measurement: See ANSI C63.10-2013 section 11.8.1.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) = 300 kHz.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

EUT ID: UT36a

Measurement Result:

802.11b/g mode

Mode	Channel	DTS Bandwidth (MHz)		conclusion
	1	Fig.A.4.1	7.60	Р
802.11b	6	Fig.A.4.2	8.04	Р
	11	Fig.A.4.3	8.52	Р
	1	Fig.A.4.4	15.16	Р
802.11g	6	Fig.A.4.5	16.36	Р
	11	Fig.A.4.6	15.16	Р

802.11n-HT20 mode

Mode	Channel	DTS Bandwidth (MHz)		conclusion
900 11m	1	Fig.A.4.7	15.16	Р
802.11n	6	Fig.A.4.8	17.60	Р
(HT20)	11	Fig.A.4.9	15.16	Р

Test graphs as below:

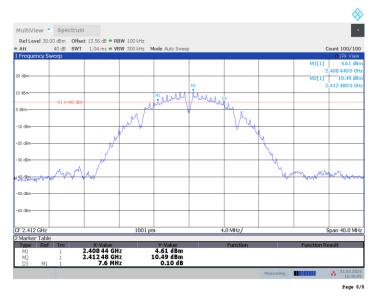


Fig.A.4.1 DTS Bandwidth(802.11b,Ch 1)

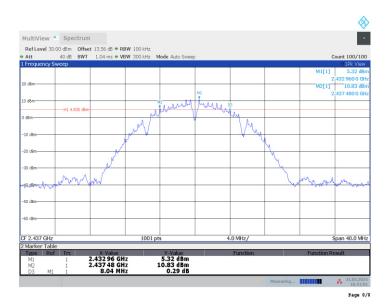


Fig.A.4.2 DTS Bandwidth (802.11b, Ch 6)

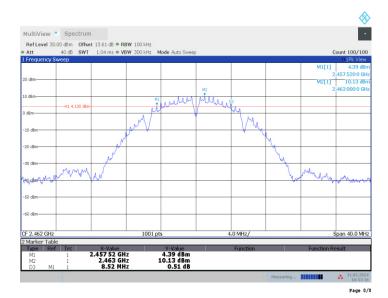


Fig.A.4.3 DTS Bandwidth (802.11b, Ch 11)

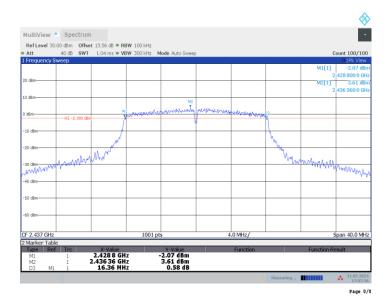


Fig.A.4.5 DTS Bandwidth (802.11g, Ch 6)

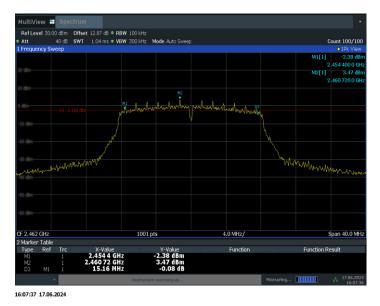


Fig.A.4.6 DTS Bandwidth (802.11g, Ch 11)

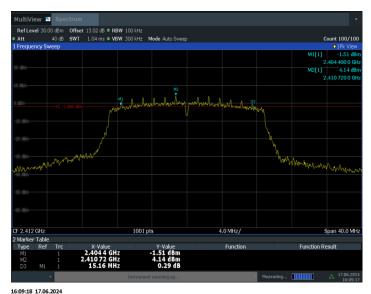


Fig.A.4.7 DTS Bandwidth (802.11n-20MHz, Ch 1)

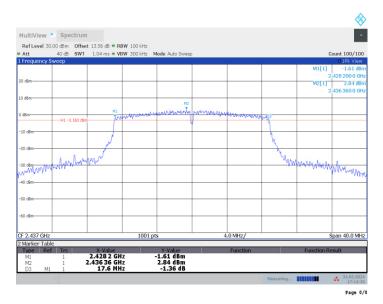


Fig.A.4.8 DTS Bandwidth (802.11n-HT20, Ch 6)

Fig.A.4.9 DTS Bandwidth (802.11n-HT20, Ch 11)

Conclusion: Pass

A.5. Band Edges Compliance

Method of Measurement: See ANSI C63.10-2013-clause 6.10.4

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below.

