Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

FCC REPORT

Report Reference No.....: CHTEW20070127

Report Verification:

Project No....:

SHT2006145501EW

FCC ID.....::

TYD-GA40711B

Applicant's name....::

LogicMark, LLC

Address.....

2801 Diode Lane, Louisville Kentucky, United States 40299

Manufacturer....:

Skymax Electronics Company Limited

Address...:

Rm. 9, 12/F, Grandtech Centre, 8 On Ping Street, Shatin, N.T.,

Hong Kong

Test item description:

LTE Emergency Mobile Phone

Trade Mark:

Guardian Alert 911 PLUS

Model/Type reference....:

40711B

Listed Model(s):

-

Standard::

FCC CFR Title 47 Part 2

FCC CFR Title 47 Part 24

FCC CFR Title 47 Part 27

Date of receipt of test sample.....:

Jul. 02, 2020

Date of testing.....

Jul. 03, 2020- Jul. 16, 2020

Date of issue.....:

Jul. 17, 2020

Result.....:

Pass

Compiled by

(position+printedname+signature)...:

File administrators Silvia Li

Silvia Li

Supervised by

(position+printedname+signature)....:

Project Engineer Chengxiao

·

Approved by

(position+printedname+signature)....:

Manager Hans Hu

7 (3.15)

Testing Laboratory Name:

Shenzhen Huatongwei International Inspection Co., Ltd.

Address....:

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao,

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: CHTEW20070127 Page: 2 of 35 Issued: 2020-07-17

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
		_
1.1.	Applicable Standards	3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
<u>o.</u>	OMMAKI	
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT operation mode	7
3.5.	EUT configuration	7
3.6.	Modifications	7
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	8
4.3.	Equipments Used during the Test	9
4.4.	Environmental conditions	10
4.5.	Statement of the measurement uncertainty	10
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
- 4		
5.1.	Conducted Output Power	11
5.2. 5.3.	Peak-to-Average Ratio	12 13
5.3. 5.4.	99% Occupied Bandwidth & 26 dB Bandwidth Band Edge	14
5.4. 5.5.		15
5.5. 5.6.	Conducted Spurious Emissions Frequency stability VS Temperature measurement	16
5.6. 5.7.	Frequency stability VS Voltage measurement	17
5.7. 5.8.	ERP and EIRP	18
5.6. 5.9.	Radiated Spurious Emission	25
_		
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	35
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	35
8.	APPENDIX REPORT	35

Report No.: CHTEW20070127 Page: 3 of 35 Issued: 2020-07-17

1. TEST STANDARDS AND REPORT VERSION

1.1. Applicable Standards

The tests were performed according to following standards:

FCC Rules Part 2: FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS

FCC Rules Part 24: PERSONAL COMMUNICATIONS SERVICES

FCC Rules Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

ANSI C63.26: 2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

KDB 971168 D01 Power Meas License Digital Systems v03: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2020-07-17	Original

Report No.: CHTEW20070127 Page: 4 of 35 Issued: 2020-07-17

2. Test Description

Test Item	Section in CFR 47	Result	Test Engineer	
	Part 2.1046			
Conducted Output Power	Part 24.232(c)	Pass	Jiongsheng Feng	
	Part 27.50			
Dook to Average Detic	Part 24.232	Door	Kanashana Fana	
Peak-to-Average Ratio	Part 27.50	Pass	Jiongsheng Feng	
000/ 0	Part 2.1049			
99% Occupied Bandwidth & 26 dB Bandwidth	Part 24.238(b)	Pass	Jiongsheng Feng	
Bandwidth	Part 27.53			
	Part 2.1051			
Band Edge	Part 24.238	Pass	Jiongsheng Feng	
	Part 27.53			
	Part 2.1051			
Conducted Spurious Emissions	Part 24.238	Pass	Jiongsheng Feng	
	Part 27.53			
	Part 2.1055(a)(1)(b)			
Frequency stability VS Temperature	Part 24.235	Pass	Jiongsheng Feng	
	Part 27.54			
	Part 2.1055(d)(1)(2)			
Frequency stability VS Voltage	Part 24.235	Pass	Jiongsheng Feng	
	Part 27.54			
EDD and EIDD	Part 24.232(b)	Door	Dan Via	
ERP and EIRP	Part 27.50	Pass	Pan Xie	
	Part 2.1053			
Radiated Spurious Emissions	Part 24.238	Pass	Pan Xie	
	Part 27.53			

Note: The measurement uncertainty is not included in the test result.

Report No.: CHTEW20070127 Page: 5 of 35 Issued: 2020-07-17

3. **SUMMARY**

3.1. Client Information

Applicant:	LogicMark, LLC		
Address:	2801 Diode Lane, Louisville Kentucky, United States 40299		
Manufacturer: Skymax Electronics Company Limited			
Address:	Rm. 9, 12/F, Grandtech Centre, 8 On Ping Street, Shatin, N.T., Hong Kong		

