

RADIO TEST REPORT

Test Report No. 15457600H-C-R1

Customer	Murata Manufacturing Co., Ltd.	
Description of EUT	Wireless Vibration Sensor Unit	
Model Number of EUT	LBAC0ZZ2TG	
FCC ID	VPYLB2TG	
Test Regulation	FCC Part 15 Subpart C	
Test Result	Complied	
Issue Date	May 19, 2025	
Remarks	-	

Representative Test Engineer	Approved By
Y. Yamazalei	T. Shimada
Yuichiro Yamazaki Engineer	Takumi Shimada Engineer
	INC-MRA ACCREDITED
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed	d is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 24.0

Test Report No. 15457600H-C-R1 Page 2 of 29

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15457600H-C

This report is a revised version of 15457600H-C. 15457600H-C is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents	
-	15457600H-C	March 12, 2025	-	
(Original)				
1	15457600H-C-R1	May 19, 2025	Cover page,	
			Section 2.1 Identification of EUT,	
			Section 4.2 Configuration and Peripherals -Modified Description of EUT	
			Vibration Sensor→Wireless Vibration Sensor Unit	
			Section 2.2 Product Description	
			-Modified explanatory note *1).	
			*1) This Bluetooth (Low Energy) module already certified as FCC ID: YCP-32WB5MMGH02.	
			\rightarrow	
			*1) This Bluetooth (Low Energy) module already	
			certified as FCC ID: YCP-STM32WB5M001.	
			APPENDIX 1: Test Data	
			Radiated Spurious Emission	
			-Add 20dBc data sheet for Mode: Tx 920.4 MHz.	

Test Report No. 15457600H-C-R1 Page 3 of 29

Reference: Abbreviations (Including words undescribed in this report)

	T=		
A2LA	The American Association for Laboratory Accreditation	IEC	International Electrotechnical Commission
AC	Alternating Current	IEEE	Institute of Electrical and Electronics Engineers
AFH	Adaptive Frequency Hopping	IF	Intermediate Frequency
AM	Amplitude Modulation	ILAC	International Laboratory Accreditation Conference
Amp, AMP	Amplifier	ISED	Innovation, Science and Economic Development Canada
ANSI	American National Standards Institute	ISO	International Organization for Standardization
Ant, ANT	Antenna	JAB	Japan Accreditation Board
AP	Access Point	LAN	Local Area Network
ASK	Amplitude Shift Keying	LIMS	Laboratory Information Management System
Atten., ATT	Attenuator	MCS	Modulation and Coding Scheme
AV	Average	MRA	Mutual Recognition Arrangement
BPSK	Binary Phase-Shift Keying	N/A	Not Applicable
BR	Bluetooth Basic Rate	NIST	National Institute of Standards and Technology
BT	Bluetooth	NS	No signal detect.
BT LE	Bluetooth Low Energy	NSA	Normalized Site Attenuation
BW	BandWidth	NVLAP	National Voluntary Laboratory Accreditation Program
Cal Int	Calibration Interval	OBW	Occupied Band Width
CCK	Complementary Code Keying	OFDM	Orthogonal Frequency Division Multiplexing
Ch., CH	Channel	OFDMA	Orthogonal Frequency Division Multiple Access
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PP	Preamble Puncturing
DSSS	Direct Sequence Spread Spectrum	PRBS	Pseudo-Random Bit Sequence
EDR	Enhanced Data Rate	PSD	Power Spectral Density
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QAM	Quadrature Amplitude Modulation
EMC	ElectroMagnetic Compatibility	QP	Quasi-Peak
EMI	ElectroMagnetic Interference	QPSK	Quadri-Phase Shift Keying
EN	European Norm	RBW	Resolution Band Width
ERP, e.r.p.	Effective Radiated Power	RDS	Radio Data System
EU	European Union	RE	Radio Equipment
EUT	Equipment Under Test	RF	Radio Frequency
Fac.	Factor	RMS	Root Mean Square
FCC	Federal Communications Commission	RSS	Radio Standards Specifications
FHSS	Frequency Hopping Spread Spectrum	Rx	Receiving
FM	Frequency Modulation	SA, S/A	Spectrum Analyzer
Freq.	Frequency	SG	Signal Generator
FSK	Frequency Shift Keying	SVSWR	Site-Voltage Standing Wave Ratio
GFSK	Gaussian Frequency-Shift Keying	TR	Test Receiver
GNSS	Global Navigation Satellite System	Tx	Transmitting
GPS	Global Positioning System	VBW	Video BandWidth
	, ·		
Hori.	Horizontal	Vert.	Vertical

