

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101728

FCC REPORT

Applicant: HMD global Oy

Address of Applicant: Bertel Jungin aukio 9, 0260 0 Espoo, Finland

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: TA-1358

Trade mark: NOKIA

FCC ID: 2AJOTTA-1358

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 19 Aug., 2021

Date of Test: 20 Aug., to 28 Aug., 2021

Date of report issued: 16 Sep., 2021

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	16 Sep., 2021	Original

According to the declaration from the applicant, the models: TA-1361 and TA-1358 are identical in specifications, only different SIM adapter, TA-1361 supports daul sim mode, TA-1358 supports only single sim mode.

Therefore in this report all items do not need to retest and all test data in this report are based on the previous report with report number: JYTSZB-R12-2101719

Tested by:	Mike OU	Date:	16 Sep., 2021	
	Test Engineer			

Reviewed by:

Date: 16 Sep., 2021

Project Engineer

Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4		ST SUMMARY	
5		NERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	7
	5.7	LABORATORY LOCATION	7
	5.8	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	BAND EDGE	
	6.3.	Tradictor Emission Mountain	
	6.4	Spurious Emission	
	6.4.	1 Radiated Emission Method	22
7	TES	ST SETUP PHOTO	42
Ω	ELIT	CONSTRUCTIONAL DETAILS	42

Page 3 of 42

Test Summary

15.203 & 15.247 (b)		
10.200 & 10.247 (b)	See Section 6.1	Pass
15.207	See Section 6.2	Pass
15.247 (b)(3)	Refer to the report: SRTC2021-9004(F)- 21082803(E)	Refer to the report: SRTC2021-9004(F)- 21082803(E)
15.247 (a)(2)	Refer to the report: SRTC2021-9004(F)- 21082803(E)	Refer to the report: SRTC2021-9004(F)- 21082803(E)
15.247 (e)	Refer to the report: SRTC2021-9004(F)- 21082803(E)	Refer to the report: SRTC2021-9004(F)- 21082803(E)
15.247 (d)	Refer to the report: SRTC2021-9004(F)- 21082803(E)	Refer to the report: SRTC2021-9004(F)- 21082803(E)
	See Section 6.3.1	Pass
15.205 & 15.209 & 15.247 (d)	Refer to the report: SRTC2021-9004(F)- 21082803(E)	Refer to the report: SRTC2021-9004(F)- 21082803(E)
	See Section 6.4.1	Pass
	15.247 (b)(3) 15.247 (a)(2) 15.247 (e) 15.247 (d)	Refer to the report: SRTC2021-9004(F)- 21082803(E) See Section 6.3.1 Refer to the report: SRTC2021-9004(F)- 21082803(E) Refer to the report: SRTC2021-9004(F)- 21082803(E)

Remark:

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Pass: The EUT complies with the essential requirements in the standard. 1.

The report: SRTC2021-9004(F)-21082803(E), issued by The State Radio_monitoring_center Testing Center.

General Information

5.1 Client Information

Applicant:	HMD global Oy	
Address:	Bertel Jungin aukio 9, 02600 Espoo, Finland	
Manufacturer:	HMD global Oy	
Address:	Bertel Jungin aukio 9, 02600 Espoo, Finland	

5.2 General Description of FILT

5.2 General Descripti	OII OI E.O.1.
Product Name:	Smart Phone
Model No.:	TA-1358
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-2.5dBi
Power supply:	Rechargeable Lithium ion Polymer Battery DC3.85V, 4.85Ah
AC adapter:	Adapter 1: Model: TN-050200U3, TN-050200E3, TN-050200C3A Input: AC100-240V, 50/60Hz, 0.35A Output: DC 5.0V, 2.0A 10.0W Note: Only the pins are different between different models Adapter 2: Model: TN-050200U3, TN-050200A3, TN-050200C3A Input: AC100-240V, 50/60Hz, 0.35A Output: DC 5.0V, 2.0A 10.0W Note: Only the pins are different between different models Adapter 3: Model: AD-010A, AD-010X Input: AC100-240V, 50/60Hz, 0.35A Output: DC 5.0V, 2.0A 10.0W Note: Only the pins are different between different models
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Page 5 of 42

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission (9kHz ~ 30MHz)	±2.62 dB (k=2)
Radiated Emission (9kHz ~ 30MHz) (3m SAC)	±3.13 dB
Radiated Emission (30MHz ~ 1000MHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB

Note: The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.26-2015. All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Management Number	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	WXJ002	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	WXJ002-1	06-20-2021	06-19-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	WXJ002-2	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	WXJ002-4	03-07-2021	03-06-2022
Pre-amplifier (30MHz ~ 1GHz)	HP	8447D	WXG001-2	03-07-2021	03-06-2022
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXG001-3	03-07-2021	03-06-2022
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXG001-9	03-07-2021	03-06-2022
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	WXJ004	03-03-2021	03-02-2022
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	11-27-2020	11-26-2021
Coaxial Cable (30MHz ~ 1GHz)	JYT	JYT3M-1G-NN-8M	WXG001-4	03-07-2021	03-06-2022
Coaxial Cable (1GHz ~ 18GHz)	JYT	JYT3M-18G-NN-8M	WXG001-5	03-07-2021	03-06-2022
Coaxial Cable (9kHz ~ 30MHz)	JYT	JYT3M-1G-BB-5M	WXG001-6	03-07-2021	03-06-2022
Coaxial Cable (1GHz ~ 18GHz)	JYT	JYT3M-40G-SS-8M	WXG001-7	03-07-2021	03-06-2022
RF Switch Unit	Tonscend	JS0806-F	WXJ089	N	I/A
Test Software	Tonscend	TS+	Version: 3.0.0.1		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Management Number	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	WXJ003	03-03-2021	03-02-2022
LISN	Rohde & Schwarz	ENV432	WXJ005-2	04-06-2021	04-05-2022
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-17-2020	06-16-2022
Coaxial Cable	JYT	JYTCE-1G-NN- 2M	WXG003-1	03-03-2021	03-02-2022
RF Switch	Top Precision	RSU0301	WXG003	N/A	N/A
EMI Test Software	AUDIX	E3	Version: 6.110919b		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