3.2. Product Description

Name of EUT:	LTE Emergency Mobile Phone						
Trade Mark:	Guardian Alert 911 PLUS						
Model No.:	40711B						
Listed Model(s):	-						
SIM Information:	Support One SIM Ca	rd					
Power supply:	DC 3.7V						
Adapter information:	Input: AC100-240V, §	Model:KA0601A-0501000USS Input: AC100-240V, 50/60Hz, 0.2A Max Output: 5.0Vdc,1000mA					
Hardware version:	V1.0						
Software version:	V1.0						
4G							
Operation Band:	☐ FDD Band 2		□ FDD Band 12				
	FDD Band 2:	1850.7 MHz – 1909.3	9.3 MHz				
Transmit frequency:	FDD Band 4:	1710.7 MHz – 1754.3	MHz				
	FDD Band 12:	699.7 MHz – 715.3 M	Hz				
	FDD Band 2:	1930.7 MHz – 1989.3	MHz				
Receive frequency:	FDD Band 4:	2110.7 MHz – 2154.3	MHz				
	FDD Band 12:	729.7 MHz – 745.3 M	Hz				
	FDD Band 2:	1.4MHz, 3MHz, 5MHz	z, 10MHz, 15MHz, 20MHz				
Channel bandwidth:	FDD Band 4:	1.4MHz, 3MHz, 5MHz	z, 10MHz, 15MHz, 20MHz				
	FDD Band 12:	1.4MHz, 3MHz, 5MHz	z, 10MHz				
Power Class:	Class 3						
Modulation type:	QPSK, 16QAM						
Antenna type	PIFA Antenna						
	Band2:1.50dBi						
Antenna Gain	Band4:1.0dBi						
	Band12:-0.8dBi						

Report No.: CHTEW20070127 Page: 6 of 35 Issued: 2020-07-17

3.3. Operation state

Test frequency list

FDD Band 2	Test Frequency ID	Bandwidth [MHz]	N _{UL}	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink [MHz]
		1.4	18607	1850.7	607	1930.7
		3	18615	1851.5	615	1931.5
		5	18625	1852.5	625	1932.5
	Low Range	10	18650	1855	650	1935
		15 [1]	18675	1857.5	675	1937.5
		20 ^[1]	18700	1860	700	1940
	Mid Range	1.4/3/5/10 15 ^[1] /20 ^[1]	18900	1880	900	1960
		1.4	19193	1909.3	1193	1989.3
		3	19185	1908.5	1185	1988.5
		5	19175	1907.5	1175	1987.5
	High Range	10	19150	1905	1150	1985
		15 ^[1]	19125	1902.5	1125	1982.5
		20 [1]	19100	1900	1100	1980
EDD David 4		7] Clause 7.3) is all				
FDD Band 4	Test Frequency ID	Bandwidth [MHz]	NuL	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink [MHz]
		1.4	19957	1710.7	1957	2110.7
		3	19965	1711.5	1965	2111.5
	Low Range	5	19975	1712.5	1975	2112.5
	Low Range	10	20000	1715	2000	2115
		15	20025	1717.5	2025	2117.5
		20	20050	1720	2050	2120
	Mid Range	1.4/3/5/10/15/20	20175	1732.5	2175	2132.5
	1 1	1.4	20393	1754.3	2393	2154.3
		3	20385	1753.5	2385	2153.5
	High Range	5	20375	1752.5	2375	2152.5
	riigiritange	10	20350	1750	2350	2150
		15	20325	1747.5	2325	2147.5
		20	20300	1745	2300	2145
FDD Band 12	Table 4.3.1.1.12-1:	Test frequencies	s for E-UTF	RA channel band Frequency of Uplink [MHz]	width for o	perating band 12 Frequency of Downlink [MHz]
		1.4	23017	699.7	5017	729.7
	11	3	23025	700.5	5025	730.5
	Low Range	5 [1]	23035	701.5	5035	731.5
		10 [1]	23060	704	5060	734
	Mid Range	1.4/3 5 [1]/10 [1]	23095	707.5	5095	737.5
		1.4	23173	715.3	5173	745.3
		3	23165	714.5	5165	744.5
	High Range	5 [1]	23155	713.5	5155	743.5
		10 [1]	23130	711	5130	741
	NOTE 1: Bandwidth					
		[27] Clause 7.3) is			oouvity req	

Report No.: CHTEW20070127 Page: 7 of 35 Issued: 2020-07-17

3.4. EUT operation mode

For RF test items

The EUT has been tested under typical operating condition. Testing was performed by configuring EUT to maximum output power status.

Tabliforna	Donal	Bandwidth (MHz)					Modulation		RB#			
Test Items	Band	1.4	3	5	10	15	20	QPSK	16QAM	1	Half	Full
	2	0	0	0	0	0	0	0	0	0	0	0
Conducted Output Power	4	0	0	0	0	0	0	0	0	0	0	0
Power	12	0	0	0	0	-	-	0	0	0	0	0
D 1 4 A	2	0	0	0	0	0	0	0	0	0	-	0
Peak-to-Average Ratio	4	0	0	0	0	0	0	0	0	0	-	0
rano	12	0	0	0	0	-	-	0	0	0	-	0
99% Occupied	2	0	0	0	0	0	0	0	0	-	-	0
Bandwidth & 26	4	0	0	0	0	0	0	0	0	1	-	0
dB Bandwidth	12	0	0	0	0	-	-	0	0	0	-	0
	2	0	0	0	0	0	0	0	0	0	-	0
Band Edge	4	0	0	0	0	0	0	0	0	0	-	0
	12	0	0	0	0	-	-	0	0	0	-	0
O a radio at a d	2	0	0	0	0	0	0	0	0	0	-	-
Conducted Spurious Emission	4	0	0	0	0	0	0	0	0	0	-	1
opanious zimosisii	12	0	0	0	0	-	-	0	0	0	-	ı
F	2	0	0	0	0	0	0	0	0	ı	-	0
Frequency Stability	4	0	0	0	0	0	0	0	0	1	-	0
	12	0	0	0	0	-	-	0	0	-	-	0
	2	0	0	0	0	0	0	0	0	0	-	-
ERP and EIRP	4	0	0	0	0	0	0	0	0	0	-	-
	12	0	0	0	0	-	-	0	0	0	-	-
	2	0	0	0	0	0	0	0	0	0	-	1
Radiated Spurious Emission	4	0	0	0	0	0	0	0	0	0	-	-
EIIIISSIUIT	12	0	0	0	0	-	-	0	0	0	-	1
Remark	The mark " o"means that this configuration is chosenfor testing The mark "-"means that this bandwidth is not test. The device is investigatedfrom 30MHz to10 times offundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst case emissions are reported.											