CONTENTS		PAGE
SECTION 1:	Customer Information	5
SECTION 2:	Equipment Under Test (EUT)	
SECTION 3:	Test Specification, Procedures & Results	
SECTION 4:	Operation of EUT during testing	
SECTION 5:	Radiated Spurious Emission	
SECTION 6:	Antenna Terminal Conducted Tests	14
APPENDIX 1:	Test Data	15
99 % Oc	cupied Bandwidth and 6 dB Bandwidth	15
	m Peak Output Power	
	Output Power	
	d Spurious Emission	
	ed Spurious Emission	
Power D	ensity	25
	Test Instruments	
	Photographs of Test Setup	
	Spurious Emission	
	ase Position	
	Terminal Conducted Tests	

Test Report No. 15457600H-C-R1 Page 5 of 29

SECTION 1: Customer Information

Company Name	Murata Manufacturing Co., Ltd.
Address 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan	
Telephone Number	+81-50-1737-2801
Contact Person	Kenji Hayashikoshi

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Wireless Vibration Sensor Unit
Model Number	LBAC0ZZ2TG
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	November 29, 2024 for Antenna Terminal Conducted test
	February 12, 2025 for Radiated Emission test
Test Date	December 13, 2024 to February 12, 2025

2.2 Product Description

General Specification

Rating	DC 3.3 V
Operating temperature	-20 deg. C to +60 deg. C

Radio Specification

SubGHz

CUDOTIE		
Equipment Type	Transceiver	
Frequency of Operation	920.4 MHz to 924.4 MHz	
Type of Modulation	GFSK	
Antenna Gain	-8.9 dBi	

Bluetooth (Low Energy) *1)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	GFSK

^{*1)} This Bluetooth (Low Energy) module already certified as FCC ID: YCP-STM32WB5M001.

^{*} SubGHz and Bluetooth do not transmit simultaneously.

Test Report No. 15457600H-C-R1 Page 6 of 29

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

^{*} Also the EUT complies with FCC Part 15 Subpart B.

3.2 Reference Standards

ANSI/USEMCSC C63.2-2023 ANSI C63.4-2014+C63.4a-2017 ANSI C63.5-2017 ANSI C63.10-2013 ANSI C63.25.1-2018 KDB 558074 D01 v05r02 KDB 662911 D01 v02r01 for FCC MIMO device

RSS-Gen Issue 5/Amendment 1/Amendment 2 for ISED

3.3 Summary of Test Results

Item	Specification	Worst Margin	Results	Remarks
Conducted Emission	FCC: Section 15.207 ISED: RSS-Gen 8.8	-	N/A	*1)
6dB Bandwidth	FCC: Section 15.247(a)(2) ISED: RSS-247 5.2(a)	See data.	Complied	Conducted
Maximum Peak Output Power	FCC: Section 15.247(b)(3) ISED: RSS-247 5.4(d)		Complied	Conducted
Power Density	FCC: Section 15.247(e) ISED: RSS-247 5.2(b)		Complied	Conducted
Spurious Emission Restricted Band Edges	FCC: Section15.247(d) ISED: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	0.1 dB 2761.2 MHz, AV, Horizontal	Complied	Conducted (below 30 MHz) / Radiated (above 30 MHz) *2)

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.4 Addition to Standard

Item	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: -	N/A	=	Conducted
Bandwidth				

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

^{*1)} The test is not applicable since the EUT is a battery operated device.

^{*2)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

Test Report No. 15457600H-C-R1 Page 7 of 29

3.5 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz		dB	3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	dB	4.7
		Vertical	dB	4.7
	200 MHz to 1000 MHz	Horizontal	dB	4.8
		Vertical	dB	6.0
10 m	30 MHz to 200 MHz	Horizontal	dB	5.2
		Vertical	dB	5.1
	200 MHz to 1000 MHz	Horizontal	dB	5.2
		Vertical	dB	5.2
3 m	1 GHz to 6 GHz	1 GHz to 6 GHz		
	6 GHz to 18 GHz	dB	5.4	
1 m	10 GHz to 18 GHz	10 GHz to 18 GHz		
	18 GHz to 26.5 GHz	18 GHz to 26.5 GHz		
	26.5 GHz to 40 GHz	26.5 GHz to 40 GHz		
0.5 m	26.5 GHz to 40 GHz	26.5 GHz to 40 GHz		5.0