- a) Set Span = 100MHz
- b) Sweep Time: coupled
- c) Set the RBW= 100 kHz
- c) Set the VBW= 300 kHz
- d) Detector: Peak
- e) Trace: Max hold

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

EUT ID: UT36a

Measurement Result:

802.11b/g mode

Mode	Channel	Test Results	Conclusion
802.11b	1	Fig.A.5.1	Р
	11	Fig.A.5.2	Р
900 11 a	1	Fig.A.5.3	Р
802.11g	11	Fig.A.5.4	Р

802.11n-HT20 mode

Mode	Channel	Test Results	Conclusion
802.11n	1	Fig.A.5.5	Р
(HT20)	11	Fig.A.5.6	Р

Test graphs as below:

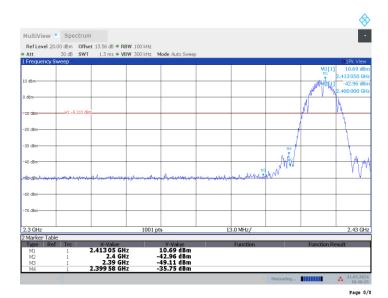


Fig.A.5.1 Band Edges (802.11b, Ch 1)

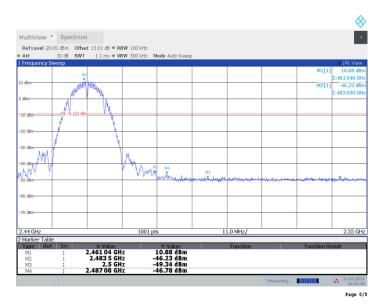


Fig.A.5.2 Band Edges (802.11b, Ch 11)

16:06:48 17.06.2024

Fig.A.5.4 Band Edges (802.11g, Ch 11)

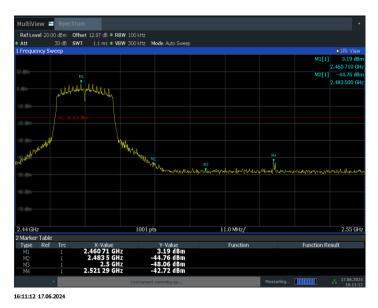


Fig.A.5.6 Band Edges (802.11n-HT20, Ch 11)

Conclusion: Pass

A.6. Transmitter Spurious Emission

A.6.1 Transmitter Spurious Emission – Conducted

Method of Measurement: See ANSI C63.10-2013-clause 11.11

Establish a reference level by using the following procedure:

a) Set instrument center frequency to DTS channel center frequency

- b) Set the span to \geq 1.5 times the DTS bandwidth
- c) Set the RBW= 100 kHz
- d) Set the VBW= 300 kHz
- e) Detector = Peak
- f) Sweep time = auto couple
- g) Trace mode = max hold
- h) Allow trace to fully stabilize

i) Use the peak marker function to determine the maximum PSD level

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW = 300 kHz.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz
	bandwidth

EUT ID: UT36a

Measurement Results:

802.11b mode

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.412 GHz	Fig.A.6.1.1	Р
	1	30 MHz ~ 1 GHz	Fig.A.6.1.2	Р
		1 GHz ~ 26 GHz	Fig.A.6.1.3	Р
		2.437 GHz	Fig.A.6.1.4	Р
802.11b	6	30 MHz ~ 1 GHz	Fig.A.6.1.5	Р
		1 GHz ~ 26 GHz	Fig.A.6.1.6	Р
		2.462 GHz	Fig.A.6.1.7	Р
	11	30 MHz ~ 1 GHz	Fig.A.6.1.8	Р
		1 GHz ~ 26 GHz	Fig.A.6.1.9	Р