3.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

- supplied by the lab

0	/	Manufacturer:	/
	/	Model No.:	/
		Manufacturer:	/
0 /		Model No.:	/

3.6. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Report No.: CHTEW20070127 Page: 8 of 35 Issued: 2020-07-17

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377A

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377A.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: CHTEW20070127 Page: 9 of 35 Issued: 2020-07-17

4.3. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	HTWE0242	FSV40	100048	2019/10/26	2020/10/25
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2019/10/26	2020/10/25
•	Radio communication tester	R&S	HTWE0287	CMW500	137688-Lv	2019/10/26	2020/10/25
•	Test software	Tonscend	N/A	JS1120	N/A	N/A	N/A

•	Radiated Spurious Emission							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26	
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2019/10/26	2020/10/25	
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2018/04/02	2021/04/01	
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2018/10/11	2021/10/11	
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2018/04/04	2021/04/03	
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31	
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2019/11/14	2020/11/13	
•	Broadband Preamplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2020/05/23	2021/05/22	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 01	6m 18GHz S Serisa	N/A	2020/05/18	2021/05/17	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 02	6m 3GHz RG Serisa	N/A	2020/05/18	2021/05/17	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 03	6m 3GHz RG Serisa	N/A	2020/05/18	2021/05/17	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 04	6m 3GHz RG Serisa	N/A	2020/05/18	2021/05/17	
•	RF Connection Cable	HUBER+SUHNER	HTWE0121- 01	6m 18GHz S Serisa	N/A	2020/05/23	2021/05/22	
•	EMI Test Software	Audix	N/A	E3	N/A	N/A	N/A	

•	Auxiliary Equipment							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Climate chamber	ESPEC	HTWE0254	GPL-2	N/A	2019/10/23	2020/10/22	
•	DC Power Supply	Gwinstek	HTWE0274	SPS-2415	GER835793	N/A	N/A	

Report No.: CHTEW20070127 Page: 10 of 35 Issued: 2020-07-17

4.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	VN=Nominal Voltage	DC 3.70V			
Voltage	VL=Lower Voltage	DC 3.145V			
	VH=Higher Voltage	DC 4.255V			
Tomporoturo	TN=Normal Temperature	25 °C			
Temperature	Extreme Temperature	From -30° to + 50° centigrade			
Humidity	30~60 %				
Air Pressure	950-1050 hPa				

4.5. Statement of the measurement uncertainty

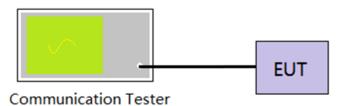
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongweilaboratory is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.51 dB	(1)
Transmitter power Radiated	2.66dB for <1GHz 3.44dB for >1GHz	(1)
Conducted spurious emissions 9kHz~40GHz	0.51 dB	(1)
Radiated spurious emissions	2.66dB for <1GHz	(1)
Tradition of the control of the cont	3.44dB for >1GHz	(.,
Occupied Bandwidth	15Hz for <1GHz	(1)
Occupied Bandwidth	70Hz for >1GHz	(1)
Ereguency error	15Hz for <1GHz	(1)
Frequency error	70Hz for >1GHz	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW20070127 Page: 11 of 35 Issued: 2020-07-17


5. TEST CONDITIONS AND RESULTS

5.1. Conducted Output Power

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

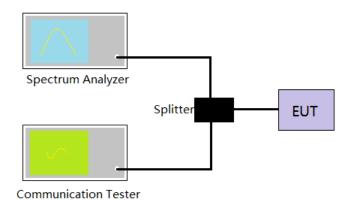
- 1. The EUT output port was connected to communication tester.
- 2. Set EUT at maximum power through communication tester.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix A on the section 8 appendix report


Report No.: CHTEW20070127 Page: 12 of 35 Issued: 2020-07-17

5.2. Peak-to-Average Ratio

LIMIT

13dB

TEST CONFIGURATION

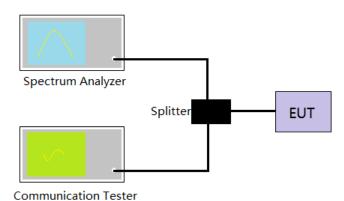
TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Center Frequency = Carrier frequency, RBW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed.
 - i. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.
 - ii. For bursttransmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that issynced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in whichthetransmitter is operating at maximum power
- 6. Record the maximum PAPR level associated with a probability of 0.1%.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS


Refer to appendix B on the section 8 appendix report

Report No.: CHTEW20070127 Page: 13 of 35 Issued: 2020-07-17

5.3. 99% Occupied Bandwidth & 26 dB Bandwidth

<u>LIMIT</u> N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Center Frequency= Carrier frequency, RBW=1% to 5% of the anticipated OBW, VBW= 3 * RBW, Detector=Peak,

Trace maximum hold.

4. Record the value of 99% Occupied bandwidth and 26dB bandwidth.

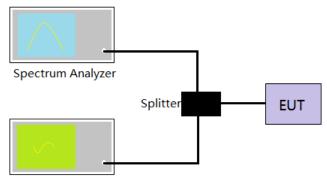
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix C on the section 8 appendix report

Report No.: CHTEW20070127 Page: 14 of 35 Issued: 2020-07-17


5.4. Band Edge

<u>LIMIT</u>

Part 24.238 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

Communication Tester

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. The band edges of low and high channels were measured.
- Spectrum analyzer setting as follow:
 RBW= no less than 1% of the OBW, VBW =3 * RBW, Sweep time= Auto
- 5. Record the test plot.