Antenna Terminal Conducted

Item	Unit	Calculated Uncertainty (+/-)
Antenna terminated conducted emission / Power density / Burst power	dB	3.47
Adjacent channel power (ACP)	dB	2.28
Bandwidth (OBW)	%	0.96
Time readout (time span upto 100 msec)	%	0.11
Time readout (time span upto 1000 msec)	%	0.11
Time readout (time span upto 60 sec)	%	0.02
Power measurement (Power meter < 8 GHz)	dB	1.46
Power measurement (Call box < 6 GHz)	dB	1.69
Frequency readout (Frequency counter)	ppm	0.67
Frequency readout (Spectrum analyzer frequency readout function)	ppm	2.13
Temperature (constant temperature bath)	deg. C	0.69
Humidity (constant temperature bath)	%RH	2.98
Modulation characteristics	%	6.93
Frequency for mobile	ppm	0.08
Contention-based protocol	dB	2.26

Test Report No. 15457600H-C-R1 Page 8 of 29

3.6 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.7 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 15457600H-C-R1 Page 9 of 29

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

 Mode
 Remarks*

 Transmitting (Tx)

*Power of the EUT was set by the software as follows;

Power Setting: 10 dBm

Software: Murata SubGHz Tool Version: 1.1.7

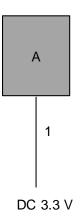
(Date: April 18, 2022, Storage location: Driven by connected PC)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The Details of Operating Mode(s)


Test Item	Operating Mode	Tested Frequency
Radiated Spurious Emission, Maximum Peak Output Power, Power Density, 6dB Bandwidth, 99% Occupied Bandwidth	Transmitting (Tx)	920.4 MHz 924.4 MHz
Conducted Spurious Emission *1)	Transmitting (Tx)	920.4 MHz

^{*1)} This test was limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

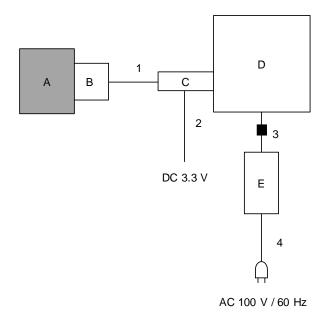
Test Report No. 15457600H-C-R1 Page 10 of 29

4.2 Configuration and Peripherals

Radiated Emission test

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support Equipment


No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Wireless Vibration	LBAC0ZZ2TG	3DCT	Murata Manufacturing	EUT
	Sensor Unit			Co., Ltd.	

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	2.50	Unshielded	Unshielded	-

Test Report No. 15457600H-C-R1 Page 11 of 29

Antenna Terminal Conducted test

: Standard Ferrite Core

Description of EUT and Support Equipment

000	Boodingtion of 201 and Support Equipmont							
No.	Item	Model number	Serial Number	Manufacturer	Remarks			
Α	Wireless	LBAC0ZZ2TG	3DCT	Murata Manufacturing	EUT			
	Vibration Sensor			Co., Ltd.				
	Unit							
В	UART board	-	P2ML10181	-	-			
С	USB dongle	-	P2ML2223-4	-	-			
D	Laptop PC	CF-N8HWCDPS	0BKSA07449	Panasonic	-			
E	AC Adapter	CF-AA6372B	6372BM409X17298B	Panasonic	-			

List of Cables Used

No.	Name	Length (m)	Shield	Remarks	
			Cable	Connector	
1	UART Cable	0.25	Unshielded	Unshielded	-
2	DC Cable	0.50	Unshielded	Unshielded	-
3	DC Cable	1.00	Unshielded	Unshielded	-
4	AC Cable	0.80	Unshielded	Unshielded	-

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test Report No. 15457600H-C-R1 Page 12 of 29

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

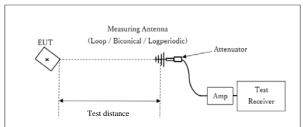
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

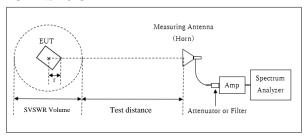
Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

and outside the restricted band of FCC 15.205 / Table 6 of RSS-Gen 6.10 (15ED).						
Frequency	Below 1 GHz	Above 1 GHz		20 dBc		
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer		
Detector	QP	PK	AV	PK		
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.1	RBW: 100 kHz		
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz		
			VBW: 3 MHz			
			Detector:			
			Power Averaging (RMS)			
			Trace: 100 traces			
			<u>11.12.2.5.2</u>			
			The duty cycle was less			
			than 98% for detected			
			noise, a duty factor was			
			added to the 11.12.2.5.1			
			results.			

Test Report No. 15457600H-C-R1 Page 13 of 29


Figure 2: Test Setup

Below 1 GHz

× : Center of turn table

1 GHz to 10 GHz

- r: Radius of an outer periphery of EUT
- ×: Center of turn table

Test Distance: 3 m

[1 GHz to 6 GHz]

Distance Factor: 20 x log (3.75 m* /3.00 m) = 1.94 dB *(Test Distance + SVSWR Volume /2) - r = 3.75 m

Test Distance: 3 m SVSWR Volume: 1.5 m

(SVSWR Volume has been calibrated based on CISPR 16-1-4.)

r: 0.0 m

(The test was performed with r = 0.0 m since EUT is small and

it was the rather conservative condition.)

