

TEST REPORT

Product Name : Wi-Fi&BT module

Brand Mark : N/A

Model No. : RW8822-50B1

: BLA-EMC-202210-A6203 **Report Number**

FCC ID : VYV-RW8822-50B1

Date of Sample Receipt : 2022/10/31

Date of Test : 2022/10/31 to 2022/12/22

: 2022/12/22 Date of Issue

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Prepared for:

Iton Technology Corp.

7 Floor East, Building C, Shenzhen International Innovation Center, No.1006 Shennan Rd. Futian Dist Shenzhen China

Prepared by:

BlueAsia Technical Services(Shenzhen) Co.,Ltd. No.41, South of Beihuan Road, Shangwu Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-23059481

Compiled by:

Approved by:

Josu 13 lue Theng Review by:

Date:

Page 2 of 75

REPORT REVISE RECORD

Version No. Date		Description
00	2022/12/22	Original

TABLE OF CONTENTS

1	TES	ST SUMMARY	5
2	GEI	NERAL INFORMATION	6
3	GEI	NERAL DESCRIPTION OF E.U.T	6
4	TES	ST ENVIRONMENT	7
5	TES	ST MODE	7
6		ASUREMENT UNCERTAINTY	
	DEC	SCRIPTION OF SUPPORT UNIT	1
7		BORATORY LOCATION	
8			
9		ST INSTRUMENTS LIST	
10	COI	NDUCTED SPURIOUS EMISSIONS	11
	10.1	LIMITS	11
	10.2	BLOCK DIAGRAM OF TEST SETUP	11
	10.3	TEST DATA	12
11	PO	WER SPECTRUM DENSITY	13
	11.1	LIMITS	13
	11.2	BLOCK DIAGRAM OF TEST SETUP	13
	11.3	TEST DATA	13
12	COI	NDUCTED PEAK OUTPUT POWER	14
	12.1	LIMITS	14
	12.2	BLOCK DIAGRAM OF TEST SETUP	14
	12.3	TEST DATA	15
13	MIN	IIMUM 6DB BANDWIDTH	16
	13.1	LIMITS	16
	13.2	BLOCK DIAGRAM OF TEST SETUP	16
	13.3	TEST DATA	16
14	. AN	TENNA REQUIREMENT	17
	14.1	Conclusion	17
15	i coi	NDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	
	15.1	LIMITS	18

Page 4 of 75

15.2	BLOCK DIAGRAM OF TEST SETUP	18
15.3	PROCEDURE	18
15.4	TEST DATA	20
16 CC	ONDUCTED BAND EDGES MEASUREMENT	23
16.1	LIMITS	23
16.2	BLOCK DIAGRAM OF TEST SETUP	23
16.3	TEST DATA	24
17 RA	ADIATED SPURIOUS EMISSIONS	2
17.1	LIMITS	
17.2	BLOCK DIAGRAM OF TEST SETUP	
17.3	PROCEDURE	20
17.4	TEST DATA	28
18 RA	ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	37
18.1	LIMITS	3
18.2	BLOCK DIAGRAM OF TEST SETUP	
18.3	PROCEDURE	38
18.4	TEST DATA	
19 AP	PPENDIX	4
APPENI	DIX A: PHOTOGRAPHS OF TEST SETUP	73
	DIX B: PHOTOGRAPHS OF EUT	
HLLEINI	DIA D. FNO I UURAFNO UF EU I	

Page 5 of 75

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass

Page 6 of 75

2 GENERAL INFORMATION

Applicant	Iton Technology Corp.
Address	7 Floor East, Building C, Shenzhen International Innovation Center, No.1006 Shennan Rd. Futian Dist Shenzhen China
Manufacturer	Iton Technology Corp.
Address	7 Floor East, Building C, Shenzhen International Innovation Center, No.1006 Shennan Rd. Futian Dist Shenzhen China
Factory	Iton Technology Corp.
Address	7 Floor East, Building C, Shenzhen International Innovation Center, No.1006 Shennan Rd. Futian Dist Shenzhen China
Product Name	Wi-Fi&BT module
Test Model No.	RW8822-50B1

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V2.1
Software Version	V2.19
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Rate data:	1Mbps; 2Mbps
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	External Antenna
Antenna Gain:	3.3dBi (Provided by the applicant)

Page 7 of 75

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25°C	3.3Vdc

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION
TX	Keep the EUT in transmitting mode
Remark:Only th	e data of the worst mode would be recorded in this report.