802.11g mode

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.412 GHz	Fig.A.6.1.10	Р
	1	30 MHz ~ 1 GHz	Fig.A.6.1.11	Р
		1 GHz ~ 26 GHz	Fig.A.6.1.12	Р
		2.437 GHz	Fig.A.6.1.13	Р
802.11g	6	30 MHz ~ 1 GHz	Fig.A.6.1.14	Р
	1 GHz ~ 26 GHz	Fig.A.6.1.15	Р	
		2.462 GHz	Fig.A.6.1.16	Р
	11	30 MHz ~ 1 GHz	Fig.A.6.1.17	Р
		1 GHz ~ 26 GHz	Fig.A.6.1.18	Р

802.11n-HT20 mode

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.412 GHz	Fig.A.6.1.19	Р
	1	30 MHz ~ 1 GHz	Fig.A.6.1.20	Р
		1 GHz ~ 26 GHz	Fig.A.6.1.21	Р
902 11p	6	2.437 GHz	Fig.A.6.1.22	Р
802.11n (HT20)		30 MHz ~ 1 GHz	Fig.A.6.1.23	Р
(1120)		1 GHz ~ 26 GHz	Fig.A.6.1.24	Р
		2.462 GHz	Fig.A.6.1.25	Р
	11	30 MHz ~ 1 GHz	Fig.A.6.1.26	Р
		1 GHz ~ 26 GHz	Fig.A.6.1.27	Р

Test graphs as below:

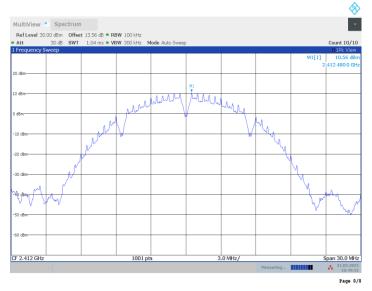


Fig.A.6.1.1 Transmitter Spurious Emission - Conducted (802.11b, Ch1, Center Frequency)

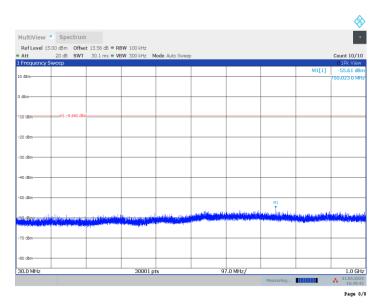


Fig.A.6.1.2 Transmitter Spurious Emission - Conducted (802.11b, Ch1, 30 MHz-1 GHz)

1 Frequency Sweep M1[1] 10 dbn M2[1] -10 dbn M1 - 5.480 dbn -20 dbn	Count 10/1 0 1Pk Viev 10.84 dE 412 230 G -44,48 dE .823 300 G
Militia Militia 0 dm Militia 0 dm Militia 0 dm Militia 10 dm Militia	10.84 dE .412 230 G -44.48 dE
0.887 0.887 0.897 0.897 0.897 0.977	.412230 G -44.48 dE
dm	
dBn	.823 300 G
11 -0.40 der	
20 den	
20 den	
20 dim	
20 dim	
20 dim	
40 dBm- M2	
50 dBm	
	a first a start
so dalla di su	
70 dBm	
80 dBm	

Fig.A.6.1.3 Transmitter Spurious Emission - Conducted (802.11b, Ch1, 1 GHz-26 GHz)

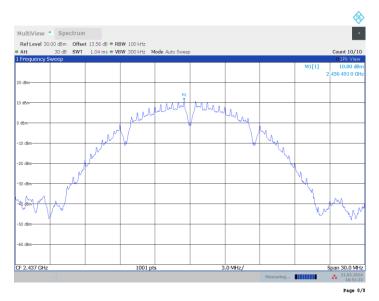


Fig.A.6.1.4 Transmitter Spurious Emission - Conducted (802.11b, Ch6, Center Frequency)