[6 GHz to 10 GHz]

Distance Factor: 20 x log (3.75 m* /3.00 m) = 1.94 dB *(Test Distance + SVSWR Volume /2) - r = 3.75 m

Test Distance: 3.25 m SVSWR Volume: 1 m

(SVSWR Volume has been calibrated based on CISPR 16-1-4.)

r: 0.0 m

(The test was performed with r = 0.0 m since EUT is small and

it was the rather conservative condition.)

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range : 30 MHz to 10 GHz

Test Data : APPENDIX
Test Result : Pass

Test Report No. 15457600H-C-R1 Page 14 of 29

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	1 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *4)	150 kHz to 30 MHz	10 kHz	30 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX Test Result : Pass

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

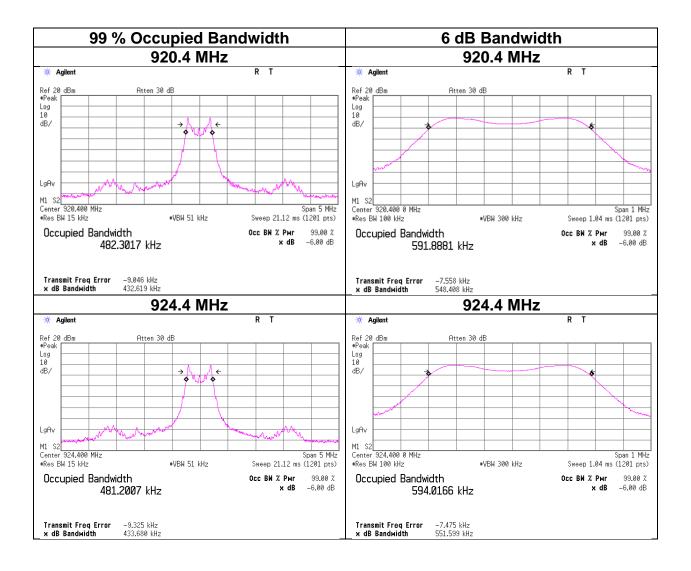
^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

Test Report No. 15457600H-C-R1 Page 15 of 29

APPENDIX 1: Test Data

99 % Occupied Bandwidth and 6 dB Bandwidth


Test place Ise EMC Lab.

No. 4 Preparation Room
Date
December 13, 2024
Temperature / Humidity
Engineer

No. 4 Preparation Room
December 20, 2024
22 deg. C / 37 % RH
Yuichiro Yamazaki

Mode T

Frequency	99% Occupied	6dB Bandwidth	Limit for
	Bandwidth		6dB Bandwidth
[MHz]	[kHz]	[MHz]	[MHz]
920.4	482.3	0.548	> 0.5000
924.4	481.2	0.552	> 0.5000

Test Report No. 15457600H-C-R1 Page 16 of 29

Maximum Peak Output Power

Test place Ise EMC Lab.

No. 4 Preparation Room No.6 measurement room December 13, 2024 December 20, 2024 Temperature / Humidity 23 deg. C / 40 % RH 22 deg. C / 37 % RH Junya Okuno Yuichiro Yamazaki

Engineer Mode Tx

					Conducted Power					e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Re	Result		Limit		Antenna	Result		Lir	Limit		
		Loss	Loss						Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
920.4	-0.85	0.27	9.80	9.22	8.36	30.00	1000	20.78	-8.90	0.32	1.08	36.02	4000	35.70	
924.4	-0.88	0.27	9.80	9.19	8.30	30.00	1000	20.81	-8.90	0.29	1.07	36.02	4001	35.73	

Sample Calculation:
Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

Date

Test Report No. 15457600H-C-R1 Page 17 of 29

Average Output Power (Reference data for RF Exposure)

Test place Ise EMC Lab.

No. 4 Preparation Room
Date
December 13, 2024
Temperature / Humidity
Engineer

No. 4 Preparation Room
December 20, 2024
22 deg. C / 37 % RH
Yuichiro Yamazaki

Mode Tx

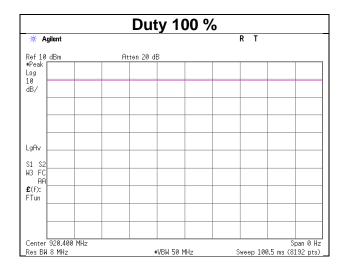
Freq.	Reading	Cable	Atten.	Result		Duty	Re	sult
		Loss	Loss	(Time average)		factor	(Burst pow	er average)
[MHz	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
920.4	-0.95	0.27	9.80	9.12	8.17	0.00	9.12	8.17
924.4	-0.99	0.27	9.80	9.08	8.09	0.00	9.08	8.09

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

Test Report No. 15457600H-C-R1 Page 18 of 29

Burst rate confirmation


Test place Ise EMC Lab.