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)		
Radiated Emission(9kHz-30MHz)	±4.34dB		
Radiated Emission(30Mz-1000MHz)	±4.24dB		
Radiated Emission(1GHz-18GHz)	±4.68dB		
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB		

Parameter	Expanded Uncertainty (Confidence of 95%)		
Occupied Channel Bandwidth	±5 %		
RF output power, conducted	±1.5 dB		
Power Spectral Density, conducted	±3.0 dB		
Unwanted Emissions, conducted	±3.0 dB		
Temperature	±3 °C		
Supply voltages	±3 %		
Time	±5 %		
Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB		
Radiated Emission (1GHz ~ 18GHz)	±4.44 dB		

Page 8 of 75

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
N/A	N/A	N/A	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia Technical Services(Shenzhen) Co.,Ltd.

No.41, South of Beihuan Road, Shangwu Community, Shiyan Subdistrict, Bao'an District, Shenzhen,Guangdong ,China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Page 9 of 75

9 TEST INSTRUMENTS LIST

Test Equipment Of Radiated Spurious Emissions						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Chamber 1	SKET	966	N/A	2020/11/10	2023/11/9	
Chamber 2	SKET	966	N/A	2021/07/20	2024/07/19	
Spectrum	R&S	FSP40	100817	2022/09/15	2023/09/14	
Receiver	R&S	ESR7	101199	2022/09/15	2023/09/14	
Receiver	R&S	ESPI7	101477	2022/07/16	2023/07/15	
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2022/09/15	2023/09/14	
Horn Antenna	Schwarzbeck	BBHA9120D	01892 P:00331	2022/09/13	2025/09/12	
Amplifier	SKET	LNPA_30M01G-30	SK2021060801	2022/07/16	2023/07/15	
Amplifier	SKET	PA-000318G-45	N/A	2022/09/13	2023/09/12	
Amplifier	SKET	LNPA_18G40G-50	SK2022071301	2022/07/14	2023/07/13	
Filter group	SKET	2.4G/5G Filter group r	N/A	2022/07/16	2023/07/15	
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A	
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2022/9/14	2025/9/13	
Controller	SKET	N/A	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A	

Page 10 of 75

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Shield room	SKET	833	N/A	2020/11/25	2023/11/24		
Receiver	R&S	ESPI3	101082	2022/09/14	2023/09/13		
LISN	R&S	ENV216	3560.6550.15	2022/09/14	2023/09/13		
LISN	AT	AT166-2	AKK1806000003	2022/09/14	2023/09/13		
ISN	TESEQ	ISNT8-cat6	53580	2022/09/14	2023/09/13		
Single-channel vehicle artificial power network	Schwarzbeck	NNBM 8124	01045	2022/08/17	2023/08/16		
Single-channel vehicle artificial power network	Schwarzbeck	NNBM 8124	01075	2022/08/17	2023/08/16		
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A		