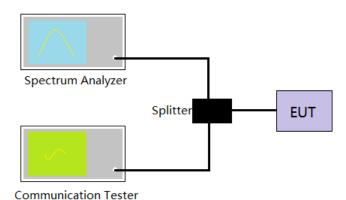
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix D on the section 8 appendix report

Report No.: CHTEW20070127 Page: 15 of 35 Issued: 2020-07-17


5.5. Conducted Spurious Emissions

LIMIT

Part 24.238 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Below 1GHz, RBW=100KHz, VBW = 300KHz, Detector=Peak, Sweep time= Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peak, Sweep time= Auto Scan frequency range up to 10th harmonic.

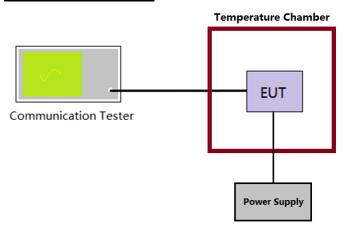
4. Record the test plot.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix E on the section 8 appendix report


Report No.: CHTEW20070127 Page: 16 of 35 Issued: 2020-07-17

5.6. Frequency stability VS Temperature measurement

LIMIT

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

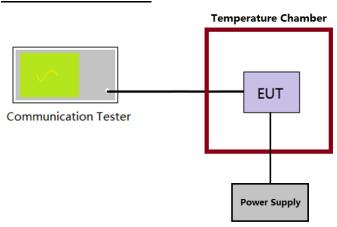
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber.
- 4. Turn EUT off and set the chamber temperature to –30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 5. Repeat step 4 measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix F on the section 8 appendix report


Report No.: CHTEW20070127 Page: 17 of 35 Issued: 2020-07-17

5.7. Frequency stability VS Voltage measurement

LIMIT

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber at 25°C
- The power supply voltage to the EUT was varied ±15% of the nominal value measured at the input to the EUT
- 5. Record the maximum frequency change.

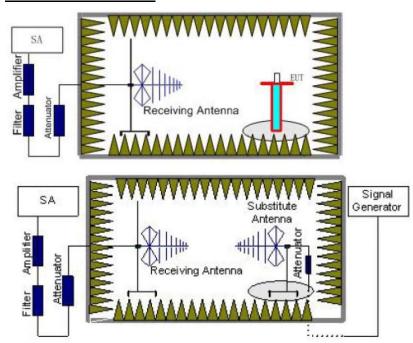
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

oxedown Passed oxedown Not Applicable

Refer to appendix F on the section 8 appendix report


Report No.: CHTEW20070127 Page: 18 of 35 Issued: 2020-07-17

5.8. ERP and EIRP

LIMIT

LTE Band 2: 2W(33dBm) EIRP LTE Band 4: 1W(30dBm) EIRP LTE Band 12: 3W(34.77dBm) ERP

TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT in the center of the turntable.
 - For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:

Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto

Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto

- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.

Report No.: CHTEW20070127 Page: 19 of 35 Issued: 2020-07-17

- e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- Set-up the substitution measurement with the reference point of the substitution antenna located as near
 as possible to where the center of the EUT radiating element was located during the initial EUT
 measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

gain (dBd) = gain (dBi) - 2.15 dB.

If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

 Report No.: CHTEW20070127 Page: 20 of 35 Issued: 2020-07-17

LTE Band 2-1.4MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Danill		
iviodulation	Channel	Vertical	Horizontal	LIIIII (UDIII)	Result		
	Low	21.42	18.85	222.00			
QPSK	Mid	21.70	18.76		PASS		
	High	21.51	18.87				
	Low	19.00	16.71	≤33.00			
16QAM	Mid	19.37	16.88		PASS		
	High	19.06	17.10				

LTE Band 2-3MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Result		
iviodulation	Chamilei	Vertical	Horizontal	Limit (dbin)	Nesuit		
	Low	21.13	18.28				
QPSK	Mid	21.51	18.75	200.00	PASS		
	High	21.19	18.64				
	Low	19.80	17.52	≤33.00			
16QAM	Mid	19.81	17.29		PASS		
	High	19.09	17.29				

LTE Band 2-5MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Dooult		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	22.42	19.52				
QPSK	Mid	22.68	19.32	200.00	PASS		
	High	22.70	19.49				
	Low	20.12	17.35	- ≤33.00	PASS		
16QAM	Mid	20.32	17.46				
	High	19.95	17.62				

LTE Band 2-10MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result		
Wodulation	Channel	Vertical	Horizontal	Limit (dBm)			
	Low	22.37	19.63				
QPSK	Mid	22.63	19.43	≤33.00	PASS		
	High	22.64	19.72				
	Low	20.06	17.52				
16QAM	Mid	20.27	17.71		PASS		
	High	19.91	17.79				

Report No.: CHTEW20070127 Page: 21 of 35 Issued: 2020-07-17

	LTE Band 2-15MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Dogult			
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	21.95	18.96	400.00				
QPSK	Mid	22.32	19.33		PASS			
	High	22.17	19.38					
	Low	20.72	18.22	≤33.00				
16QAM	Mid	20.59	18.01		PASS			
	High	19.83	17.89					

	LTE Band 2-20MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Pocult			
iviodulation	Channel	Vertical	Horizontal	Limit (dbin)	Result			
	Low	22.18	19.16					
QPSK	Mid	22.66	19.60	200.00	PASS			
	High	22.52	19.60					
	Low	21.05	18.67	≤33.00				
16QAM	Mid	20.87	18.24		PASS			
	High	20.09	18.01					