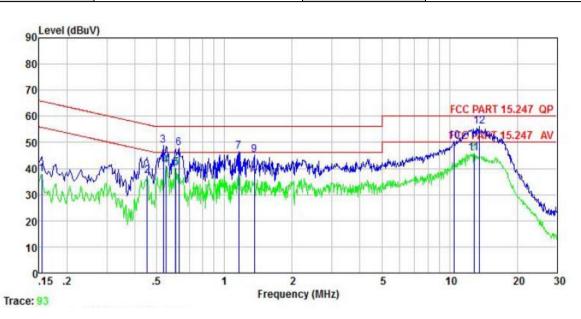
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is -2.6 dBi.

Page 9 of 42

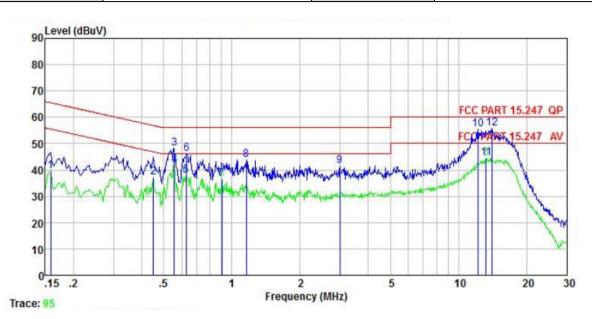
6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.207				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Frequency range (MHz)	(dBuV)			
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30 * Decreases with the logarithm	60	50		
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 				
Test setup:	Reference LISN 40cm AUX Equipment E.U.1 Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Neter Test table height=0.8m	80cm Filter Filter Receiver	— AC power		
Test Instruments:	Refer to section 5.8 for details	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Remark:	 Pre-Scan all adapter and all modulation, And the report only reflects the worst mode The test data in this report are based on the previous report with report number: JYTSZB-R12-2101719 				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data:

Product name:	Smart Phone	Product model:	TA-1361
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	₫B	₫B	₫B	dBu₹	₫₿u₹	<u>dB</u>	
1	0.154	27.73	10.22	-0.06	0.01	37.90	55.78	-17.88	Average
2	0.454	26.90	10.28	-0.01	0.03	37.20	46.80	-9.60	Average
3	0.535	38.94	10.29	-0.36	0.03	48.90	56.00	-7.10	QP
4	0.549	31.38	10.29	-0.36	0.02	41.33	46.00	-4.67	Average
2 3 4 5 6 7 8 9	0.608	30.39	10.30	-0.38	0.02	40.33	46.00	-5.67	Average
6	0.627	37.88	10.30	-0.38	0.02	47.82	56.00	-8.18	QP
7	1.160	35.67	10.32	0.29	0.08	46.36	56.00	-9.64	QP
8	1.160	29.32	10.32	0.29	0.08	40.01	46.00	-5.99	Average
9	1.359	34.78	10.32	0.11	0.12	45.33	56.00	-10.67	QP
10	10.452	37.70	10.62	2.12	0.12	50.56	60.00	-9.44	QP
11	12.852	31.91	10.70	2.95	0.11	45.67	50.00	-4.33	Average
12	13.551	41.95	10.73	3.18	0.12	55.98	60.00	-4.02	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Smart Phone	Product model:	TA-1361
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

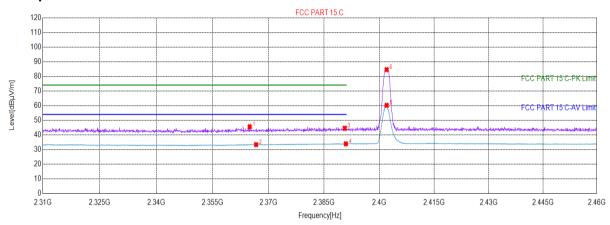
	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB	dB	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.158	29.30	10.20	0.01	0.01	39.52	55.56	-16.04	Average
2	0.449	26.93	10.27	-0.01	0.03	37.22	46.89	-9.67	Average
2	0.555	37.87	10.29	0.03	0.02	48.21	56.00	-7.79	QP
4	0.555	31.60	10.29	0.03	0.02	41.94	46.00	-4.06	Average
4 5 6 7	0.627	27.51	10.29	0.04	0.02	37.86	46.00		Average
6	0.630	35.80	10.29	0.04	0.02	46.15	56.00	-9.85	QP
7	0.904	26.23	10.31	0.07	0.04	36.65	46.00	-9.35	Average
8	1.160	33.25	10.31	0.10	0.08	43.74	56.00	-12.26	QP
9	2.993	30.77	10.34	0.31	0.07	41.49	56.00	-14.51	QP
10	12.188	42.43	10.66	2.23	0.10	55.42	60.00	-4.58	QP
11	13.267	31.09	10.69	2.57	0.11	44.46	50.00	-5.54	Average
12	14.063	42.01	10.71	2.84	0.12	55.68	60.00	-4.32	

