FCC PART 90 TYPE APPROVAL EMI MEASUREMENT AND TEST REPORT For

Shenzhen HYT Science & Technology Co., Ltd

HYT Tower, Shenzhen Hi-Tech Industrial Park North, Beihuan Rd., Nanshan District, Shenzhen, P.R.C.

		FCC ID: R	874TC-700V			
	August 20, 2005					
This Report Concerns:Equipment Type:Two-way radioTwo-way radio						
Test Engin	ieer:	Jandy Su	My.Su			
Report 2	No.:	RSZ05081002				
Test D)ate:	August 16-18, 2005				
Reviewed	By:	Chris Zeng	And Comments			
Prepared 1	By:	6/F, the 3rd Phase of	20018	ShiHua		

Note: The test report is specially limited to the above company and this particular sample only. It may not be duplicated without prior written consent of Bay Area Compliance Lab Corp. (ShenZhen). This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the US Government.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective Related Submittal(s)/Grant(s)	
TEST METHODOLOGY	
TEST FACILITY	4
EXTERNAL I/O CABLE	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications Configuration of Test Setup	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
\$2.1046, and \$90.205 - CONDUCTED OUTPUT POWER	8
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS TEST PROCEDURE	
TEST PROCEDURE	
§2.1047, and §90.207 - MODULATION CHARACTERISTIC	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
§2.1049, and § 90.209 – OCCUPIED BANDWIDTH	
Applicable Standard Test Equipment List and Details	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
§2.1051 and §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS Test Procedure	
TEST DATA	
§2.1053 and §90.210 - RADIATED SPURIOUS EMISSION	24
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS TEST PROCEDURE	
TEST ROCEDURE	
TEST DATA	25
§2.1055 (d) and §90.213- FREQUENCY STABILITY	
Applicable Standard Test Equipment List and Details	
TEST EQUIPMENT LIST AND DETAILS TEST PROCEDURE	
TEST DATA	
§90.214 - TRANSIENT FREQUENCY BEHAVIOR	28
APPLICABLE STANDARD	
Test Equipment List and Details Test Procedure	
TEST PROCEDURE	

Report # RSZ05081002

FCC PART 90 TYPE APPROVAL Report

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *Shenzhen HYT Science & Technology Co., Ltd*'s product, model number: TC-700V or the "EUT" as referred to in this report is a Two-way radio. The EUT is measured approximately 27.5 cm L x 6.0cmW x 3.5cmH, rated input voltage: DC 7.4 V Battery, with permanently Antenna 15cm.

* The test data gathered are from production sample, serial number: 05809D0014, provided by the manufacturer.

Objective

This Type approval report is prepared on behalf of Shenzhen HYT Science & Technology Co., Ltd in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2,Sub-part J as well as the following individual parts:

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA EIA 137-A, TIA EIA 98-C, TIA603-C and ANSI 63.4-2003, American National Standard for Method of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Lab Corp. (ShenZhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Lab Corp. (ShenZhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone, ShenZhen, Guangdong 518038, P.R.China.

Test site at Bay Area Compliance Lab Corp. (ShenZhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 04, 2004. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

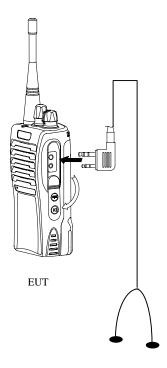
The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Lab Corp. (ShenZhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/200707.htm

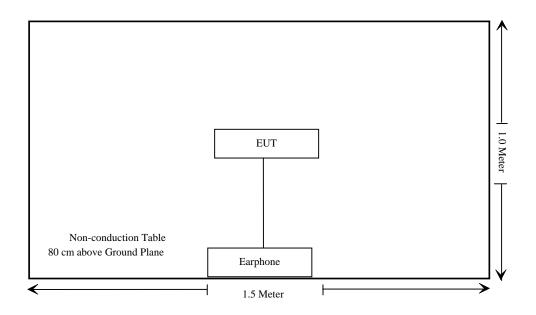
External I/O Cable

Cable Description	Length (M)	From/Port	То
Unshielded detachable Earphone Cable	1.30	EUT	Earphone

SYSTEM TEST CONFIGURATION


Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user).