		fset 13.56 dB 🖷							
Att Frequency		/T 30.1 ms 🖷	VBW 300 kHz M	lode Auto Sweep	>				Count 10/10 01Pk View
rrequency	Sweep							M1[1]	-55.97 dBr
10 dBm									574.071 0 MH
									014071014
dBm									+
-10 d8m	H1 -9.200	dBm							
20 000									
20 dBm									
-30 dBm									
-40 dBm									
+u usm									
-50 dBm		_							-
					M1				
				4.4.1	ورواس أفعمهم ورارا	ورا باروليا للصليقين	abad		فالداد والمستعم
60 decky mer	desident data data data data data data data da	interestility of the second	and the second		and the state of the	on a manifold the webby	This is the second second	A local set of a set of the	and possibly of the part of the part of the
an and the second second	a ta fat han a sha ba a	A DE LA D	Ship of a lost start	a contraction of the statistics of the					
-70 dBm									
- /u ubiil									
-80 dBm									+
30.0 MHz			30001 pt	s	9	7.0 MHz/			1.0 GH

Fig.A.6.1.5 Transmitter Spurious Emission - Conducted (802.11b, Ch6, 30 MHz-1 GHz)

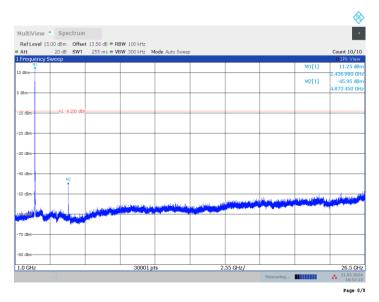


Fig.A.6.1.6 Transmitter Spurious Emission - Conducted (802.11b, Ch6, 1 GHz-26 GHz)

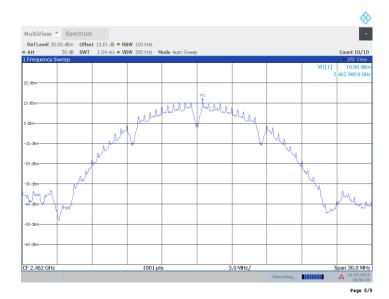


Fig.A.6.1.7 Transmitter Spurious Emission - Conducted (802.11b, Ch11, Center Frequency)

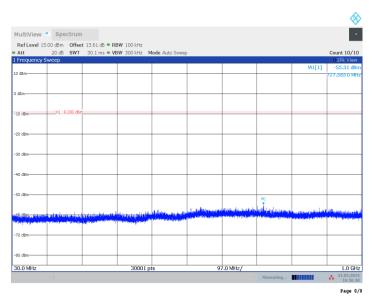


Fig.A.6.1.8 Transmitter Spurious Emission - Conducted (802.11b, Ch11, 30 MHz-1 GHz)

		ffset 13.61 dB • F		de a se c					C
Att Frequenc		WT 255 ms 🖷 V	BW 300 kHz M	ode Auto Sweep					Count 10/10 01Pk View
M1	y Sweep		1					M1[1]	10.70 dB
.0 dBm									2.460 680 GH
								M2[1]	-45.62 dB
									4.923 600 GH
dBm									
10 dBm-	H1 -9.200	1 dBm							+
20 dBm									
30 dBm-									
40 dBm	M2								+
	Ť								
50 dBm									,
oo dam						and successive	فلعطر فأناعوا العباريص	Lastania della	المتداخا فالمادي
		يورقون ور	وختر بخميته وسرائه	ومأسقا فاستقاضه فتطريهم	فالربط فالمحمد وراليا		and the second	and the set of the last	
60. dBm		The second se	an an dan selakak karan ya Mahaya		Are a second data and the				+
	and the second	A DECEMBER OF THE OWNER							
70 dBm									
zu uprit									
									1
80 dBm			-						
1.0 GHz			30001 pt	s	2	.55 GHz/			26.5 GH

Fig.A.6.1.9 Transmitter Spurious Emission - Conducted (802.11b, Ch11, 1 GHz-26 GHz)

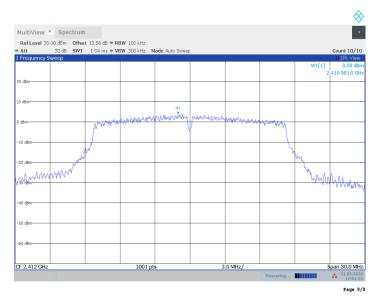


Fig.A.6.1.10 Transmitter Spurious Emission - Conducted (802.11g, Ch1, Center Frequency)