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Band Edge

6.3.1 **Radiated Emission Method**


Test Requirement:		Section 15.2	205 and 15.209				
Test Frequency Range:			d 2483.5MHz to 2	2500 N	ЛHz		
Test Distance:	3m						
	Frequency	Detector	RBW	V	BW	Remark	
Receiver setup:		Peak	1MHz		ИНz	Peak Value	
	Above 1GHz	RMS	1MHz		иHz	Average Value	
Limit:	Frequer		imit (dBuV/m @3			Remark	
	Above 10	2H-z	54.00		Αv	erage Value	
			74.00			Peak Value	
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horimake the 4. For each case and meters are to find the Specified 5. The test-Specified 6. If the emitthe limits of the EU have 10 or peak or a sheet.	ad at a 3 meterine the position was set 3 meterine which was meterine to determine the measurement of the rota takes maximum respected en a maximum respected the maximum respected the position level of specified, then T would be red margin wo	nission, the EUT enna was tuned to ble was turned from the ending. In was set to Peak ith Maximum Hole the EUT in peak in testing could be exported. Otherwise and as specified and as specified and the ending testing to be ended to be	ble was radiated in the interpretation of a value of a value of a value of a k Detail Detail Moode at the stopp see the cone by	as rotate ion. erference variable to four rof the fie antender antender extended ext	ed 360 degrees de-receiving de-height antenna meters above eld strength. de are set to de to its worst de to 360 degrees dection and decomposition of the peak values designed and the peak, quasi-	
	Ground Reference Plane Test Receiver Pre-Amplier Controller						
Test Instruments:	Refer to section	on 5.8 for deta	nils				
Test mode:	Refer to section	on 5.3 for deta	nils				
Test results:	Passed						
Remark:	The test data number: JYTS			ne pre	evious r	eport with report	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Smart Phone	Product Model:	TA-1361
Test By:	Mike	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

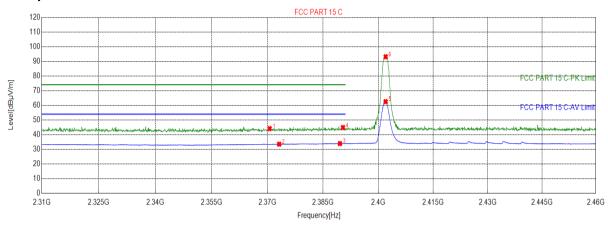
Test Graph

★ PK Detector
★ AV Detector

Suspected List

Susp	ected List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2364.92	38.11	45.60	7.49	74.00	28.40	261	302	Vertical
2	2366.65	25.84	33.37	7.53	54.00	20.63	320	211	Vertical
3	2390.59	36.45	44.58	8.13	74.00	29.42	272	26	Vertical
4	2390.89	25.78	33.91	8.13	54.00	20.09	275	271	Vertical
5	2402.00	51.86	60.21	8.35	0.00	-60.21	261	22	Vertical
6	2402.00	76.25	84.60	8.35	0.00	-84.60	288	132	Vertical

Remark:


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 14 of 42

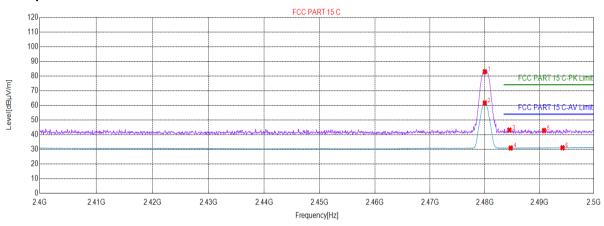
Product Name:	Smart Phone	Product Model:	TA-1361
Test By:	Mike	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

Test Graph

★ PK Detector
★ AV Detector

Suspected List

Susp	Suspected List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	2370.55	36.51	44.14	7.63	74.00	29.86	163	321	Horizonta	
2	2373.10	25.82	33.51	7.69	54.00	20.49	152	302	Horizonta	
3	2389.53	25.83	33.93	8.10	54.00	20.07	172	162	Horizonta	
4	2390.36	36.73	44.85	8.12	74.00	29.15	155	107	Horizonta	
5	2402.00	54.16	62.51	8.35	0.00	-62.51	167	196	Horizonta	
6	2402.00	84.74	93.09	8.35	0.00	-93.09	169	5	Horizonta	


Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

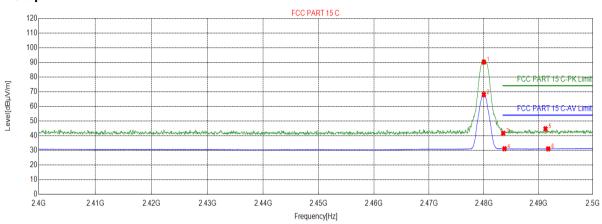
Product Name:	Smart Phone	Product Model:	TA-1361
Test By:	Mike	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

Test Graph

Suspected List

Susp	ected List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2480.00	76.10	82.89	6.79	0.00	-82.89	263	21	Vertical
2	2480.00	54.79	61.58	6.79	0.00	-61.58	242	6	Vertical
3	2484.49	36.35	43.14	6.79	74.00	30.86	257	106	Vertical
4	2484.74	24.09	30.88	6.79	54.00	23.12	281	315	Vertical
5	2490.84	36.04	42.85	6.81	74.00	31.15	269	289	Vertical
6	2494.24	24.20	31.08	6.88	54.00	22.92	233	216	Vertical

Remark


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

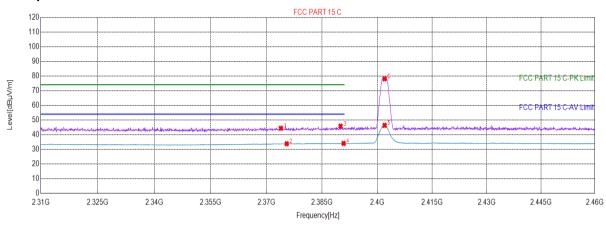
Page 16 of 42

Product Name:	Smart Phone	Product Model:	TA-1361
Test By:	Mike	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