Equipment Modifications

Bay Area Compliance Lab Corp. (ShenZhen) has not done any modification on the EUT.

Configuration of Test Setup

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
\$1.1310, \$2.1093	RF Exposure	Compliant, refer to SAR report
\$2.1047 \$90.207	Modulation Characteristic	Compliant
\$2.1049, \$90.209	Occupied Bandwidth	Compliant
\$2.1051, \$90.210	Spurious Emissions AT Antenna Terminals	Compliant
\$2.1053 \$90.210	Spurious Radiated Emissions	Compliant
\$ 2.1055 \$ 90.213	Frequency stability	Compliant
§ 90.214	Transient Frequency Behavior	Compliant

§2.1046, and §90.205 - CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §2.1046, and §90.205, maximum ERP is dependent upon the station's antenna HAAT and required service area.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde&Schwarz	Spectrum Analyzer	FSEM30	849720/019	2004-11-10	2005-11-10

* **Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

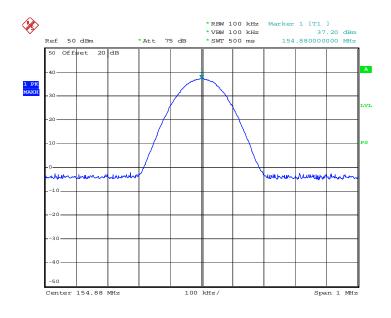
R B/WVideo B/W100 kHz100 kHz

Test Data

Environmental Conditions

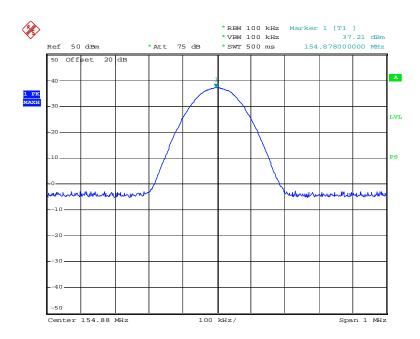
Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Jandy Su on 2005-8-17.


Test Result: Pass

Test Mode: Transmitting

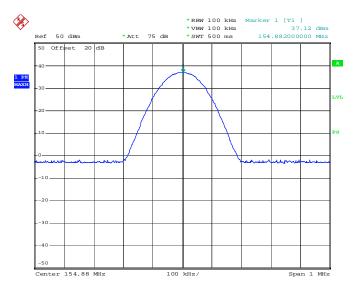
Frequency Spacing (kHz)	Frequency (MHz)	Output Power in dBm	Output Power in W
12.5	154.88	37.12	5.15
20.0	154.88	37.21	5.26
25.0	154.88	37.20	5.25


Note: The power output may depend on the intended use of the EUT. For all tests, the EUT was set to maximum conditions.

For 12.5 kHz Channel Bandwidth:

Conducted output power CH8 Date: 12.AUG.2005 15:51:32

For 20 kHz Channel Bandwidth:



Conducted output power CH5 Date: 12.AUG.2005 15:50:37

Report # RSZ05081002

FCC ID: R74TC-700V

For 25 kHz Channel Bandwidth:

Conducted output power CH2 Date: 12.AUG.2005 15:49:26

§2.1047, and §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

§2.1047 & §90.207:

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde&Schwarz	Spectrum Analyzer	FSEM30	849720/019	2004-11-10	2005-11-10
HP	Modulation Analyzer	8901B	3438A05208	2005-2-28	2006-2-28
NANYAN	Audio Generator	NY2201	019829	2004-12-23	2005-12-23