Ref Level 15.0 Att				lode Auto Sweep					Count 10/10
Frequency Sw									01Pk View
								M1[1]	-55.80 dBr
) dBm									620.112 0 MF
dBm									
ubiii									
10 dBm									
	-H1 -16.420 dB	m							
20 dBm									
30 dBm-									
3U dBm									
40 dBm									
50 dBm									
						M1			
			n Latera	and the second here is	للصهرة سأحققته ليرري	A share a sector	والمحافظ المراجع الأسال	المغمير والم	والمروبية ومعاولا
60 (dBm			and a group of the	and a state of the second state of the	shahibili an	and a set of the set of the	Children and Store	(Interface of the Real of the	Contraction of the local
ang ang hang hang hang hang hang hang ha	In such that the second se	Contraction of the second s	The second s						
70 dBm									
									1
80 dBm									
0.0 MHz			30001 pt	ts	91	7.0 MHz/			1.0 GH

Fig.A.6.1.11 Transmitter Spurious Emission - Conducted (802.11g, Ch1, 30 MHz-1 GHz)

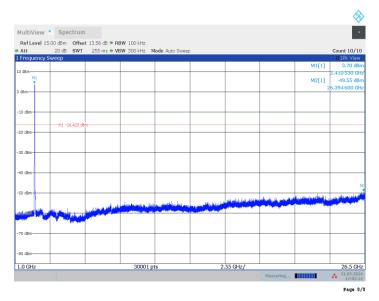


Fig.A.6.1.12 Transmitter Spurious Emission - Conducted (802.11g, Ch1, 1 GHz-26 GHz)

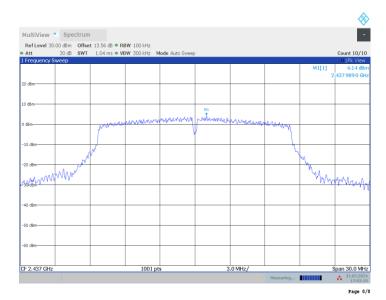


Fig.A.6.1.13 Transmitter Spurious Emission - Conducted (802.11g, Ch6, Center Frequency)

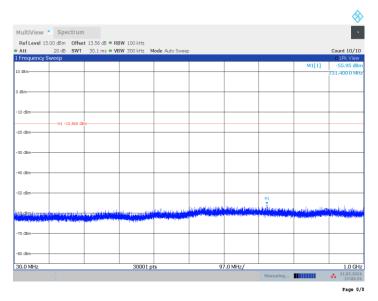


Fig.A.6.1.14 Transmitter Spurious Emission - Conducted (802.11g, Ch6, 30 MHz-1 GHz)

	Bm Offset 13.56 dB dB SWT 255 ms	• VBW 300 kHz Mode Auto S	weep			Count 10/10
Frequency Swee	p					01Pk View
					M1[1]	3.47 dB
dBm						2.436 030 G
M1					M2[1]	-49.57 dB
dBm-						26.367 400 G
GDIII						
IO dBm						
						1
	11 - 15.860 dBm					
20 dBm						+
i0 dBm						
su dam-						
i0 dBm						
50 dBm					and the second second	
		ALCOLULATION CONTRACTOR	والمعدية بالمقتص المراجع وأرجعت والمحاد	بطارعتني يتريك فلات	line of the section of the	
solds with the sold sold sold sold sold sold sold sold	المالية المالية			in the second		
OldBm	The Property laws for the					
	and the second se					
70 dBm						
80 dBm						
.0 GHz		30001 pts	2.55 GHz/			26.5 GH

Fig.A.6.1.15 Transmitter Spurious Emission - Conducted (802.11g, Ch6, 1 GHz-26 GHz)

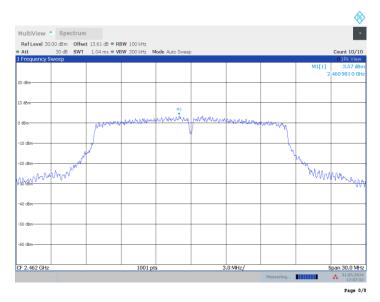


Fig.A.6.1.16 Transmitter Spurious Emission - Conducted (802.11g, Ch11, Center Frequency)