Test Graph

Suspected List

Susp	Suspected Lis									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	2480.00	83.38	90.17	6.79	0.00	-90.17	175	2	Horizonta	
2	2480.00	61.18	67.97	6.79	0.00	-67.97	206	212	Horizonta	
3	2483.54	34.87	41.66	6.79	74.00	32.34	272	151	Horizonta	
4	2483.79	24.30	31.09	6.79	54.00	22.91	186	261	Horizonta	
5	2491.29	37.83	44.65	6.82	74.00	29.35	126	255	Horizonta	
6	2491.79	24.18	31.01	6.83	54.00	22.99	106	110	Horizonta	


Remark

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

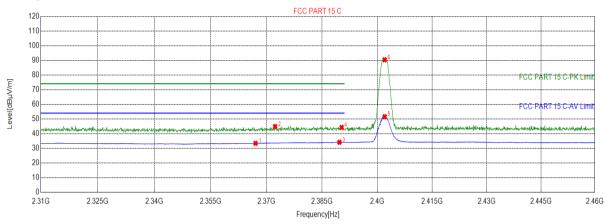
Product Name:	Smart Phone	Product Model:	TA-1361
Test By:	Mike	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

Test Graph

★ PK Detector
★ AV Detector

Suspected List

Susp	Suspected List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	2373.85	36.64	44.35	7.71	74.00	29.65	216	39	Vertical	
2	2375.43	26.05	33.80	7.75	54.00	20.20	252	152	Vertical	
3	2389.99	37.67	45.78	8.11	74.00	28.22	231	62	Vertical	
4	2390.81	25.91	34.04	8.13	54.00	19.96	278	162	Vertical	
5	2402.00	37.99	46.34	8.35	0.00	-46.34	211	188	Vertical	
6	2402.00	69.72	78.07	8.35	0.00	-78.07	264	169	Vertical	


Remark

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

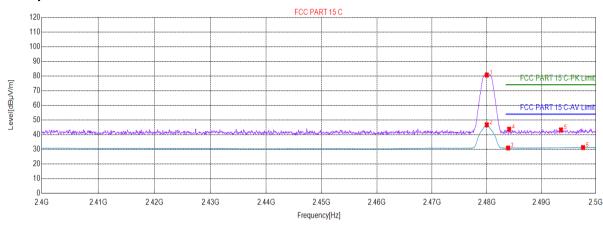
Product Name:	Smart Phone	Product Model:	TA-1361
Test By:	Mike	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

Test Graph

Suspected List

Susp	Suspected List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	2367.02	25.89	33.43	7.54	54.00	20.57	263	261	Horizonta	
2	2372.28	37.18	44.85	7.67	74.00	29.15	241	25	Horizonta	
3	2389.68	26.00	34.10	8.10	54.00	19.90	125	9	Horizonta	
4	2390.29	36.11	44.23	8.12	74.00	29.77	152	209	Horizonta	
5	2402.00	43.21	51.56	8.35	0.00	-51.56	133	173	Horizonta	
6	2402.00	82.00	90.35	8.35	0.00	-90.35	200	18	Horizonta	

Remark:


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 19 of 42

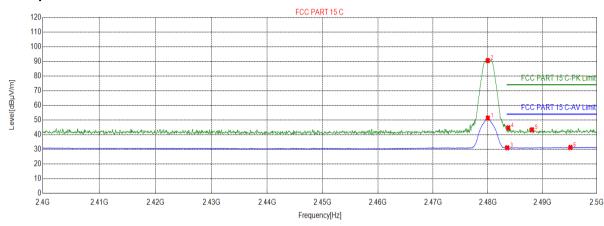
Product Name:	Smart Phone	Product Model:	TA-1361
Test By:	Mike	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

Test Graph

Suspected List

Susp	Suspected List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	2480.00	73.86	80.65	6.79	0.00	-80.65	178	263	Vertical	
2	2480.00	39.94	46.73	6.79	0.00	-46.73	260	34	Vertical	
3	2483.89	24.12	30.91	6.79	54.00	23.09	153	101	Vertical	
4	2484.09	36.96	43.75	6.79	74.00	30.25	236	91	Vertical	
5	2493.59	36.41	43.27	6.86	74.00	30.73	272	34	Vertical	
6	2497.64	24.29	31.23	6.94	54.00	22.77	216	6	Vertical	

Remark


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 20 of 42

Product Name:	Smart Phone	Product Model:	TA-1361
Test By:	Mike	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

Test Graph

★ PK Detector
★ AV Detector

Suspected List

Susp	Suspected List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	2480.00	44.49	51.28	6.79	0.00	-51.28	263	301	Horizonta	
2	2480.00	83.72	90.51	6.79	0.00	-90.51	242	221	Horizonta	
3	2483.54	24.29	31.08	6.79	54.00	22.92	151	272	Horizonta	
4	2483.74	37.87	44.66	6.79	74.00	29.34	163	23	Horizonta	
5	2488.09	36.58	43.37	6.79	74.00	30.63	177	16	Horizonta	
6	2495.14	24.43	31.32	6.89	54.00	22.68	200	9	Horizonta	