Report No.: CHTEW20070127 Page: 22 of 35 Issued: 2020-07-17

LTE Band 4-1.4MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Dooult		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	22.70	20.79	400.00			
QPSK	Mid	23.26	21.28		PASS		
	High	23.39	20.94				
	Low	19.50	18.43	≤30.00			
16QAM	Mid	19.98	18.98		PASS		
	High	19.94	18.83				

	LTE Band 4-3MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Dogult			
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	23.29	20.78	220.00				
QPSK	Mid	23.14	20.93		PASS			
	High	22.94	20.72					
	Low	19.90	19.06	≤30.00				
16QAM	Mid	20.29	18.25		PASS			
	High	20.36	19.13					

	LTE Band 4-5MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result			
Modulation	Chame	Vertical	Horizontal	Limit (dBm)				
	Low	24.16	21.55	100.00				
QPSK	Mid	24.45	22.01		PASS			
	High	24.53	21.72					
	Low	20.59	18.96	≤30.00				
16QAM	Mid	20.94	20.26		PASS			
	High	20.73	19.24					

	LTE Band 4-10MHz							
Modulation	Channal	EIRP	(dBm)	Limit (dDm)	Dooult			
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	23.53	21.32	700.00				
QPSK	Mid	23.94	21.77		PASS			
	High	24.04	21.43					
	Low	20.12	18.85	≤30.00				
16QAM	Mid	20.52	19.35		PASS			
	High	20.39	19.14					

Report No.: CHTEW20070127 Page: 23 of 35 Issued: 2020-07-17

	LTE Band 4-15MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Dogult			
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	24.16	21.24	400.00				
QPSK	Mid	23.85	21.37		PASS			
	High	23.63	21.19					
	Low	20.55	19.38	≤30.00				
16QAM	Mid	20.86	19.02		PASS			
	High	20.84	19.38					

	LTE Band 4-20MHz								
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Popult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	24.25	21.32						
QPSK	Mid	24.19	21.52		PASS				
	High	23.91	21.26						
	Low	20.52	19.49	≤30.00					
16QAM	Mid	21.18	18.93		PASS				
	High	21.19	19.61						

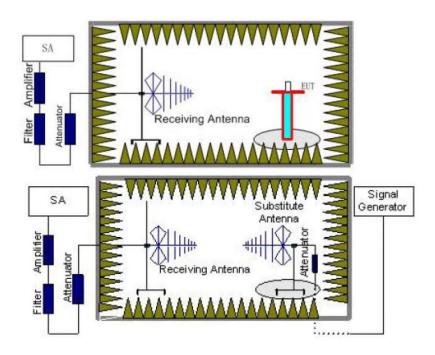
Report No.: CHTEW20070127 Page: 24 of 35 Issued: 2020-07-17

LTE Band 12-1.4MHz								
Modulation	Channel	ERP	ERP (dBm)		Result			
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	22.30	20.08	≤34.77				
QPSK	Mid	22.40	20.32		PASS			
	High	22.26	20.10					
	Low	20.19	19.03					
16QAM	Mid	20.45	19.20		PASS			
	High	20.47	19.14					

	LTE Band 12-3MHz								
Modulation	Channel	ERP	(dBm)	Limit (dPm)	Result				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	22.01	20.08						
QPSK	Mid	22.24	20.36		PASS				
	High	21.83	19.95	<24.77					
	Low	20.58	19.28	≤34.77					
16QAM	Mid	20.45	19.42		PASS				
	High	20.47	19.23						

LTE Band 12-5MHz								
Modulation	Channel	ERP	(dBm)	Limit (dPm)	Result			
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)	Resuit			
	Low	21.44	19.76	40.4.77				
QPSK	Mid	21.57	19.92		PASS			
	High	21.52	19.76					
	Low	20.81	19.45	≤34.77				
16QAM	Mid	20.98	19.69]	PASS			
	High	20.97	19.52					

	LTE Band 12-10MHz								
Modulation	Channel	ERP	ERP (dBm)		Dogult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	21.97	19.99	≤34.77					
QPSK	Mid	22.20	20.20		PASS				
	High	21.81	19.89						
	Low	20.73	19.27						
16QAM	Mid	21.23	19.54		PASS				
	High	21.20	19.46						


Report No.: CHTEW20070127 Page: 25 of 35 Issued: 2020-07-17

5.9. Radiated Spurious Emission

LIMIT

LTE Band 2/4/12: -13dBm;

TEST CONFIGURATION

TEST PROCEDURE

- Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:

Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto

Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto

- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.

Report No.: CHTEW20070127 Page: 26 of 35 Issued: 2020-07-17

Set-up the substitution measurement with the reference point of the substitution antenna located as near
as possible to where the center of the EUT radiating element was located during the initial EUT
measurement.

- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

gain (dBd) = gain (dBi) - 2.15 dB.

If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note: only show the worse case for QPSK modulation.

Report No.: CHTEW20070127 Page: 27 of 35 Issued: 2020-07-17

LTE Band 2-1.4MHz								
Channel	Frequency	Spurious I	Emission	Limit (dDm)	Dooult			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3701.40	Vertical	-35.70					
	5552.10	V	-39.39	≤-13.00	Pass			
Low	7402.80	V	-40.45					
LOW	3701.40	Horizontal	-37.08					
	5552.10	Н	-40.69	≤-13.00	Pass			
	7402.80	Н	-41.56					
	3760.00	Vertical	-34.66	≤-13.00	Pass			
	5640.00	V	-38.41					
Mid	7520.00	V	-39.53					
iviiu	3760.00	Horizontal	-35.81					
	5640.00	Н	-39.66	≤-13.00	Pass			
	7520.00	Н	-40.58					
	3818.60	Vertical	-32.89					
	5727.90	V	-36.80	≤-13.00	Pass			
∐iah	7637.20	V	-38.00					
High	3818.60	Horizontal	-35.19					
	5727.90	Н	-39.08	≤-13.00	Pass			
	7637.20	Н	-40.08					

