

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	4.97 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jun24

Page 5 of 13

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	5.19 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jun24

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	47.5 Ω - 4.9 jΩ			
Return Loss	- 25.0 dB			

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	46.5Ω - $3.0 j\Omega$			
Return Loss	- 26.5 dB			

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	46.3 Ω - 1.1 jΩ
Return Loss	- 27.9 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	49.5 Ω - 2.3 jΩ
Return Loss	- 32.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.0 Ω + 1.7 jΩ	
Return Loss	- 29.5 dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	51.5Ω - $0.6 j\Omega$	
Return Loss	- 35.8 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.0 Ω - 2.4 jΩ	
Return Loss	- 31.9 dB	

Certificate No: D5GHzV2-1060_Jun24

Page 7 of 13

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns	
	1.202 113	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG

Certificate No: D5GHzV2-1060_Jun24

Page 8 of 13

DASY5 Validation Report for Head TSL

Date: 12.06.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; σ = 4.55 S/m; ϵ_r = 36.4; ρ = 1000 kg/m³ Medium parameters used: f = 5250 MHz; σ = 4.6 S/m; ϵ_r = 36.3; ρ = 1000 kg/m³ Medium parameters used: f = 5300 MHz; σ = 4.64 S/m; ϵ_r = 36.2; ρ = 1000 kg/m³ Medium parameters used: f = 5500 MHz; σ = 4.86 S/m; ϵ_r = 35.8; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 4.97 S/m; ϵ_r = 35.6; ρ = 1000 kg/m³ Medium parameters used: f = 5750 MHz; σ = 5.14 S/m; ϵ_r = 35.4; ρ = 1000 kg/m³ Medium parameters used: f = 5800 MHz; σ = 5.19 S/m; ϵ_r = 35.3; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.63, 5.63, 5.63) @ 5200 MHz, ConvF(5.39, 5.39, 5.39) @ 5250 MHz, ConvF(5.38, 5.38, 5.38) @ 5300 MHz, ConvF(5.04, 5.04, 5.04) @ 5500 MHz, ConvF(5, 5, 5) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz, ConvF(4.86, 4.86, 4.86) @ 5800 MHz; Calibrated: 07.03.2024
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.05.2024
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.67 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.18 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 69.1%

Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.05 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.23 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 70.1%

Maximum value of SAR (measured) = 18.0 W/kg

Certificate No: D5GHzV2-1060_Jun24

Page 9 of 13

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 76.66 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.28 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 68.9%

Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.28 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 32.3 W/kg

SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.37 W/kg

Smallest distance from peaks to all points 3 dB below = 6.8 mm

Ratio of SAR at M2 to SAR at M1 = 66.4%

Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 76.70 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 30.7 W/kg

SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.32 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 67.1%

Maximum value of SAR (measured) = 19.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.11 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.28 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 65.6%

Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

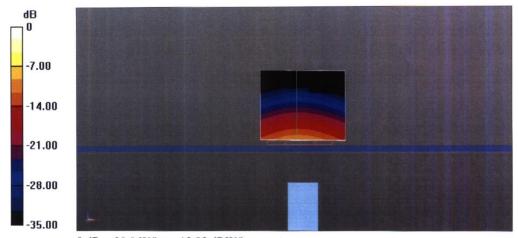
Reference Value = 74.18 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.22 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

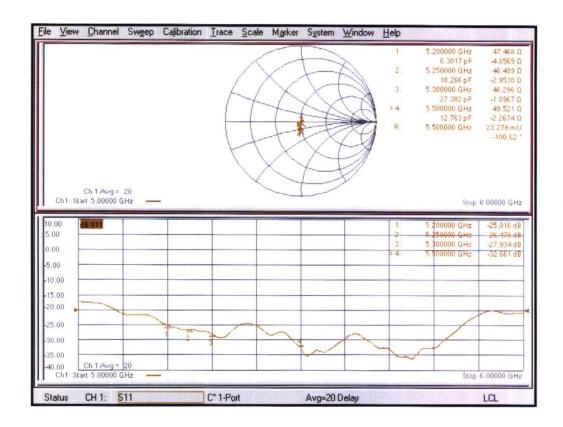
Ratio of SAR at M2 to SAR at M1 = 65.1%


Maximum value of SAR (measured) = 19.3 W/kg

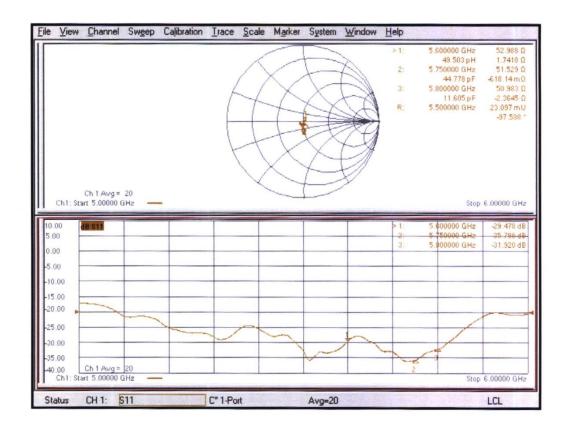
Certificate No: D5GHzV2-1060_Jun24

Page 10 of 13

0 dB = 20.0 W/kg = 13.02 dBW/kg


Certificate No: D5GHzV2-1060_Jun24

Page 11 of 13


Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500 MHz)