Remark

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 21 of 42

Spurious Emission

6.4.1 Radiated Emission Method

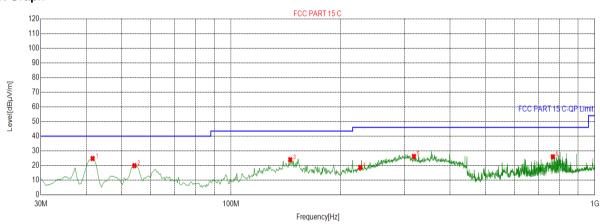
6.4.1 Radiated Emission Method							
Test Requirement:	FCC Part 15 C	Section 15.20	5 and 15.209				
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	ctor RBW		3W	Remark	
·	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value	
	Above Toriz	RMS	1MHz	3M	Hz Average Value		
Limit:	Frequency	/ Li	mit (dBuV/m @	23m)		Remark	
	30MHz-88M		40.0		Quasi-peak Value		
	88MHz-216N		43.5			Quasi-peak Value	
	216MHz-960I		46.0			Quasi-peak Value	
	960MHz-1G	Hz	54.0			Quasi-peak Value	
	Above 1GF	lz —	54.0 74.0			Average Value Peak Value	
Test Procedure:	1GHz)/1.5r The table of highest rad 2. The EUT antenna, we tower. 3. The antenna Both horizon make then were and to find the state of the EUT have 10 dE	m(above 1GHwas rotated 3 iation. was set 3 minimum reasurement. Suspected en the ante deceiver system and width with sion level of the cified, then the margin would be reasurement.	Iz) above the 160 degrees to 160 degrees the maximum to 160 degrees to 160 degree	e groun o deter from the cop of a ne met um val cions of to Pea old Mo ak mod oe stop wise the d one b	d at a rmine ne inter to fue of the a as arra degree ak Deta de was ped ar ie emisy one	table 0.8m(below a 3 meter camber. the position of the erference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and as 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data	
Test setup:	Below 1GHz	4m 4m 0.8m 1m			Antenna Search Antenn Test eiver	1	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2108103

	Antenna Tower Ground Reference Plane Test Receiver Amplier Controller
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed (The test data in this report are based on the previous report with report number: JYTSZB-R12-2101719)
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the z-axis is the worst case. Pre-Scan all adapter, And the report only reflects the worst mode. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Page 23 of 42


Measurement Data (worst case):

Below 1GHz:

TA-1370:

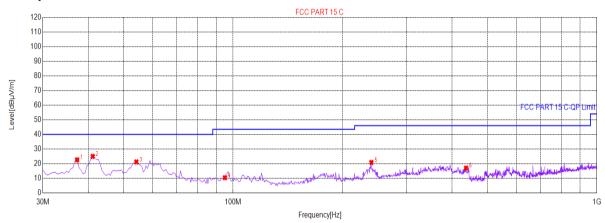
Product Name:	Smart Phone	Product Model:	TA-1370		
Test By:	Mike	Test mode:	BLE 1M Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal		
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%		

Test Graph

QP Detector

Suspected List

Susp	ected List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	41.6458	47.65	24.75	-22.90	40.00	15.25	263	331	Horizonta
2	54.2621	41.99	19.91	-22.08	40.00	20.09	152	2	Horizonta
3	145.487	48.37	23.98	-24.39	43.50	19.52	171	256	Horizonta
4	226.523	39.90	18.71	-21.19	46.00	27.29	121	212	Horizonta
5	318.234	44.88	26.23	-18.65	46.00	19.77	123	224	Horizonta
6	767.083	36.79	26.00	-10.79	46.00	20.00	114	228	Horizonta


Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Phone	Product Model:	TA-1370		
Test By:	Mike	Test mode:	BLE 1M Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical		
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%		

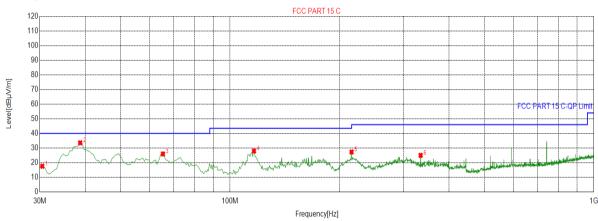
Test Graph

QP Detector

Suspected List

Susp	Suspected List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	37.2786	45.96	22.62	-23.34	40.00	17.38	268	108	Vertical	
2	41.1606	47.90	25.01	-22.89	40.00	14.99	285	154	Vertical	
3	54.2621	43.30	21.22	-22.08	40.00	18.78	261	179	Vertical	
4	95.0225	34.11	10.42	-23.69	43.50	33.08	271	47	Vertical	
5	240.110	41.67	20.84	-20.83	46.00	25.16	258	136	Vertical	
6	437.118	33.04	16.98	-16.06	46.00	29.02	231	183	Vertical	

Remark:


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Test mode:	BLE 2M Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

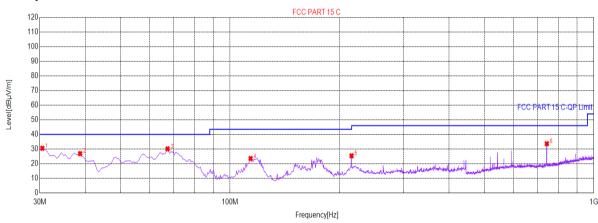
Test Graph

QP Detector

Suspected List

Susp	ected List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	30.4852	41.52	17.60	-23.92	40.00	22.40	133	302	Horizonta
2	38.7344	56.65	33.57	-23.08	40.00	6.43	172	21	Horizonta
3	65.4227	49.07	25.98	-23.09	40.00	14.02	145	73	Horizonta
4	116.373	50.82	27.97	-22.85	43.50	15.53	196	316	Horizonta
5	215.847	48.78	27.33	-21.45	43.50	16.17	151	313	Horizonta
6	334.247	43.05	25.02	-18.03	46.00	20.98	136	208	Horizonta

Remark:


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Smart Phone	Product Model:	TA-1370		
Test By:	Mike	Test mode:	BLE 2M Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical		
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%		