No. 4 Preparation Room December 13, 2024

Temperature / Humidity 23 deg. C / 40 % RH Engineer Junya Okuno

Mode Tx

Date

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. 15457600H-C-R1 Page 19 of 29

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

February 12, 2025 21 deg. C / 42 % RH Date Temperature / Humidity Takeshi Hiyaji Engineer Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	40.9	23.6	-	14.7	7.0	28.5	-	16.7	-	40.0	-	23.3	-	
Hori.	173.0	22.0	-	15.8	8.2	28.1	-	17.9	-	43.5	-	25.6	-	
Hori.	263.4	21.5	-	12.5	8.8	27.7	-	15.1	-	46.0	-	30.9	-	
Hori.	332.7	22.3	-	14.8	9.2	27.9	-	18.4	-	46.0	-	27.6	-	
Hori.	469.6	22.9	-	17.0	10.1	29.0	-	21.0	-	46.0	-	25.0	-	
Hori.	723.9	22.6	-	20.1	11.0	29.2	-	24.5	-	46.0	-	21.5	-	
Hori.	2761.2	58.2	54.3	28.2	4.6	33.3	-	57.8	53.8	73.9	53.9	16.1	0.1	
Hori.	3681.6	46.3	39.5	29.2	5.0	33.0	-	47.6	40.7	73.9	53.9	26.4	13.2	
Hori.	4602.0	47.3	40.7	31.0	5.4	32.7	-	51.0	44.4	73.9	53.9	22.9	9.5	
Hori.	5522.4	41.0	34.0	31.7	5.7	32.4	-	46.0	39.0	73.9	53.9	28.0	14.9	Floor noise
Hori.	6442.8	41.9	34.1	35.8	4.0	32.5	-	49.3	41.5	73.9	53.9	24.6	12.4	Floor noise
Hori.	7363.2	41.9	34.9	35.4	4.3	32.5	-	49.2	42.1	73.9	53.9	24.8	11.8	Floor noise
Hori.	8283.6	42.3	34.5	35.5	4.6	32.8	-	49.6	41.8	73.9	53.9	24.3	12.1	Floor noise
Hori.	9204.0	43.2	35.6	35.6	4.9	33.2	-	50.6	42.9	73.9	53.9	23.3	11.0	Floor noise
Vert.	40.9	23.9	-	14.7	7.0	28.5	-	17.0	-	40.0	-	23.0	-	
Vert.	173.0	21.9	-	15.8	8.2	28.1	-	17.8	-	43.5	-	25.7	-	
Vert.	263.4	21.8	-	12.5	8.8	27.7	-	15.4	-	46.0	-	30.6	-	
Vert.	332.7	22.4	-	14.8	9.2	27.9	-	18.5	-	46.0	-	27.5	-	
Vert.	469.6	23.0	-	17.0	10.1	29.0	-	21.1	-	46.0	-	24.9	-	
Vert.	723.9	22.7	-	20.1	11.0	29.2	-	24.6	-	46.0	-	21.4	-	
Vert.	2761.2	57.3	54.1	28.2	4.6	33.3	-	56.9	53.6	73.9	53.9	17.0	0.3	
Vert.	3681.6	45.4	37.1	29.2	5.0	33.0	-	46.6	38.3	73.9		27.3	15.6	
Vert.	4602.0	45.3	38.3	31.0	5.4	32.7	-	49.0	42.0	73.9	53.9	24.9	11.9	
Vert.	5522.4	41.3	34.0	31.7	5.7	32.4	-	46.3	39.0	73.9		27.6		Floor noise
Vert.	6442.8	42.4	34.5	35.8	4.0	32.5	-	49.8	41.9	73.9	53.9	24.1	12.1	Floor noise
Vert.	7363.2	42.4	34.7	35.4	4.3	32.5	-	49.7	41.9	73.9	53.9	24.2		Floor noise
Vert.	8283.6	43.2	34.5	35.5	4.6	32.8	-	50.6	41.8	73.9				Floor noise
Vert.	9204.0 / PK) = Read	43.8	35.3	35.6	4.9	33.2	-	51.2	42.6	73.9	53.9	22.7	11.3	Floor noise