Impedance Measurement Plot for Head TSL (5600, 5750, 5800 MHz)

Certificate No: D5GHzV2-1060_Jun24

Page 13 of 13

ANNEX I Spot Check

I.1 SAR test result for spot check

Table J.2-1: Spot Check result

	Frequency		Test	Conducte	Max. tune-	Measured	Reported	Measured	Reported	Power
Band				d Power	up Power	SAR(1g)	SAR(1g)(SAR(10g)	SAR(10g	Drift
	Ch.	MHz	Mode	(dBm)	(dBm)	(W/kg)	W/kg)	(W/kg)) (W/kg)	(dB)
GSM850	190	836.6	GPRS(4TX) Left Tilt	28.71	29.5	0.86	1.03	0.420	0.50	0.02
GSM1900	661	1880	GPRS(2TX) Bottom 10mm	27.86	29	0.556	0.72	0.311	0.40	0.04

I.2 Reported SAR Comparison

Table I.2-1: Highest Reported SAR (1g)

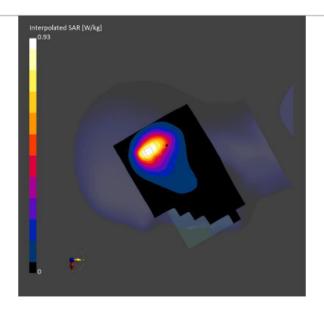
Exposure Configuration	Technology Band	Reported SAR 1g (W/Kg): original	Reported SAR 1g (W/Kg): spot check
Head	GSM850	1.15	1.03
Body	GSM1900	1.11	0.72

Note: All the spot check results are less than the original result. So it reuse all the results of original report.

I.3 Graph Results

GSM850 Head

Exposure Conditions


Phantom Section, TSL	Position, Test Distance [mm]	Band	Duty Cycle	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
RightHead,	TILT,	GSM 850	1:2	836.600,	10.33	0.894	41.03
Head Simulating Liquid	0.00			190			

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V8.0 (30deg probe tilt)	HBBL-600-10000	EX3DV4 - SN7727, 2024-09-11	DAE4ip Sn1832, 2024-12-31
- 2114			

can Setup		
	Area Scan	Zoom Scan
Grid Extents [mm]	120.0 x 210.0	30.0 x 30.0 x 30.0
Grid Steps [mm]	15.0 x 15.0	4.8 x 4.8 x 1.4
Sensor Surface	3.0	1.4
mm]		
Graded Grid	N/A	Yes
Grading Ratio	N/A	1.4
MAIA	N/A	N/A
Surface Detection	VMS + 6p	VMS + 6p
Scan Method	Measured	Measured
ocurr metrod	casarca	Wicasart

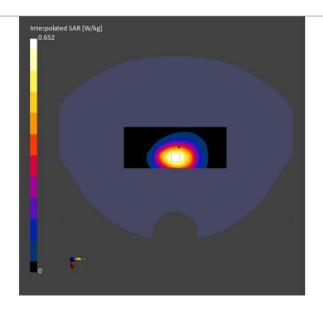
Measurement Results Area Scan Zoom Scan 2025-03-12 2025-03-12 psSAR1g [W/kg] 0.783 0.860 psSAR10g [W/kg] Power Drift [dB] 0.420 0.484 -0.04 0.02 Disabled Disabled Power Scaling Scaling Factor [dB] TSL Correction M2/M1 [%] Dist 3dB Peak [mm] No correction No correction 66.3 6.8

GSM1900 Body

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Duty Cycle	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, Head Simulating	EDGE BOTTOM, 10.00	PCS 1900	1:4	1880.000, 661	8.57	1.366	38.76

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V8.0 (30deg probe tilt)	HBBL-600-10000	EX3DV4 - SN7727, 2024-09-11	DAE4ip Sn1832, 2024-12-31
- 2114			

Scan Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	48.0 x 120.0	30.0 x 30.0 x 30.0
Grid Steps [mm]	8.0 x 15.0	6.0 x 6.0 x 1.5
Sensor Surface	3.0	1.4
[mm]		
Graded Grid	N/A	Yes
Grading Ratio	N/A	1.5
MAIA	N/A	N/A
Surface Detection	All points	All points
Scan Method	Measured	Measured

Measurement Results

	Area Scan	Zoom Scan
Date	2025-03-15	2025-03-15
psSAR1g [W/kg]	0.533	0.556
psSAR10g [W/kg]	0.297	0.311
Power Drift [dB]	0.05	0.04
Power Scaling	Disabled	Disabled
Scaling Factor [dB]		
TSL Correction	No correction	No correction
M2/M1 [%]		80.7
Dist 3dB Peak [mm]		12.0

ANNEX J Accreditation Certificate

Accredited Laboratory

A2LA has accredited

TELECOMMUNICATION TECHNOLOGY LABS, CAICT

Beijing, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 23rd day of July 2024.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049.01 Valid to July 31, 2026

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.