LTE Band 2-3MHz								
Channal	Frequency	Spurious I	Emission	Limpit (dDms)	Desult			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3703.00	Vertical	-31.75					
	5554.50	V	-33.56	≤-13.00	Pass			
Low	7406.00	V	-35.64					
LOW	3703.00	Horizontal	-32.39					
	5554.50	Н	-35.75	≤-13.00	Pass			
	7406.00	Н	-38.34					
	3760.00	Vertical	-28.58	≤-13.00	Pass			
	5640.00	V	-30.57					
Mid	7520.00	V	-32.38					
iviiu	3760.00	Horizontal	-29.75					
	5640.00	Н	-33.90	≤-13.00	Pass			
	7520.00	Н	-36.22					
	3817.00	Vertical	-25.68					
	5725.50	V	-28.46	≤-13.00	Pass			
High	7634.00	V	-31.01					
High	3817.00	Horizontal	-26.97					
	5725.50	Н	-31.78	≤-13.00	Pass			
	7634.00	Н	-32.49					

Report No.: CHTEW20070127 Page: 28 of 35 Issued: 2020-07-17

LTE Band 2-5MHz								
Channal	Frequency	Spurious	Emission	Limit (dDm)	Danielt			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3705.00	Vertical	-22.56					
	5557.50	V	-23.73	≤-13.00	Pass			
Low	7410.00	V	-27.46					
LOW	3705.00	Horizontal	-29.34					
	5557.50	Н	-36.00	≤-13.00	Pass			
	7410.00	Н	-34.56					
	3760.00	Vertical	-24.08	≤-13.00				
	5640.00	V	-26.56		Pass			
Mid	7520.00	V	-29.90					
IVIIU	3760.00	Horizontal	-32.86		Pass			
	5640.00	Н	-38.39	≤-13.00				
	7520.00	Н	-36.39					
	3815.00	Vertical	-27.92					
	5722.50	V	-29.29	≤-13.00	Pass			
High	7630.00	V	-32.26					
High	3815.00	Horizontal	-35.62					
	5722.50	Н	-40.95	≤-13.00	Pass			
	7630.00	Н	-38.33	1				

LTE Band 2-10MHz								
Channal	Frequency	Spurious	Emission	Limeit (dDme)	Daguit			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3710.00	Vertical	-25.36					
	5565.00	V	-27.91	≤-13.00	Pass			
Low	7420.00	V	-30.60					
LOW	3710.00	Horizontal	-39.53					
	5565.00	Н	-43.62	≤-13.00	Pass			
	7420.00	Н	-41.40					
	3760.00	Vertical	-28.39	≤-13.00	Pass			
	5640.00	V	-30.45					
Mid	7520.00	V	-33.65					
IVIIG	3760.00	Horizontal	-41.53					
	5640.00	Н	-46.60	≤-13.00	Pass			
	7520.00	Н	-43.75					
	3810.00	Vertical	-29.52					
	5715.00	V	-32.98	≤-13.00	Pass			
High	7620.00	V	-36.59					
High	3810.00	Horizontal	-39.12					
	5715.00	Н	-45.20	≤-13.00	Pass			
	7620.00	Н	-41.88	_				

Report No.: CHTEW20070127 29 of 35 Issued: 2020-07-17 Page:

LTE Band 2-15MHz								
Ohamal	Frequency	Spurious	Emission	Limit (dDm)	D !			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3715.00	Vertical	-27.46					
	5572.50	V	-31.12	≤-13.00	Pass			
Low	7430.00	V	-34.60					
LOW	3715.00	Horizontal	-41.07					
	5572.50	Н	-47.03	≤-13.00	Pass			
	7430.00	Н	-43.44					
	3760.00	Vertical	-28.92	≤-13.00	Pass			
	5640.00	V	-32.50					
Mid	7520.00	V	-35.89					
iviid	3760.00	Horizontal	-39.22					
	5640.00	Н	-45.11	≤-13.00	Pass			
	7520.00	Н	-42.35					
	3805.00	Vertical	-27.40					
	5707.50	V	-29.65	≤-13.00	Pass			
∐iah	7610.00	V	-33.06					
High	3805.00	Horizontal	-41.64		_			
	5707.50	Н	-49.03	≤-13.00	Pass			
	7610.00	Н	-46.38					

LTE Band 2-20MHz							
Channal	Frequency	Spurious	Emission	Limit (dDm)	Dogult		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	3720.00	Vertical	-29.80				
	5580.00	V	-32.38	≤-13.00	Pass		
Low	7440.00	V	-35.12				
LOW	3720.00	Horizontal	-42.08				
	5580.00	Н	-49.45	≤-13.00	Pass		
	7440.00	Н	-46.73				
	3760.00	Vertical	-30.13	≤-13.00	Pass		
	5640.00	V	-32.69				
Mid	7520.00	V	-35.41				
iviid	3760.00	Horizontal	-42.37				
	5640.00	Н	-49.69	≤-13.00	Pass		
	7520.00	Н	-46.95				
	3800.00	Vertical	-28.38				
	5700.00	V	-30.34	≤-13.00	Pass		
Lligh	7600.00	V	-33.72				
High	3800.00	Horizontal	-42.68				
	5700.00	Н	-49.98	≤-13.00	Pass		
	7600.00	Н	-47.20				

Remark:

- Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW20070127 Page: 30 of 35 Issued: 2020-07-17

