Mercury O-RU n48/n77/n78 internal Antenna measurement report

2024/10/24

核心技術研發中心-無線通訊處-天線一部

Core Technology RDC-Wireless Comm. Div.-Ant1 Dept.

Outline

- Antenna structure, measurement condition and specification
- Distance between antennas of final position
- Performance
 - S parameter
 - Isolation
 - Envelope correlation coefficient (ECC)
 - Efficiency
 - Peak gain
- n48/n77/n78 band only model radiation patterns
 - 2D radiation patterns
 - 3D radiation patterns

Antenna structure, measurement condition and specification

✓ We measured the final positioning of n48/n77/n78 antenna structures with Mercury mockup environment

Model

n48/n77/n48 band

Antenna structure

n48/n77/n48 3.3~4.2 GHz

Antenna type

Frequency band

PIFA antenna

Antenna Brand

Pegatron

Antenna size (mm)

40*30*13

Ant1 No.

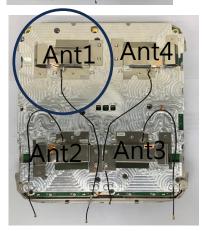
1415-0B06000

Ant2 No.

1415-0B07000

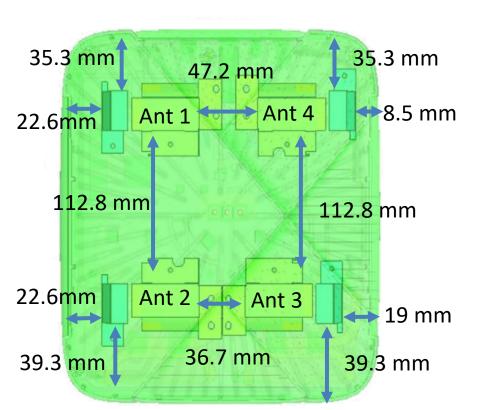
Ant3 No.

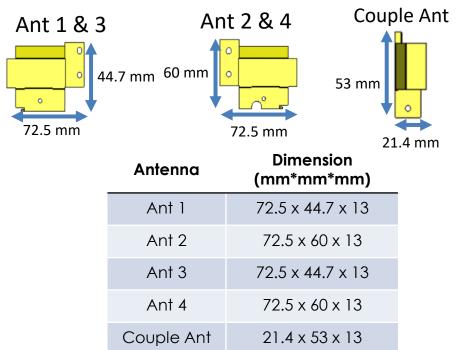
1415-0B08000


Ant4 No.

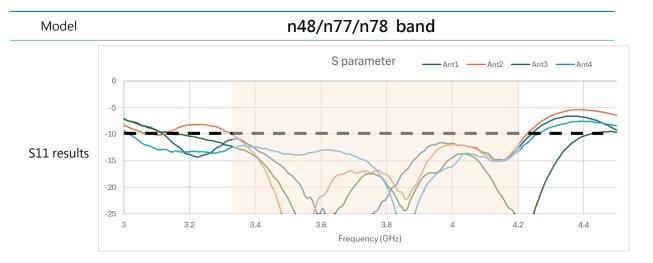
1415-0B09000

Antenna peak gain spec.

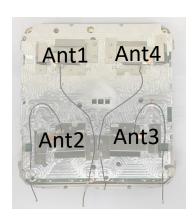

> 6 dBi



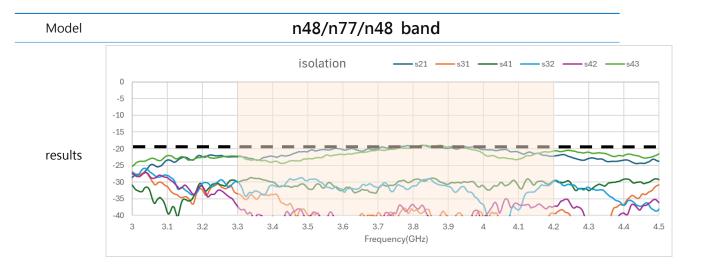
Mercury n48/n77/n78 antenna I position

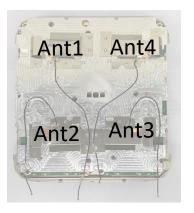

 \checkmark The Mercury n48/n77/n78 antenna final position is shown as follow.

S parameter

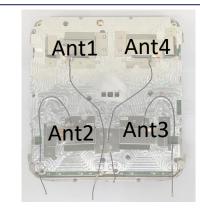

✓ The measured results of antenna at all model could meet under -10 dB spec.

Freq.	N77: 3.3 ~ 4.2 GHz				
	Port 1	Port 2	Port 3	Port 4	
SPEC	Under -10 dB				
Result	Pass	Pass	Pass	Pass	




Isolation

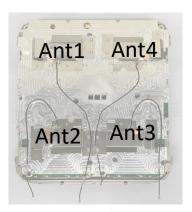
✓ The measured isolations of antenna at all model could meet under -20 dB spec.



Envelope correlation coefficient (ECC)

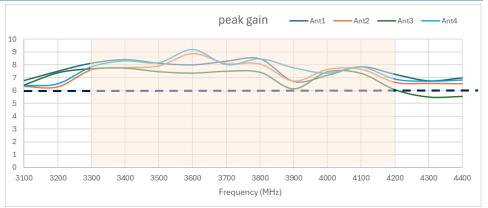
✓ The measured ECC of antenna at all model could under 0.05 dB spec.