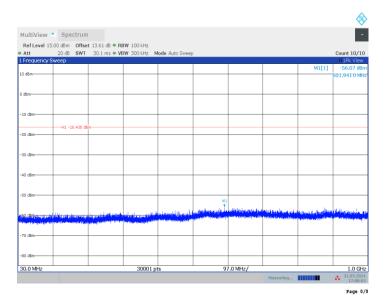


Fig.A.6.1.17 Transmitter Spurious Emission - Conducted (802.11g, Ch11, 30 MHz-1 GHz)

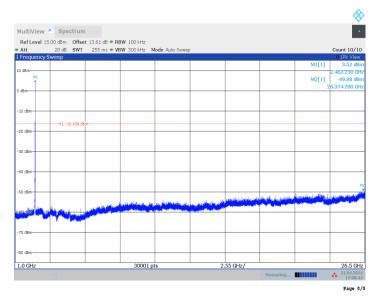


Fig.A.6.1.18 Transmitter Spurious Emission - Conducted (802.11g, Ch11, 1 GHz-26 GHz)

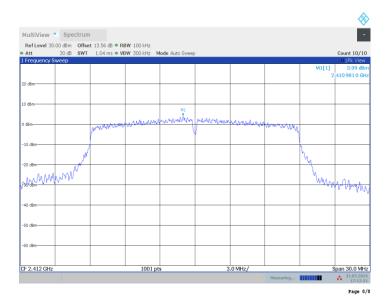


Fig.A.6.1.19 Transmitter Spurious Emission - Conducted (802.11n-HT20, Ch1, Center Frequency)

Fig.A.6.1.20 Transmitter Spurious Emission - Conducted (802.11n-HT20, Ch1, 30 MHz-1 GHz)

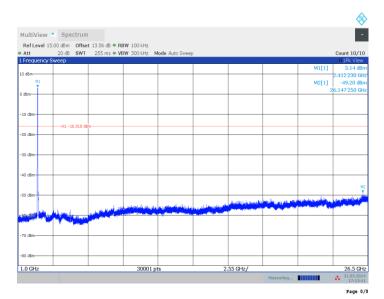


Fig.A.6.1.21 Transmitter Spurious Emission - Conducted (802.11n-HT20, Ch1, 1 GHz-26 GHz)

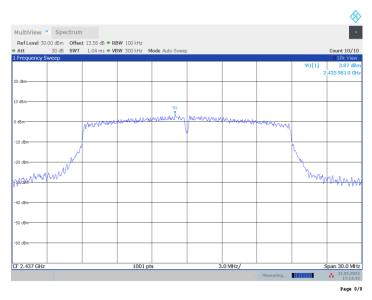


Fig.A.6.1.22 Transmitter Spurious Emission - Conducted (802.11n-HT20, Ch6, Center Frequency)

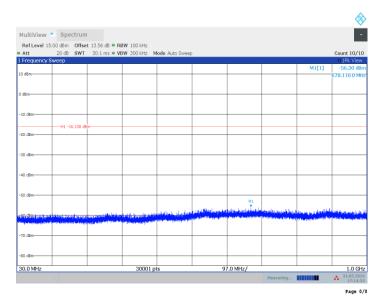


Fig.A.6.1.23 Transmitter Spurious Emission - Conducted (802.11n-HT20, Ch6, 30 MHz-1 GHz)

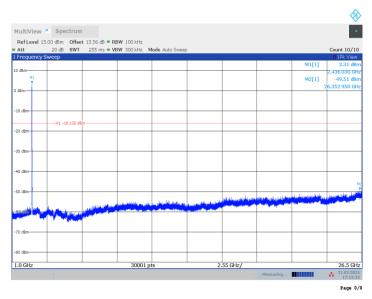


Fig.A.6.1.24 Transmitter Spurious Emission - Conducted (802.11n-HT20, Ch6, 1 GHz-26 GHz)