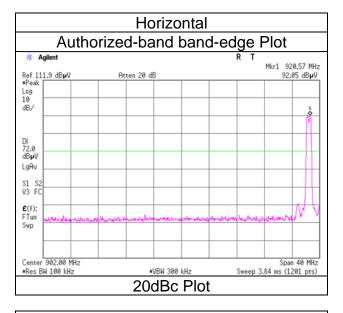
Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifler) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

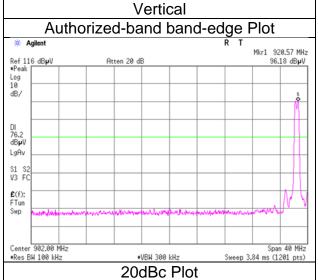
Tx 920.4 MHz

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	920.4	92.1	22.1	11.5	28.8	96.8	-	-	Carrier
Hori.	902.0	28.2	22.1	11.4	28.8	32.9	76.8	43.9	
Hori.	1840.8	53.3	25.4	2.3	33.4	47.5	76.8	29.3	
Vert.	920.4	96.2	22.1	11.5	28.8	100.9	-	-	Carrier
Vert.	902.0	27.7	22.1	11.4	28.8	32.3	80.9	48.6	
Vert.	1840.8	56.7	25.4	2.3	33.4	51.0	80.9	30.0	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)


1 GHz - 10 GHz 20log (3.75 m / 3.0 m) = 1.94 dB Distance factor:


Test Report No. 15457600H-C-R1 Page 20 of 29

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Mode

Ise EMC Lab. No.2 February 12, 2025 21 deg. C / 42 % RH Takeshi Hiyaji Tx 920.4 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15457600H-C-R1 Page 21 of 29

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Mode

Date February 12, 2025
Temperature / Humidity 21 deg. C / 42 % RH
Engineer Takeshi Hiyaji

Tx 924.4 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
1 Glarity	ricquency	(QP / PK)	(AV)	Factor	2000	Odili	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Keman
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	39.0	22.4	-	15.4	7.0	28.5	-	16.2	-	40.0	-	23.8	-	
Hori.	143.9	21.9	-	14.7	8.0	28.3	-	16.4	-	43.5	-	27.2	-	
Hori.	285.0	21.6	-	13.6	9.0	27.7	-	16.4	-	46.0	-	29.6	-	
Hori.	339.4	22.4	-	14.9	9.3	28.0	-	18.6	-	46.0	-	27.4	-	
Hori.	597.8	23.1	-	19.3	10.5	29.3	-	23.6	-	46.0	-	22.4	-	
Hori.	960.0	21.2	-	22.1	11.9	28.7	-	26.6	-	46.0	-	19.4	-	
Hori.	2773.2	50.0	44.4	28.3	4.6	33.3	-	49.6	44.0	73.9	53.9	24.3	9.9	
Hori.	3697.6	46.0	40.5	29.3	5.0	33.0	-	47.3	41.8	73.9	53.9	26.6	12.1	
Hori.	4622.0	45.1	38.8	31.1	5.4	32.7	-	48.8	42.6	73.9	53.9	25.1	11.3	
Hori.	5546.4	42.6	33.9	31.7	5.7	32.4	-	47.6	38.9	73.9	53.9	26.4	15.0	Floor noise
Hori.	6470.8	42.9	34.4	35.9	4.0	32.5	-	50.4	41.9	73.9	53.9	23.6	12.0	Floor noise
Hori.	7395.2	43.2	34.8	35.4	4.3	32.5	-	50.4	42.1	73.9	53.9	23.5	11.9	Floor noise
Hori.	8319.6	42.3	34.6	35.6	4.6	32.8	-	49.7	42.0	73.9	53.9	24.2	11.9	Floor noise
Hori.	9244.0	42.8	35.2	35.6	4.9	33.2	-	50.2	42.6	73.9	53.9	23.7	11.3	Floor noise
Vert.	39.0	22.7	-	15.4	7.0	28.5	-	16.5	-	40.0	-	23.5	-	
Vert.	143.9	22.0	-	14.7	8.0	28.3	-	16.5	-	43.5	-	27.1	-	
Vert.	285.0	21.5	-	13.6	9.0	27.7	-	16.3	-	46.0		29.7	-	
Vert.	339.4	22.8	-	14.9	9.3	28.0	-	19.0	-	46.0		27.0	-	
Vert.	597.8	22.8	-	19.3	10.5	29.3	-	23.3	-	46.0		22.7	-	
Vert.	960.0	21.0	-	22.1	11.9	28.7	-	26.4	-	46.0		19.6	-	
Vert.	2773.2	49.2	43.8	28.3	4.6	33.3	-	48.9	43.4	73.9		25.1	10.5	
Vert.	3697.6	44.8	37.8	29.3	5.0	33.0	-	46.1	39.1	73.9		27.8	14.8	
Vert.	4622.0	45.0	38.3	31.1	5.4	32.7	-	48.8	42.1	73.9		25.2	11.8	
Vert.	5546.4	41.2	33.9	31.7	5.7	32.4	-	46.1	38.9	73.9		27.8		Floor noise
Vert.	6470.8	43.0	34.5	35.9	4.0	32.5	-	50.5	42.0	73.9		23.5	-	Floor noise
Vert.	7395.2	43.2	34.9	35.4	4.3	32.5	-	50.5	42.1	73.9		23.4		Floor noise
Vert.	8319.6	42.2	34.8	35.6	4.6	32.8	-	49.6	42.2	73.9		24.3		Floor noise
Vert.	9244.0	42.9	35.2	35.6	4.9	33.2	-	50.3	42.6	73.9	53.9	23.7	11.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20dBc Data Sheet