* **Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

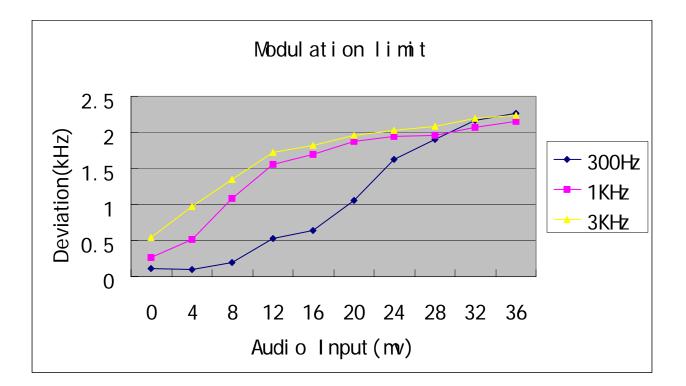
Test Procedure

Test Method: TIA/EIA-603 2.2.3

Test Data

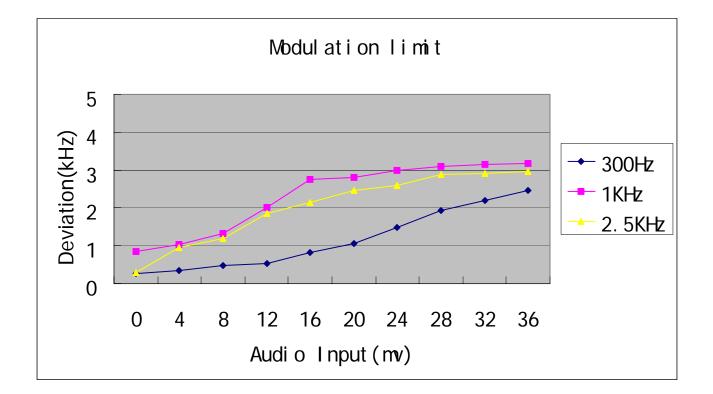
Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

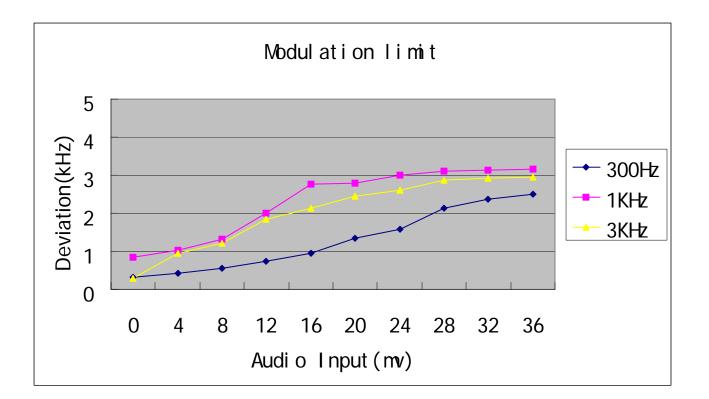

The testing was performed by Jandy Su on 2005-8-18.

Test Result: Pass

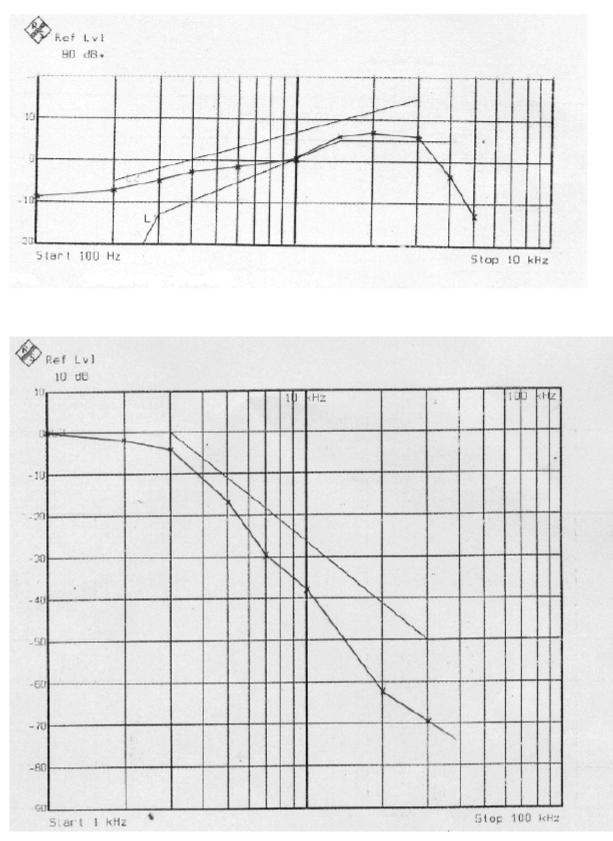
Test Mode: Transmitting


Audio Input (mV)	300Hz Deviation (kHz)	1kHz Deviation (kHz)	3kHz Deviation (kHz)
0	0.11	0.27	0.54
4	0.1	0.52	0.97
8	0.19	1.08	1.35
12	0.53	1.55	1.72
16	0.64	1.7	1.82
20	1.05	1.87	1.96
24	1.63	1.94	2.03
28	1.9	1.96	2.08
32	2.16	2.07	2.2
36	2.26	2.15	2.24