Test Equipment Of RF Conducted Test						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	2022/09/15	2023/09/14	
Spectrum	Agilent	N9020A	MY49100060	2022/09/07	2023/09/06	
Spectrum	KEYSIGHT	N9030A	MY52350152	2022/07/01	2023/06/30	
Spectrum	KEYSIGHT	N9010A	MY54330814	2022/07/01	2023/06/30	
Signal Generator	Agilent	N5182A	MY47420955	2022/09/07	2023/09/06	
Signal Generator	Agilent	E8257D	MY44320250	2022/07/01	2023/06/30	
Signal Generator	Agilent	N5181A	MY46240904	2022/08/02	2023/08/01	
Signal Generator	R&S	CMW500	132429	2022/09/07	2023/09/06	
BluetoothTester	Anritsu	MT8852B	06262047872	2022/09/07	2023/09/06	
Power probe	DARE	RPR3006W	14I00889SN042	2022/09/07	2023/09/06	
DCPowersupply	zhaoxin	KXN-305D	20K305D1221363	2022/09/14	2023/09/13	
DCPowersupply	zhaoxin	RXN-1505D	19R1505D050168	2022/09/14	2023/09/13	
2.4GHz/5GHz RF Test sorfware	MTS	MTS 8310	Version 2.0.0.0	N/A	N/A	
Audio Analyzer	Audioprecision	N/A	ATSI-41094	2022/7/1	2023/6/30	

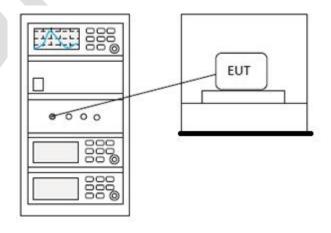
Page 11 of 75

10 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11			
Test Mode (Pre-Scan)	TX			
Test Mode (Final Test)	TX			
Tester	Jozu			
Temperature	25℃			
Humidity	60%			

10.1 LIMITS

Limit:


spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the

restricted bands, as defined in §15.205(a), must also comply with the radiated

emission limits specified in §15.209(a) (see §15.205(c)).

In any 100 kHz bandwidth outside the frequency band in which the spread

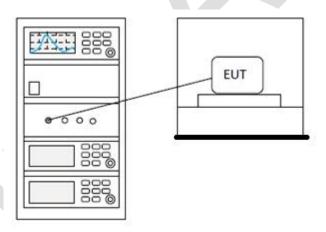
10.2 BLOCK DIAGRAM OF TEST SETUP

Page 12 of 75

10.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 13 of 75


11 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.10.2				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Jozu				
Temperature	25℃				
Humidity	60%				

11.1 LIMITS

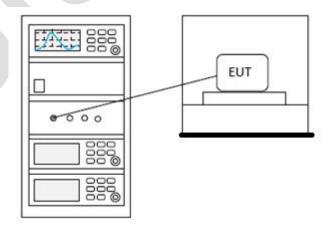
Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 14 of 75


12 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 7.8.5			
Test Mode (Pre-Scan)	TX			
Test Mode (Final Test)	TX			
Tester	Jozu			
Temperature	25℃			
Humidity	60%			

12.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5505 5050	1 for frequency hopping systems and digital
5725-5850	modulation

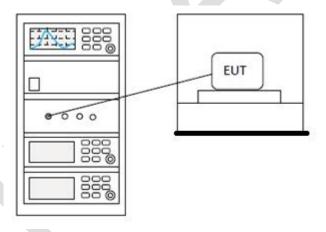
12.2 BLOCK DIAGRAM OF TEST SETUP

Page 15 of 75

12.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 16 of 75


13 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.8.1				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Jozu				
Temperature	25℃				
Humidity	60%				