Test Graph

QP Detector

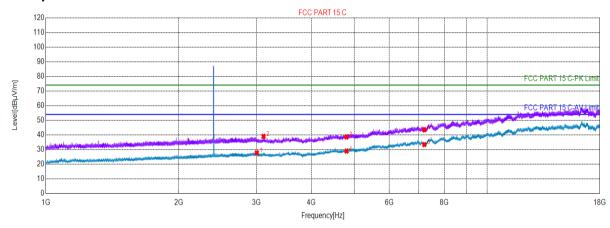
Suspected List

Susp	ected List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	30.4852	54.44	30.52	-23.92	40.00	9.48	163	222	Vertical
2	38.7344	49.97	26.89	-23.08	40.00	13.11	233	55	Vertical
3	67.3637	53.48	30.10	-23.38	40.00	9.90	277	151	Vertical
4	113.947	46.30	23.53	-22.77	43.50	19.97	231	199	Vertical
5	215.847	46.86	25.41	-21.45	43.50	18.09	209	216	Vertical
6	742.821	44.61	33.66	-10.95	46.00	12.34	251	35	Vertical

Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



Above 1GHz

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

BLE-1M _Channel 0

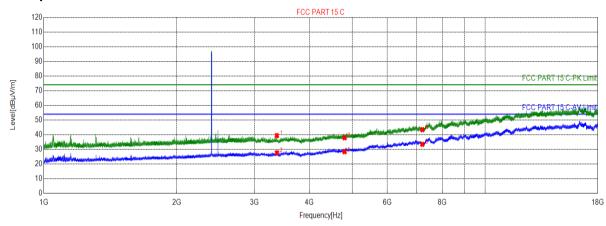
Test Graph

★ PK Detector
★ AV Detector

Suspected List

Susp	Suspected List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	3007.80	51.61	27.76	-23.85	54.00	26.24	192	356	Vertical	
2	3114.60	62.84	39.05	-23.79	74.00	34.95	263	112	Vertical	
3	4804.00	57.00	38.71	-18.29	74.00	35.29	242	313	Vertical	
4	4804.00	47.28	28.99	-18.29	54.00	25.01	263	25	Vertical	
5	7206.00	44.06	33.41	-10.65	54.00	20.59	296	126	Vertical	
6	7206.00	54.23	43.58	-10.65	74.00	30.42	231	214	Vertical	

Remark:


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 28 of 42

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

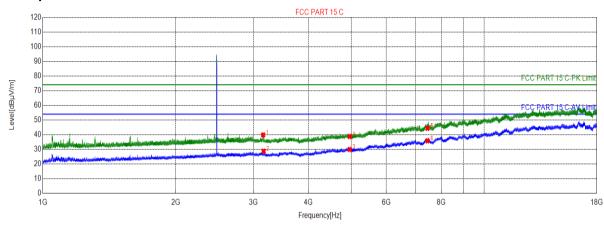
Test Graph

★ PK Detector
★ AV Detector

Suspected List

Susp	Suspected List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	3373.21	62.62	39.35	-23.27	74.00	34.65	211	284	Horizonta	
2	3375.61	50.95	27.66	-23.29	54.00	26.34	171	155	Horizonta	
3	4804.00	56.18	37.89	-18.29	74.00	36.11	195	141	Horizonta	
4	4804.00	46.68	28.39	-18.29	54.00	25.61	136	2	Horizonta	
5	7206.00	44.12	33.47	-10.65	54.00	20.53	102	84	Horizonta	
6	7206.00	54.08	43.43	-10.65	74.00	30.57	175	141	Horizonta	

Remark:


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 29 of 42

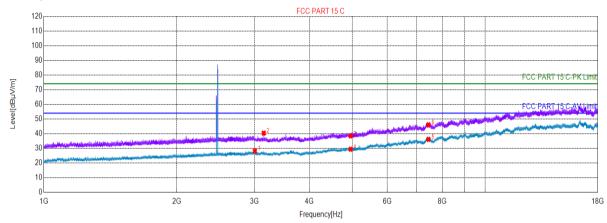
Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

Test Graph

Suspected List

Susp	Suspected List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	3157.20	63.16	39.84	-23.32	74.00	34.16	185	286	Horizonta	
2	3164.40	52.20	28.76	-23.44	54.00	25.24	122	286	Horizonta	
3	4960.00	47.31	29.93	-17.38	54.00	24.07	103	214	Horizonta	
4	4960.00	56.11	38.73	-17.38	74.00	35.27	123	301	Horizonta	
5	7440.00	53.35	44.35	-9.00	74.00	29.65	171	41	Horizonta	
6	7440.00	44.79	35.79	-9.00	54.00	18.21	162	184	Horizonta	

Remark:


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 30 of 42

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

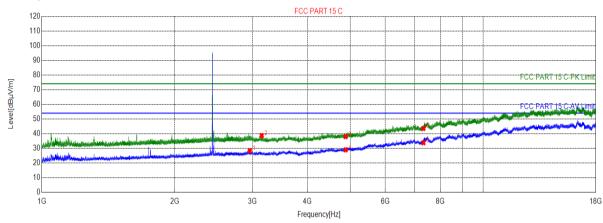
Test Graph

★ PK Detector
★ AV Detector

Suspected List

Susp	Suspected List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	3008.40	52.07	28.22	-23.85	54.00	25.78	263	185	Vertical
2	3150.60	63.57	40.36	-23.21	74.00	33.64	210	272	Vertical
3	4960.00	55.84	38.46	-17.38	74.00	35.54	251	127	Vertical
4	4960.00	46.77	29.39	-17.38	54.00	24.61	175	55	Vertical
5	7440.00	45.10	36.10	-9.00	54.00	17.90	196	55	Vertical
6	7440.00	54.97	45.97	-9.00	74.00	28.03	132	128	Vertical

Remark:


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 31 of 42

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

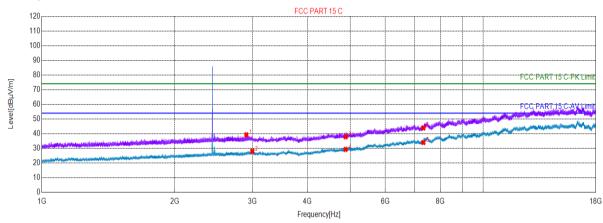
Test Graph

★ PK Detector
★ AV Detector

Suspected List

Susp	Suspected List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	2959.89	20.38	28.29	7.91	54.00	25.71	189	261	Horizonta	
2	3149.40	61.91	38.70	-23.21	74.00	35.30	152	98	Horizonta	
3	4880.00	56.01	38.01	-18.00	74.00	35.99	136	40	Horizonta	
4	4880.00	47.00	29.00	-18.00	54.00	25.00	172	83	Horizonta	
5	7320.00	44.32	33.81	-10.51	54.00	20.19	197	98	Horizonta	
6	7320.00	54.09	43.58	-10.51	74.00	30.42	166	300	Horizonta	

Remark:


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 32 of 42

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

Test Graph

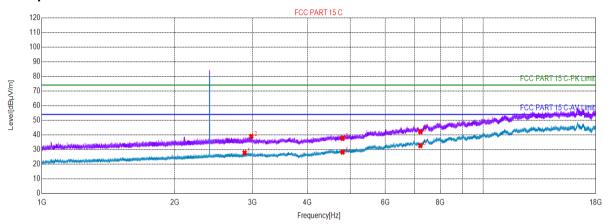
Suspected List

Susp	Suspected List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	2906.99	31.50	39.21	7.71	74.00	34.79	252	122	Vertical	
2	2999.90	19.90	28.03	8.13	54.00	25.97	172	324	Vertical	
3	4880.00	55.89	37.89	-18.00	74.00	36.11	196	2	Vertical	
4	4880.00	47.29	29.29	-18.00	54.00	24.71	233	360	Vertical	
5	7320.00	44.50	33.99	-10.51	54.00	20.01	264	302	Vertical	
6	7320.00	54.44	43.93	-10.51	74.00	30.07	283	288	Vertical	

Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366


Project No.: JYTSZE2108103

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

BLE-2M Channel 0

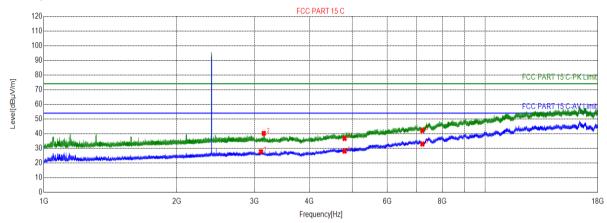
Test Graph

★ PK Detector
★ AV Detector

Suspected List

	The Control of the Co									
Susp	Suspected List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	2880.89	20.33	27.77	7.44	54.00	26.23	265	97	Vertical	
2	2983.19	31.08	38.96	7.88	74.00	35.04	272	10	Vertical	
3	4804.00	55.92	37.63	-18.29	74.00	36.37	288	156	Vertical	
4	4804.00	46.54	28.25	-18.29	54.00	25.75	269	272	Vertical	
5	7206.00	43.32	32.67	-10.65	54.00	21.33	263	330	Vertical	
6	7206.00	52.79	42.14	-10.65	74.00	31.86	296	112	Vertical	

Remark:


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 34 of 42

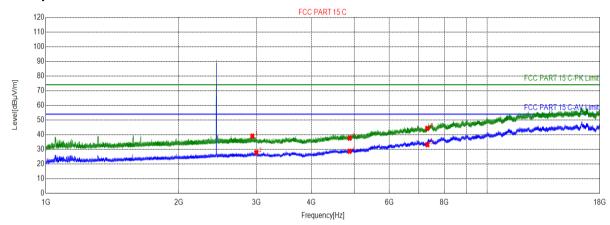
Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

Test Graph

★ PK Detector
★ AV Detector

Suspected List

Susp	Suspected List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	3104.40	51.65	27.69	-23.96	54.00	26.31	183	257	Horizonta	
2	3151.20	63.46	40.24	-23.22	74.00	33.76	172	271	Horizonta	
3	4804.00	55.02	36.73	-18.29	74.00	37.27	133	329	Horizonta	
4	4804.00	46.38	28.09	-18.29	54.00	25.91	117	300	Horizonta	
5	7206.00	43.60	32.95	-10.65	54.00	21.05	196	242	Horizonta	
6	7206.00	52.72	42.07	-10.65	74.00	31.93	163	2	Horizonta	


Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

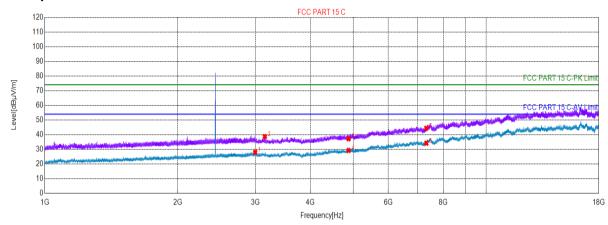
Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

Test Graph

★ PK Detector
★ AV Detector

Suspected List

Susp	Suspected List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	2937.99	31.09	39.04	7.95	74.00	34.96	163	161	Horizonta			
2	2999.90	19.63	27.76	8.13	54.00	26.24	171	161	Horizonta			
3	4880.00	55.57	37.57	-18.00	74.00	36.43	122	170	Horizonta			
4	4880.00	46.69	28.69	-18.00	54.00	25.31	131	98	Horizonta			
5	7320.00	43.66	33.15	-10.51	54.00	20.85	197	314	Horizonta			
6	7320.00	54.82	44.31	-10.51	74.00	29.69	188	356	Horizonta			


Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

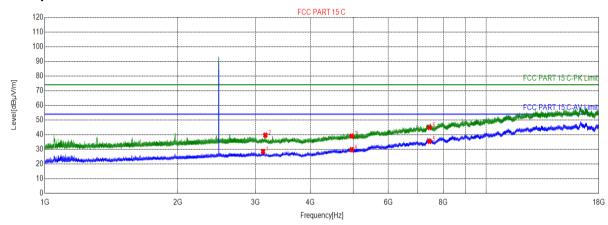
Test Graph

★ PK Detector
★ AV Detector

Suspected List

Susp	Suspected List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	2997.49	19.91	27.96	8.05	54.00	26.04	230	325	Vertical			
2	3152.40	61.94	38.70	-23.24	74.00	35.30	274	274	Vertical			
3	4880.00	55.20	37.20	-18.00	74.00	36.80	282	316	Vertical			
4	4880.00	47.22	29.22	-18.00	54.00	24.78	169	143	Vertical			
5	7320.00	44.71	34.20	-10.51	54.00	19.80	137	42	Vertical			
6	7320.00	54.93	44.42	-10.51	74.00	29.58	177	114	Vertical			

Remark:


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 37 of 42

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

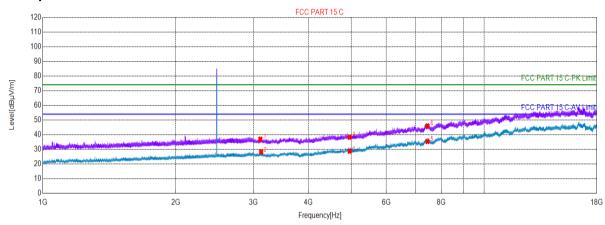
Test Graph

★ PK Detector
★ AV Detector

Suspected List

Susp	Suspected List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	3123.00	52.16	28.51	-23.65	54.00	25.49	183	200	Horizonta			
2	3160.20	63.03	39.66	-23.37	74.00	34.34	196	285	Horizonta			
3	4960.00	56.41	39.03	-17.38	74.00	34.97	131	171	Horizonta			
4	4960.00	47.21	29.83	-17.38	54.00	24.17	172	221	Horizonta			
5	7440.00	44.42	35.42	-9.00	54.00	18.58	122	171	Horizonta			
6	7440.00	53.88	44.88	-9.00	74.00	29.12	189	336	Horizonta			

Remark:


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 38 of 42

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

Test Graph

★ PK Detector
★ AV Detector

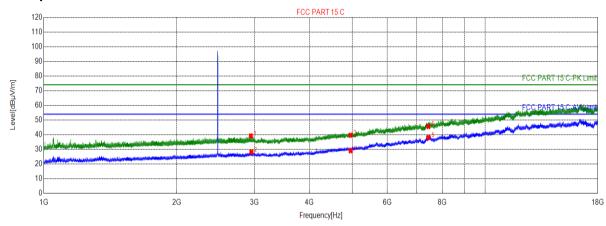
Suspected List

Susp	Suspected List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	3111.60	60.80	36.96	-23.84	74.00	37.04	155	224	Vertical			
2	3124.20	51.83	28.20	-23.63	54.00	25.80	123	2	Vertical			
3	4960.00	55.58	38.20	-17.38	74.00	35.80	172	42	Vertical			
4	4960.00	46.11	28.73	-17.38	54.00	25.27	131	182	Vertical			
5	7440.00	44.36	35.36	-9.00	54.00	18.64	169	42	Vertical			
6	7440.00	54.92	45.92	-9.00	74.00	28.08	191	340	Vertical			

Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 39 of 42



TA-1361(Spot check):

Product Name:	Smart Phone	Product Model:	TA-1361
Test By:	Mike	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

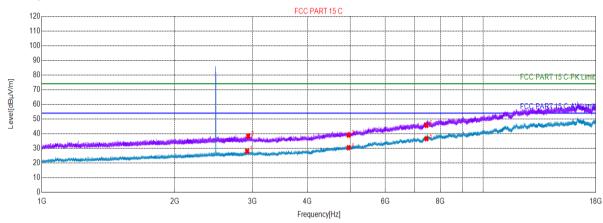
BLE_1M_Channel 39

Test Graph

Suspected List

Suspe	Suspected List									
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	2945.9973	39.16	7.96	74.00	34.84	178	94	Horizontal		
2	2953.8977	28.18	7.95	54.00	25.82	174	270	Horizontal		
3	4960.0000	39.64	-17.38	74.00	34.36	165	248	Horizontal		
4	4960.0000	29.04	-17.38	54.00	24.96	185	233	Horizontal		
5	7440.0000	38.15	-9.00	54.00	15.85	162	89	Horizontal		
6	7440.0000	45.57	-9.00	74.00	28.43	174	190	Horizontal		

Remark:


- 3. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 40 of 42

Product Name:	Smart Phone	Product Model:	TA-1361
Test By:	Mike	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

Test Graph

Suspected List

Suspe	Suspected List									
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	2918.8959	28.04	7.84	54.00	25.96	241	315	Vertical		
2	2935.8968	38.38	7.97	74.00	35.62	256	264	Vertical		
3	4960.0000	38.98	-17.38	74.00	35.02	284	303	Vertical		
4	4960.0000	30.48	-17.38	54.00	23.52	254	153	Vertical		
5	7440.0000	36.55	-9.00	54.00	17.45	225	10	Vertical		
6	7440.0000	45.63	-9.00	74.00	28.37	226	347	Vertical		

Remark:

- 3. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

7 Test Setup Photo

Reference to the test setup photos: BT & Wi-Fi & NII Setup Photos.

8 EUT Constructional Details

Reference to the External Photo and Internal Photo

----End of report-----

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366