For 12.5 kHz Channel Bandwidth:


For 20 kHz Channel Bandwidth:

Audio Input (mV)	300Hz Deviation (kHz)	1kHz Deviation (kHz)	3kHz Deviation (kHz)
0	0.26	0.85	0.28
4	0.34	1.02	0.96
8	0.47	1.32	1.2
12	0.52	2.01	1.84
16	0.82	2.76	2.13
20	1.07	2.8	2.46
24	1.49	3	2.6
28	1.92	3.1	2.88
32	2.2	3.14	2.91
36	2.47	3.17	2.95



Audio Input (mV)	300Hz Deviation (kHz)	1kHz Deviation (kHz)	3kHz Deviation (kHz)
0	0.32	0.38	0.91
4	0.41	0.42	0.96
8	0.55	0.59	1.06
12	0.74	1	1.3
16	0.96	1.96	2.27
20	1.34	2.95	2.75
24	1.58	3.03	3.05
28	2.12	3.18	3.1
32	2.38	3.2	3.16
36	2.5	3.21	3.2

For 25 kHz Channel Bandwidth:

Audio Low Pass Filter Characteristic

Report # RSZ05081002

§2.1049, and § 90.209 – OCCUPIED BANDWIDTH

Applicable Standard

§2.1049, §90.209 and §90.210

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625kHz removed from f_0 , 0dB.

2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626kHz but no more than 12.5kHz, at least 7.27 (f_d –2.88kHz) dB.

3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5kHz at least:

50+10logP=50+10log(5.15)=57.12dB

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

1) For any frequency removed from the center of the assigned channel by more than 50 percent up to and including 100 percent of the authorized bandwidth, at least 25 dB.

2) On any frequency removed from the center of the assigned channel by more than 100 percent up to and including 250 percent, at least 35 dB.

3) On any frequency removed from the center of the assigned channel by more than 250 percent at least:

43+10logP=43+10log(5.25)=50.20dB

The resolution bandwidth was 300Hz or greater for measuring up to 250kHz from the edge of the authorized frequency segment, and 30kHz or greater for measuring more than 250kHz from the authorized frequency segment.

Manufacturer	Description	Description Model Serial Number		Calibration Date	Calibration Due Date	
Rohde&Schwarz	Spectrum Analyzer	FSEM30	849720/019	2004-11-10	2005-11-10	
HP	Modulation Analyzer	8901B	3438A05208	2005-2-28	2006-2-28	
NANYAN	Audio Generator	NY2201	019829	2004-12-23	2005-12-23	

* **Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 300 Hz and the spectrum was recorded in the frequency band \pm 50 KHz from the carrier frequency.

Test Data

Environmental Conditions

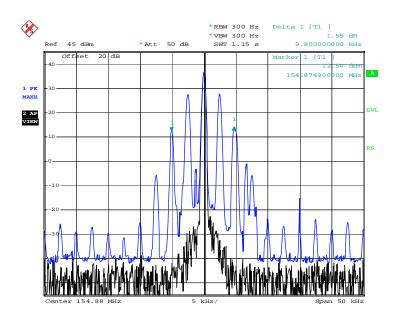
Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Jandy Su on 2005-8-17.

Test Result: Compliance to mask B and mask D.

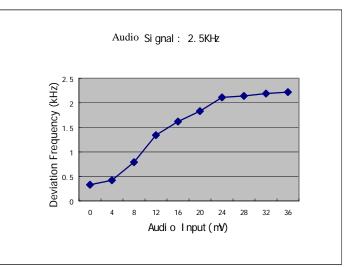
Test Mode: Transmitting

Please refer to the hereinafter plots.