13.1 LIMITS

Limit:	≥500 kHz			
L'IIIII.	_500 K112			

13.2 BLOCK DIAGRAM OF TEST SETUP

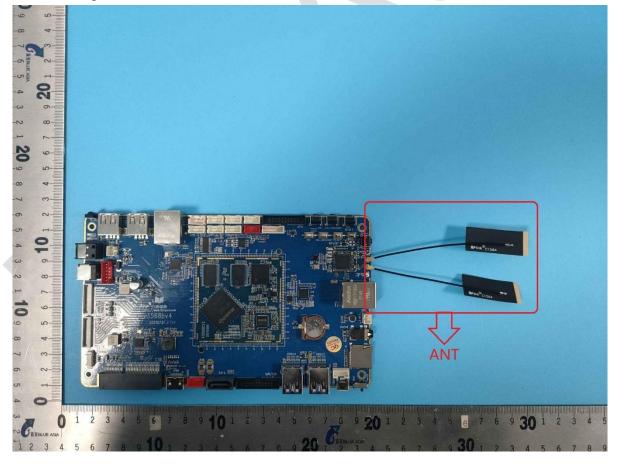
13.3 TEST DATA

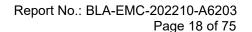
Pass: Please Refer To Appendix: Appendix1 For Details

Page 17 of 75

14 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

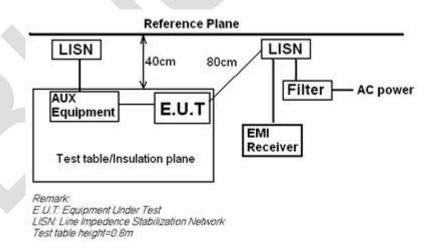

14.1 CONCLUSION


Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The best case gain of the antenna is 3.3dBi.


15 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 6.2				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Jozu				
Temperature	25 ℃				
Humidity	60%				

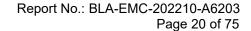
15.1 LIMITS

Frequency of	Conducted limit(dBµV)					
emission(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
*Decreases with the logarithm of the frequency.						

15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 PROCEDURE

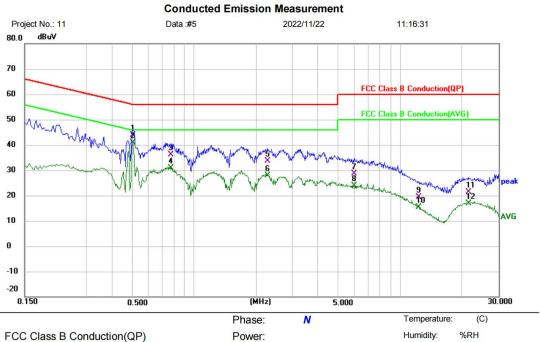
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.


Page 19 of 75

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


Remark: LISN=Read Level+ Cable Loss+ LISN Factor

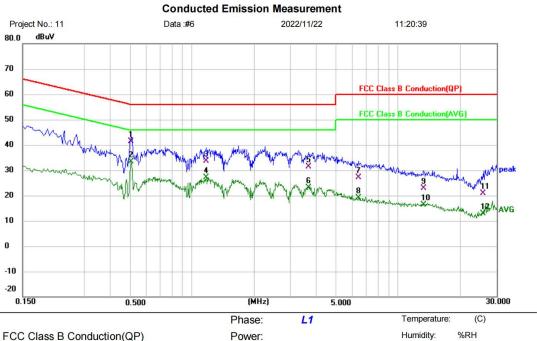
15.4 TEST DATA

[TestMode: TX]; [Line: Nutral] ;[Power:AC120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: WIFI Module M/N: RW8822-50B1 Mode: BLE mode

Note:


Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5020	33.71	10.05	43.76	56.00	-12.24	QP	
2	*	0.5020	30.73	10.05	40.78	46.00	-5.22	AVG	
3		0.7740	26.01	10.02	36.03	56.00	-19.97	QP	
4		0.7740	20.74	10.02	30.76	46.00	-15.24	AVG	
5		2.2740	23.56	10.08	33.64	56.00	-22.36	QP	
6		2.2740	17.77	10.08	27.85	46.00	-18.15	AVG	
7		5.9660	18.82	9.84	28.66	60.00	-31.34	QP	
8		5.9660	13.99	9.84	23.83	50.00	-26.17	AVG	
9		12.2940	9.35	10.00	19.35	60.00	-40.65	QP	
10		12.2940	5.41	10.00	15.41	50.00	-34.59	AVG	
11		21.5900	11.46	9.95	21.41	60.00	-38.59	QP	
12		21.5900	6.99	9.95	16.94	50.00	-33.06	AVG	