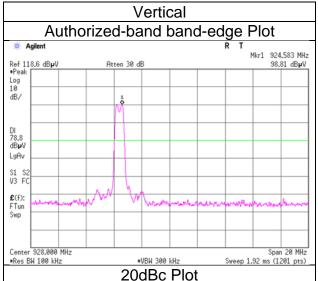
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	924.4	95.7	22.1	11.5	28.8	100.5	-	-	Carrier
Hori.	928.0	30.2	22.1	11.5	28.8	35.1	80.5	45.4	
Hori.	1848.8	50.7	25.4	2.3	33.4	45.0	80.5	35.5	
Vert.	924.4	98.8	22.1	11.5	28.8	103.6	-	-	Carrier
Vert.	928.0	30.5	22.1	11.5	28.8	35.3	83.6	48.3	
Vert.	1848.8	58.9	25.4	2.3	33.4	53.1	83.6	30.5	

 $Result = Reading + Ant Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

Distance factor: 1 GHz - 10 GHz 20log (3.75 m / 3.0 m) = 1.94 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).


^{*}QP detector was used up to 1GHz.

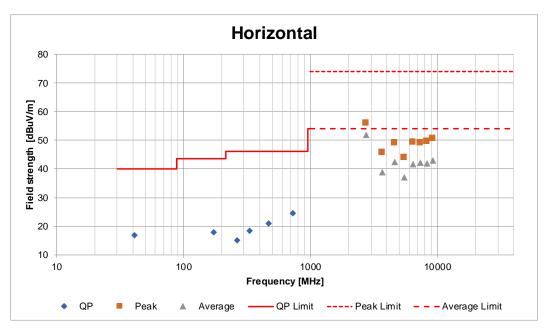

Test Report No. 15457600H-C-R1 Page 22 of 29

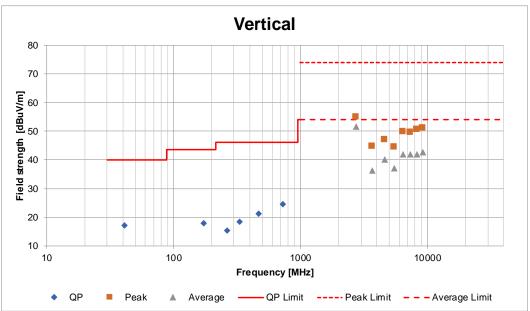
Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Mode

Ise EMC Lab. No.2 February 12, 2025 21 deg. C / 42 % RH Takeshi Hiyaji Tx 924.4 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.


Final result of restricted band edge and authorized band edge were shown in tabular data.

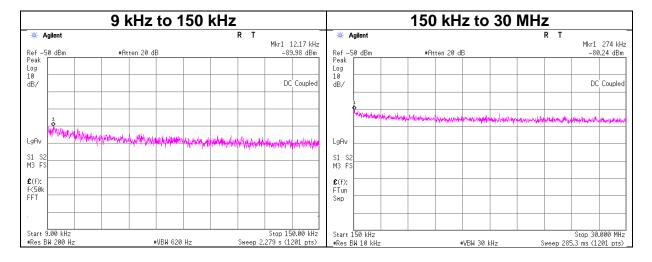

Test Report No. 15457600H-C-R1 Page 23 of 29

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

Test place Ise EMC Lab.

Semi Anechoic Chamber
Date
No.2
February 12, 2025
Temperature / Humidity
Engineer
Mode
No.2
February 12, 2025
21 deg. C / 42 % RH
Takeshi Hiyaji
Tx 920.4 MHz

^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.