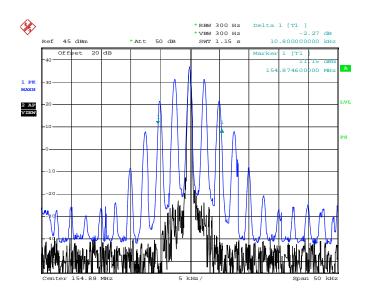

Emission Designator:

For 12.5KHz Channel Spacing: 2M+2D = 2x3+2x2.5 = 11K0F3E

For 20 KHz Channel Spacing: 2M+2D = 2x3+2x4.0 = 14K0F3E

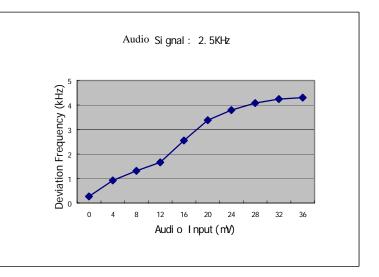

For 25 KHz Channel Spacing: 2M+2D = 2x3+2x5 = 16K0F3E

Emission Mask D-For 12.5 kHz Channel Bandwidth:

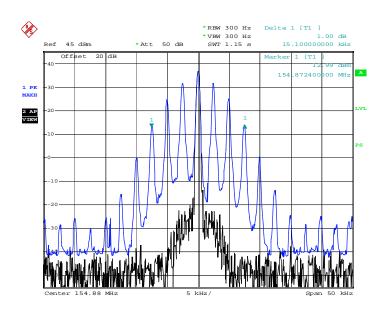


Occupied BW CH8 Date: 12.AUG.2005 16:25:35

Audio Input	Frequency Deviation
(mV)	(KHz)
0	0.33
4	0.42
8	0.79
12	1.34
16	1.62
20	1.83
24	2.11
28	2.14
32	2.19
36	2.22

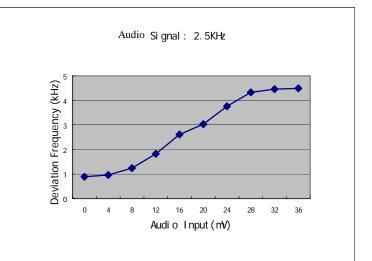


Emission Mask B-For 20 kHz Channel Bandwidth (Equipped with an audio low-pass filter):



Occupied BW CH5 Date: 12.AUG.2005 16:23:12

Audio Input (mV)	Frequency Deviation (KHz)
0	0.27
4	0.92
8	1.31
12	1.66
16	2.55
20	3.38
24	3.79
28	4.08
32	4.24
36	4.3



Emission Mask B-For 25 kHz Channel Bandwidth (Equipped with an audio low-pass filter):

Occupied BW CH2 Date: 12.AUG.2005 16:16:15

Audio Input (mV)	Frequency Deviation (KHz)
0	0.89
4	0.96
8	1.24
12	1.82
16	2.61
20	3.03
24	3.76
28	4.33
32	4.46
36	4.49

§2.1051 and §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

§90.210 (12.5kHz bandwidth only)

On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5kHz at least:

50+10logP=50+10log(5.15)=57.12dB

§2.1051and §90.210 (25kHz bandwidth and 20 kHz bandwith)

On any frequency removed from the center of the assigned channel by more than 250 percent at least:

43+10logP=43+10log(5.25)=50.20dB

Test Equipment List and Details

Manufacturer	Description	Model Serial Number		Calibration Date	Calibration Due Date	
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2004-11-10	2005-11-10	

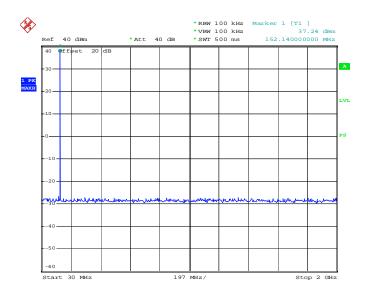
* **Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

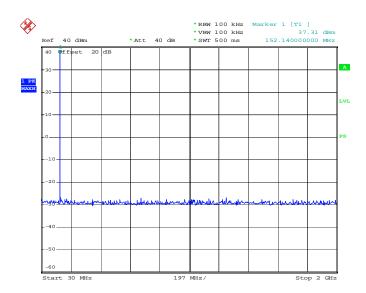
Test Data

Environmental Conditions

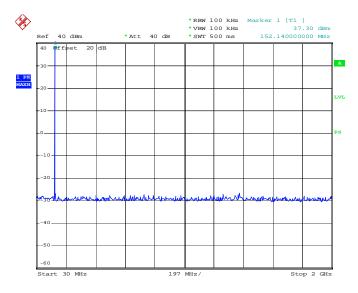

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Jandy Su on 2005-8-17.