LTE Band 4-1.4MHz								
Channal	Frequency	Spurious I	Emission	Limit (dDm)	D !!			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3421.40	Vertical	-32.55					
	5132.10	V	-38.35	≤-13.00	Pass			
Low	6842.80	V	-37.98					
LOW	3421.40	Horizontal	-34.39					
	5132.10	Н	-40.08	≤-13.00	Pass			
	6842.80	Н	-39.45					
	3465.00	Vertical	-31.17	≤-13.00	Pass			
	5197.50	V	-37.05					
Mid	6930.00	V	-36.76					
IVIIU	3465.00	Horizontal	-32.70					
	5197.50	Н	-38.71	≤-13.00	Pass			
	6930.00	Н	-38.15					
	3508.60	Vertical	-28.81					
	5262.90	V	-34.90	≤-13.00	Pass			
∐iah	7017.20	V	-34.72					
High	3508.60	Horizontal	-30.76					
	5262.90	Н	-36.87	≤-13.00	Pass			
	7017.20	Н	-36.40					

LTE Band 4-3MHz						
Channel	Frequency	Spurious I	Emission	Lineit (dDne)	Danilt	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3423.00	Vertical	-31.76			
	5134.50	V	-37.54	≤-13.00	Pass	
Low	6846.00	V	-37.33			
LOW	3423.00	Horizontal	-33.11			
	5134.50	Н	-40.59	≤-13.00	Pass	
	6846.00	Н	-39.23			
	3465.00	Vertical	-34.85	≤-13.00	Pass	
	5197.50	V	-40.62			
Mid	6930.00	V	-39.71			
iviiu	3465.00	Horizontal	-39.03		Pass	
	5197.50	Н	-44.76	≤-13.00		
	6930.00	Н	-44.08			
	3507.00	Vertical	-36.92		Pass	
	5260.50	V	-42.51	≤-13.00		
High	7014.00	V	-41.50			
	3507.00	Horizontal	-41.90			
	5260.50	Н	-47.99	≤-13.00	Pass	
	7014.00	Н	-46.43			

Report No.: CHTEW20070127 Page: 31 of 35 Issued: 2020-07-17

	LTE Band 4-5MHz						
Channal	Frequency	Spurious I	Emission	Lineit (dDee)	D !!		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	3425.00	Vertical	-40.71				
	5137.50	V	-45.29	≤-13.00	Pass		
Low	6850.00	V	-45.27				
LOW	3425.00	Horizontal	-43.41				
	5137.50	Н	-49.41	≤-13.00	Pass		
	6850.00	Н	-47.64				
	3465.00	Vertical	-41.85	≤-13.00	Pass		
	5197.50	V	-46.36				
Mid	6930.00	V	-46.27				
iviid	3465.00	Horizontal	-44.74				
	5197.50	Н	-50.49	≤-13.00	Pass		
	6930.00	Н	-48.67				
	3505.00	Vertical	-43.49				
	5257.50	V	-47.85	≤-13.00	Pass		
∐iah	7010.00	V	-47.69				
High	3505.00	Horizontal	-45.81				
	5257.50	Н	-51.49	≤-13.00	Pass		
	7010.00	Н	-49.52	1			

LTE Band 4-10MHz						
Channal	Frequency	Spurious I	Emission	Lineit (dDne)	D It	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3430.00	Vertical	-46.39			
	5145.00	V	-49.62	≤-13.00	Pass	
Low	6860.00	V	-48.77			
LOW	3430.00	Horizontal	-46.07			
	5145.00	Н	-51.73	≤-13.00	Pass	
	6860.00	Н	-49.73			
	3465.00	Vertical	-46.58	≤-13.00	Pass	
	5197.50	V	-49.80			
Mid	6930.00	V	-49.30			
IVIIU	3465.00	Horizontal	-46.28			
	5197.50	Н	-51.90	≤-13.00	Pass	
	6930.00	Н	-49.89			
	3500.00	Vertical	-46.84			
	5250.00	V	-50.04	≤-13.00	Pass	
High	7000.00	V	-49.53			
	3500.00	Horizontal	-46.48			
	5250.00	Н	-52.09	≤-13.00	Pass	
	7000.00	Н	-50.05			

Report No.: CHTEW20070127 Page: 32 of 35 Issued: 2020-07-17

LTE Band 4-15MHz						
Ob a mad	Frequency	Spurious	Emission	12 - 2 (15)	5 "	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3435.00	Vertical	-47.53			
	5152.50	V	-50.74	≤-13.00	Pass	
Low	6870.00	V	-50.08			
LOW	3435.00	Horizontal	-48.79			
	5152.50	Н	-54.26	≤-13.00	Pass	
	6870.00	Н	-54.07			
	3465.00	Vertical	-51.31	≤-13.00	Pass	
	5197.50	V	-54.29			
Mid	6930.00	V	-53.42			
iviid	3465.00	Horizontal	-51.73			
	5197.50	Н	-56.64	≤-13.00	Pass	
	6930.00	Н	-56.33			
	3495.00	Vertical	-54.09			
	5242.50	V	-56.82	≤-13.00	Pass	
∐iah	6990.00	V	-55.82			
High	3495.00	Horizontal	-54.20		_	
	5242.50	Н	-58.97	≤-13.00	Pass	
	6990.00	Н	-60.63	1		

LTE Band 4-20MHz						
Channal	Frequency	Spurious Emission		L':'((ID)	D 1	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3440.00	Vertical	-67.75			
	5160.00	V	-59.93	≤-13.00	Pass	
Low	6880.00	V	-58.46			
LOW	3440.00	Horizontal	-56.84			
	5160.00	Н	-70.33	≤-13.00	Pass	
	6880.00	Н	-72.04			
	3465.00	Vertical	-79.98	≤-13.00	Pass	
	5197.50	V	-65.76			
Mid	6930.00	V	-63.94			
IVIIU	3465.00	Horizontal	-64.58		Pass	
	5197.50	Н	-78.25	≤-13.00		
	6930.00	Н	-76.30			
	3490.00	Vertical	-83.47			
	5235.00	V	-68.00	≤-13.00	Pass	
High	6980.00	V	-65.98			
riigii	3490.00	Horizontal	-66.52			
	5235.00	Н	-80.09	≤-13.00	Pass	
	6980.00	Н	-78.05	1		