Test Report No. 15457600H-C-R1 Page 24 of 29

Conducted Spurious Emission

Test place Ise EMC Lab.

No. 4 Preparation Room
Date
December 13, 2024
Temperature / Humidity
Engineer
December 13, 2024
23 deg. C / 40 % RH
Junya Okuno

Engineer Junya Okuno Mode Tx 920.4 MHz

Fred	quency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)	-		
[١	kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	12.17	-90.0	0.00	9.7	2.0	1	-78.3	300	6.0	-17.0	45.8	62.8	
2	274.00	-80.2	0.01	9.7	2.0	1	-68.5	300	6.0	-7.3	18.8	26.1	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 \ ^* \ log \ (N)$

N: Number of output

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

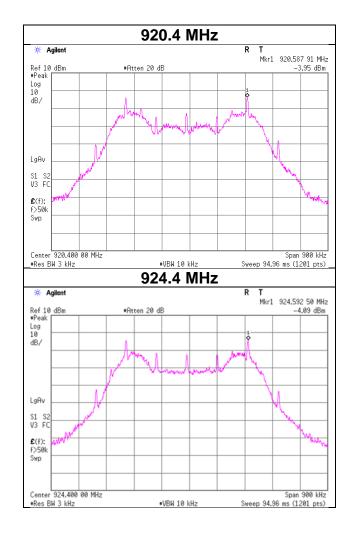
Test Report No. 15457600H-C-R1 Page 25 of 29

Power Density

Test place Ise EMC Lab.

No. 4 Preparation Room Date December 13, 2024 Temperature / Humidity 23 deg. C / 40 % RH

Engineer Junya Okuno Tx


Mode

No.6 measurement room December 20, 2024 22 deg. C / 37 % RH Yuichiro Yamazaki

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
920.4	-3.95	0.27	9.80	6.12	8.00	1.88
924.4	-4.09	0.27	9.80	5.98	8.00	2.02

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

Test Report No. 15457600H-C-R1 Page 26 of 29

APPENDIX 2: Test Instruments

Test Equipment

Test		Description	Manufacturer	Madal	Carial	Loot	Calles
Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	141244	Attenuator(10dB)	Weinschel - API Technologies Corp	WA8-10-34	A198	02/04/2025	12
AT	141327	Coaxial Cable	UL-ISE	-	-	02/19/2025	12
AT	141545	DIGITAL HITESTER	HIOKI E. E. CORPORATION	3805	51201148	02/01/2024	12
AT	141558	Digital Tester(TRUE RMS MULTIMETER)	Fluke Corporation	115	17930030	05/17/2024	12
AT	141805	Power Meter	Anritsu Corporation	ML2495A	6K00003338	08/22/2024	12
AT	141809	Power Meter	Anritsu Corporation	ML2495A	825002	05/22/2024	12
AT	141830	Power sensor	Anritsu Corporation	MA2411B	738285	05/22/2024	12
AT	141840	Power sensor	Anritsu Corporation	MA2411B	011737	08/22/2024	12
AT	141900	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185823	11/13/2024	12
AT	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/30/2025	12
AT	244710	Thermo-Hygrometer	HIOKI E. E. CORPORATION	LR5001	231202104	01/19/2025	12
AT	244712	Thermo-Hygrometer	HIOKI E. E. CORPORATION	LR5001	231202106	01/19/2025	12
AT	248911	Microwave Cable	Huber+Suhner	SF126E/11PC35/ 11PC35/1000MM	537060/126E	05/29/2024	12
RE	141227	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S305	03/04/2024	12
RE	141265	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-190	07/10/2024	12
RE	141317	Coaxial Cable	UL-ISE	=	-	09/11/2024	12
RE	141331	Attenuator(6dB)	TME	UFA-01	=	02/19/2025	12
RE	141427	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103B +BBA9106	08031	07/30/2024	12
RE	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	254	10/17/2024	12
RE	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/06/2024	12
RE	141594	Pre Amplifier	Keysight Technologies Inc	8447D	2944A10150	02/19/2025	12
RE	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	11/28/2024	12
RE	141978	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180899	05/09/2024	12
RE	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	12/12/2023	24
RE	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/17/2023	24
RE	142228	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	192072	Band Rejection Filter(902-928MHz)	Wakoh Communication Industrial Co., Ltd.	WFR-481	19122541	03/19/2024	12
RE	238713	Double Ridge Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 C	688	09/02/2024	12
RE	242978	High Pass Filter 1-13 GHz	Pasternak	PE87FL1018	D.C. 2215	02/14/2025	12
RE	244707	Thermo-Hygrometer	HIOKI E. E. CORPORATION	LR5001	231202102	01/19/2025	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test

RE: Radiated Emission