Test Result: Pass


Test Mode: Transmitting

For 12.5 kHz Channel Bandwidth:


Spurious emission at antenna terminal CH8 Date: 12.AUG.2005 15:56:34

For 20.0 kHz Channel Bandwidth:

Spurious emission at antenna terminal CH5 Date: 12.AUG.2005 15:57:17

For 25 kHz Channel Bandwidth:

Spurious emission at antenna terminal CH2 Date: 12.AUG.2005 15:57:51

§2.1053 and §90.210 - RADIATED SPURIOUS EMISSION

Applicable Standard

§2.1053 and §90.210

Test Equipment List and Details

Manufacturer	Description	Model Serial Number		Calibration Date	Calibration Due Date
HP	Signal Generator	HP8657A	2849U00982	2005-2-28	2006-2-28
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2004-11-10	2005-11-10
SUNOL SCIENCES	Horn Antenna	DRH-118	A052604	2005-6-2	2006-6-2
A.H. System	Horn Antenna	SAS-200/571	135	2005-4-28	2006-4-28
Giga-tronics	Signal Generator	1026	270801	2005-2-28	2006-2-28

* **Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

Spurious attenuation limit in $dB = 50 + 10 \text{ Log}_{10}$ (power out in Watts) for EUT with a 12.5KHz channel bandwidth.

Test Results Summary

For 12.5 kHz Channel Bandwidth: -28.3 dB at 464.65 MHz

For 20.0 kHz Channel Bandwidth: -38.1 dB at 309.76 MHz

For 25.0 kHz Channel Bandwidth: -41.2 dB at 309.76 MHz

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Jandy Su on 2005-8-18.

Test Mode: Transmitting

Indica	ited	Table	Test An	itenna	Subs	tituted		Antenna	Cable	Absolute		
	Meter											
Frequency	Reading	Angle	Height	Polar	Frequency	Level	Polar	Gain	Loss	Level	Limit	Margin
MHz	dBm	Degree	Meter	H/V	MHz	dBm	H/V	Correction	dB	dBm	dBm	dB
	Channel spacing 12.5KHz											
464.65	34.98	10	1.7	Н	464.65	-45.70	Н	0	2.6	-48.3	-20	-28.3
464.65	31.04	180	1.7	Н	464.65	-47.80	V	0	2.6	-50.4	-20	-30.4
309.76	32.23	10	1.5	Н	309.76	-49.90	V	0	2.6	-52.5	-20	-32.5
309.76	33.79	160	1.5	Н	309.76	-52.40	Н	0	2.6	-55.0	-20	-35.0
619.53	21.19	180	1.6	Н	619.53	-57.40	Н	0	2.7	-60.1	-20	-40.1
619.53	20.95	180	1.6	Н	619.53	-59.60	V	0	2.7	-62.3	-20	-42.3
					Channe	el spacir	ng 20	KHz				
309.76	37.38	160	1.5	Н	309.76	-48.50	Η	0	2.6	-51.1	-13	-38.1
464.65	27.78	10	1.7	Н	464.65	-52.30	Н	0	2.6	-54.9	-13	-41.9
309.76	29.47	10	1.5	Н	309.76	-53.40	V	0	2.6	-56.0	-13	-43.0
464.65	23.86	180	1.7	Н	464.65	-55.20	V	0	2.6	-57.8	-13	-44.8
619.53	20.89	180	1.6	Н	619.53	-59.70	V	0	2.7	-62.4	-13	-49.4
619.53	18.92	180	1.6	Н	619.53	-61.10	Н	0	2.7	-63.8	-13	-50.8
					Channe	el spacir	ng 25	KHz				
309.76	34.1	160	1.5	Н	309.76	-51.60	Н	0	2.6	-54.2	-13	-41.2
309.76	28.64	10	1.5	Н	309.76	-54.10	V	0	2.6	-56.7	-13	-43.7
464.65	21.49	180	1.7	Н	464.65	-57.80	V	0	2.6	-60.4	-13	-47.4
464.65	21.83	10	1.7	Н	464.65	-58.20	Н	0	2.6	-60.8	-13	-47.8
619.53	19.45	180	1.6	Н	619.53	-60.50	Н	0	2.7	-63.2	-13	-50.2
619.53	18.70	180	1.6	Н	619.53	-61.30	V	0	2.7	-64.0	-13	-51.0