*:Maximum data (Reference Only x:Over limit !:over margin

[TestMode: TX]; [Line: Line] ;[Power:AC120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: WIFI Module M/N: RW8822-50B1 Mode: BLE mode

Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5060	31.41	10.08	41.49	56.00	-14.51	QP	
2	*	0.5060	23.30	10.08	33.38	46.00	-12.62	AVG	
3		1.1660	23.59	10.14	33.73	56.00	-22.27	QP	
4		1.1660	16.89	10.14	27.03	46.00	-18.97	AVG	
5		3.6660	21.12	10.14	31.26	56.00	-24.74	QP	
6		3.6660	12.94	10.14	23.08	46.00	-22.92	AVG	
7		6.4340	17.10	10.05	27.15	60.00	-32.85	QP	
8		6.4340	9.06	10.05	19.11	50.00	-30.89	AVG	
9		13.3340	12.97	10.01	22.98	60.00	-37.02	QP	
10		13.3340	6.27	10.01	16.28	50.00	-33.72	AVG	
11		25.7420	10.97	10.00	20.97	60.00	-39.03	QP	
12		25.7420	2.97	10.00	12.97	50.00	-37.03	AVG	

^{*:}Maximum data x:Over limit !:over margin (Reference Only

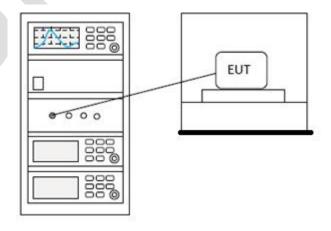
Page 22 of 75

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Page 23 of 75

16 CONDUCTED BAND EDGES MEASUREMENT


Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

16.1 LIMITS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

16.2 BLOCK DIAGRAM OF TEST SETUP

Page 24 of 75

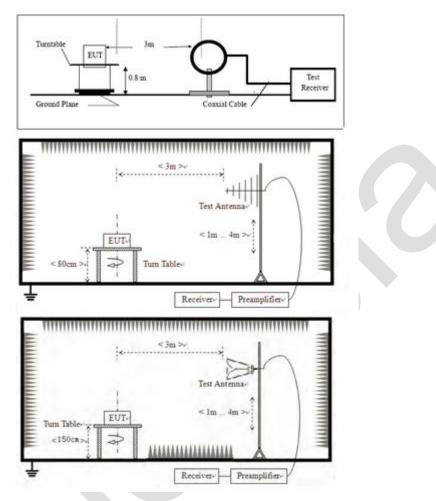
16.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 25 of 75

17 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6						
Test Mode (Pre-Scan)	TX mode (SE) below 1G;TX mode (SE) Above 1G						
Test Mode (Final Test)							
Tester	Jozu						
Temperature	25℃						
Humidity	60%						


17.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 27 of 75

- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

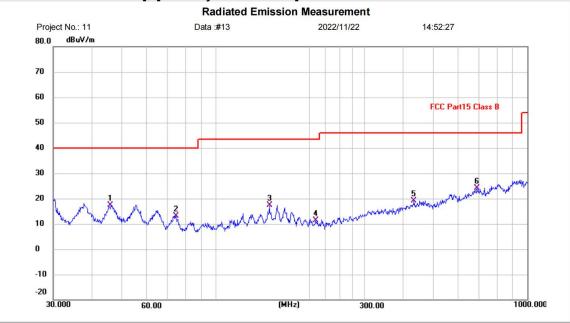
- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.fundamental frequency is blocked by filter, and only spurious emission is shown.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

(C)

%RH


Temperature:

Humidity:

Page 28 of 75

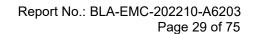
17.4 TEST DATA

[TestMode: TX below 1G]; [Polarity: Horizontal]