Remark:

- 1. Remark"---" means that the emission level is too low to be measured
- 2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

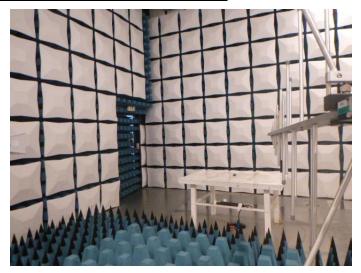
Report No.: CHTEW20070127 Page: 33 of 35 Issued: 2020-07-17

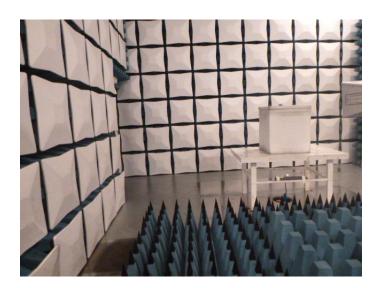
LTE Band 12-1.4MHz						
Oh ann a l	Frequency	Spurious	Emission	1: ': (ID)	D 1	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	1399.40	Vertical	-34.59			
	2099.10	V	-40.30	≤-13.00	Pass	
Low	2798.80	V	-42.03			
LOW	1399.40	Horizontal	-36.94			
	2099.10	Н	-41.44	≤-13.00	Pass	
	2798.80	Н	-43.31			
	1415.00	Vertical	-33.05	≤-13.00	Pass	
	2122.50	V	-38.85			
Mid	2830.00	V	-40.49			
iviid	1415.00	Horizontal	-35.07		Pass	
	2122.50	Н	-40.17	≤-13.00		
	2830.00	Н	-41.77			
	1430.60	Vertical	-30.80		Pass	
	2145.90	V	-36.47	≤-13.00		
Lligh	2861.20	V	-38.60			
High	1430.60	Horizontal	-32.49		_	
	2145.90	Н	-38.46	≤-13.00	Pass	
	2861.20	Н	-40.35			

LTE Band 12-3MHz						
Ob a sala	Frequency	Spurious	Emission	Limit (dDms)	5	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	1401.00	Vertical	-29.59			
	2101.50	V	-35.44	≤-13.00	Pass	
Low	2802.00	V	-37.73			
LOW	1401.00	Horizontal	-31.00			
	2101.50	Н	-37.00	≤-13.00	Pass	
	2802.00	Н	-37.49			
	1415.00	Vertical	-26.90	≤-13.00	Pass	
	2122.50	V	-32.91			
Mid	2830.00	V	-35.36			
IVIIU	1415.00	Horizontal	-33.52		Pass	
	2122.50	Н	-39.04	≤-13.00		
	2830.00	Н	-39.43			
	1429.00	Vertical	-28.72			
	2143.50	V	-34.57	≤-13.00	Pass	
Lliab	2858.00	V	-36.93			
High	1429.00	Horizontal	-35.49			
	2143.50	Н	-40.89	≤-13.00	Pass	
	2858.00	Н	-41.00			

Report No.: CHTEW20070127 Page: 34 of 35 Issued: 2020-07-17

LTE Band 12-5MHz						
Channal	Frequency	Spurious I	Emission	12 - 2 (15)	Result	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)		
	1403.00	Vertical	-30.06			
	2104.50	V	-35.71	≤-13.00	Pass	
Low	2806.00	V	-37.90			
LOW	1403.00	Horizontal	-36.40			
	2104.50	Н	-41.74	≤-13.00	Pass	
	2806.00	Н	-41.72			
	1415.00	Vertical	-30.74	≤-13.00	Pass	
	2122.50	V	-36.59			
Mid	2830.00	V	-38.73			
iviid	1415.00	Horizontal	-37.92			
	2122.50	Н	-42.97	≤-13.00	Pass	
	2830.00	Н	-42.89			
	1427.00	Vertical	-32.37			
	2140.50	V	-38.08	≤-13.00	Pass	
∐iah	2854.00	V	-40.14			
High	1427.00	Horizontal	-39.26			
	2140.50	Н	-44.24	≤-13.00	Pass	
	2854.00	Н	-44.10]		


LTE Band 12-10MHz						
Channel	Frequency Spu		Emission	Limit (dDm)	D !!	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	1408.00	Vertical	-33.52			
	2112.00	V	-39.17	≤-13.00	Pass	
Low	2816.00	V	-41.18			
LOW	1408.00	Horizontal	-40.99			
	2112.00	Н	-45.87	≤-13.00	Pass	
	2816.00	Н	-45.48			
	1415.00	Vertical	-34.82	≤-13.00	Pass	
	2122.50	V	-40.39			
Mid	2830.00	V	-42.33			
iviid	1415.00	Horizontal	-42.33			
	2122.50	Н	-48.00	≤-13.00	Pass	
	2830.00	Н	-47.45			
	1422.00	Vertical	-36.70		Pass	
	2133.00	V	-42.17	≤-13.00		
Lligh	2844.00	V	-44.02			
High	1422.00	Horizontal	-43.94			
	2133.00	Н	-49.53	≤-13.00	Pass	
	2844.00	Н	-48.90	1		


Remark:

- 1. Remark"---" means that the emission level is too low to be measured
- 2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW20070127 Page: 35 of 35 Issued: 2020-07-17

6. TEST SETUP PHOTOS OF THE EUT

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the test report No. CHTEW20070126

8. APPENDIX REPORT