	Freq.	3300	3400	3500	3600	3700	3800	3900	4000	4100	4200
ANT 1 - ANT 2	ECC	0.003637	0.022475	0.012892	0.017143	0.037016	0.000548	0.030808	0.038163	0.016513	0.016897
ANT 1 - ANT 3	ECC	0.002446	0.000867	0.000275	0.000309	0.000163	0.001629	0.000354	0.000562	0.002055	0.000781
ANT 1 - ANT 4	ECC	0.004326	0.002134	0.000003	0.002927	0.000075	0.000660	0.004848	0.000168	0.003934	0.000881
ANT 2 - ANT 3	ECC	0.000432	0.000816	0.000426	0.003748	0.000002	0.002765	0.001911	0.000193	0.006129	0.000164
ANT 2- ANT 4	ECC	0.000401	0.000024	0.001950	0.000231	0.000766	0.001854	0.000065	0.001326	0.000592	0.000268
ANT 3 – ANT 4	ECC	0.025548	0.004834	0.020900	0.000440	0.036538	0.007181	0.023022	0.044643	0.002245	0.026991

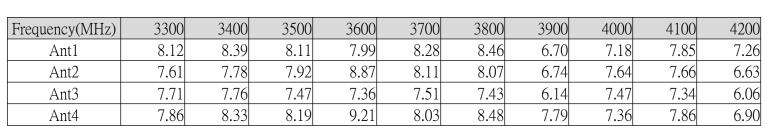

Efficiency

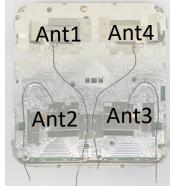
✓ The results of antenna of all ports could meet above -3 dB spec.

Freq.	N77: 3.3 ~ 4.2 GHz				
	Port 1	Port 2	Port 3	Port 4	
SPEC	Above -3 dB				
Result	Pass	Pass	Pass	Pass	

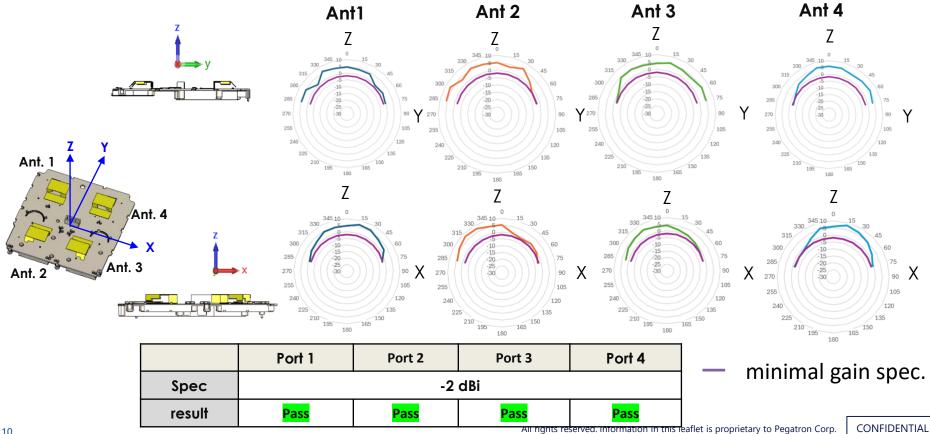


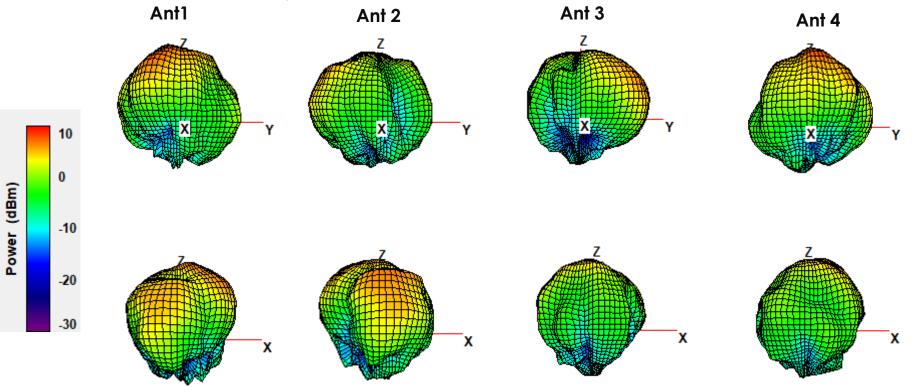
Peak gain


✓ Peak gain of n48/n77/n78 band only model get from 6 dBi to 9 dBi at 3.3 ~4.2 GHz


Model n48/n77/n78 band

Peak gain results


-	The state of the s
	-
- Profile	W H


n48/n77/n78 band only model 2D radiation patterns

The measured results 2D radiation patterns

n48/n77/n78 band only model 3D radiation patterns

✓ The measured 3D radiation patterns shown as below, pass the specification.

Summary

- ✓ We measured the n48/n77/n78 T1 sample antenna for Mercury RU.
- ✓ All the performance can meet the spec.

	SPECIFICATION
Return Loss (S11)	< -10 dB
Efficiency	> -3 dB
Peak gain	> 6 dBi
2D Radiation pattern ($\pm75^{\circ}$)	> -2 dBi

PEGATRON 和碩聯合科技

CONFIDENTIAL