Polarization: Horizontal

Limit: FCC Part15 Class B

EUT: WIFI Module M/N: RW8822-50B1 Mode: BLE TX mode

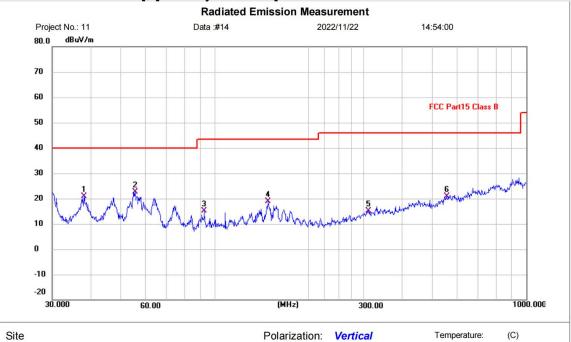

Note:

Site

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	46.0162	23.97	-6.51	17.46	40.00	-22.54	QP	Р	
2	74.3955	22.49	-9.45	13.04	40.00	-26.96	QP	Р	
3	148.4410	23.76	-6.27	17.49	43.50	-26.01	QP	Р	
4	209.3129	20.45	-9.17	11.28	43.50	-32.22	QP	Р	
5	432.5456	21.65	-2.42	19.23	46.00	-26.77	QP	Р	
6 *	689.5644	21.51	2.63	24.14	46.00	-21.86	QP	Р	

Power:

^{*:}Maximum data x:Over limit !:over margin



Humidity:

%RH

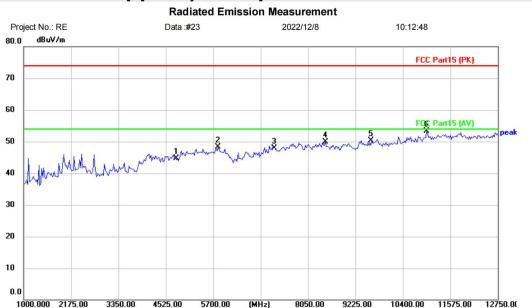
[TestMode: TX below 1G]; [Polarity: Vertical]

Limit: FCC Part15 Class B EUT: WIFI Module M/N: RW8822-50B1 Mode: BLE TX mode

Note:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	37.9450	27.01	-6.19	20.82	40.00	-19.18	QP	Р	
2 *	55.4147	29.31	-6.65	22.66	40.00	-17.34	QP	Р	
3	92.4624	25.52	-10.42	15.10	43.50	-28.40	QP	Р	
4	147.9214	25.22	-6.46	18.76	43.50	-24.74	QP	Р	
5	311.0867	20.44	-5.32	15.12	46.00	-30.88	QP	Р	
6	554.8254	20.77	0.19	20.96	46.00	-25.04	QP	Р	

Power:


^{*:}Maximum data x:Over limit !:over margin

Page 30 of 75

Remark: During the test, pre-scan the BLE1M, BLE2M, and found the BLE1M which it is worse case.

[TestMode: TX low channel]; [Polarity: Vertical]

Polarization:

Power:

Vertical

Temperature:

Humidity:

(C)

%RH

Site

Limit: FCC Part15 (PK) EUT: WIFI&BT Module M/N: RW8822-50B1 Mode: BLE1M TX-L

Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	4804.000	40.72	4.05	44.77	74.00	-29.23	peak	
2	5817.500	41.60	6.78	48.38	74.00	-25.62	peak	
3	7206.000	39.88	7.93	47.81	74.00	-26.19	peak	
4	8473.000	40.88	9.12	50.00	74.00	-24.00	peak	
5	9608.000	39.39	10.90	50.29	74.00	-23.71	peak	
6 *	10987.500	39.91	13.44	53.35	74.00	-20.65	peak	

*:Maximum data x:Over limit !:over margin \(\text{Reference Only} \)