§2.1055 (d) and §90.213- FREQUENCY STABILITY

Applicable Standard

§2.1055 (d)

§90.213

For output power > 2 watts, the limit is 5.0ppm.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
NANYAN	Audio Generator	NY2201	019829	2004-12-23	2005-12-23
Hewlett-Packard	Frequency Counter	5342A	2317A08289	2005-1-26	2006-1-26

* **Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a f Spectrum Analyzer via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external variable DC power supply Source. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the end point. The output frequency was recorded for each voltage.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Jandy Su on 2005-8-18.

Test Result: Pass

Test Mode: Transmitting

Shenzhen HYT Science & Technology Co., Ltd

FCC ID: R74TC-700V

Reference Frequency: 154.8800 MHz, Limit: 5 ppm					
Environment Temperature	Power Supplied	Frequency Measure with Time Elapsed			
(°C)	(Vdc)	MCF (MHz)	PPM Error		
50	7.4	154.8799	-0.22		
40	7.4	154.8799	-0.22		
30	7.4	154.8800	0		
20	7.4	154.8800	0		
10	7.4	154.8800	0		
0	7.4	154.8801	0.22		
-10	7.4	154.8801	0.22		
-20	7.4	154.8801	0.22		
-30	7.4	154.8802	0.44		

Frequency Stability Versus Input Voltage

Reference Frequency : 154.88 MHz, Limit : 5 ppm				
Power Supplied	Frequency Measure with Time Elapsed			
(Vdc)	Frequency (MHz)	PPM Error		
6.46	154.8801	0.22		

Note: 1) Limit 5ppm is for EUT operating with 12.5KHz channel bandwidth. 2) The end point is 6.46Vdc.

§90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

§90.214

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
TEKTRONIX	Digital Phosphor Oscilloscope	TDS 7104	B020518	2005-1-24	2006-1-24
HP	Modulation Analyzer	8901B	3438A05208	2005-2-28	2006-2-28
HP	Signal Generator	HP8657A	2849U00982	2005-2-28	2006-2-28

* **Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

TIA/EIA-603 2.2.19

Test Data

Environmental Conditions

Γ	25.00
Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

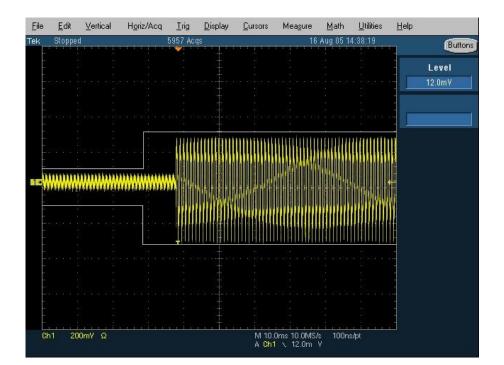
The testing was performed by Jandy Su on 2005-8-17.

Test Result: Pass

Test Mode: Transmitting

Operation Frequency	Channel Separation	Transient Period	Transient Frequency	Result
154.88 MHz	12.5 kHz	t1=10 ms	<+/-12.5 kHz	
		t2=25 ms	<+/-6.25 kHz	Pass
		t3=10 ms	<+/-12.5 kHz	
	20 kHz	t1=10 ms	<+/-25 kHz	
		t2=25 ms	<+/-12.5 kHz	Pass
		t3=10 ms	<+/-25 kHz	
	25 kHz	t1=10 ms	<+/-25 kHz	
		t2=25 ms	<+/-12.5 kHz	Pass
		t3=10 ms	<+/-25 kHz	

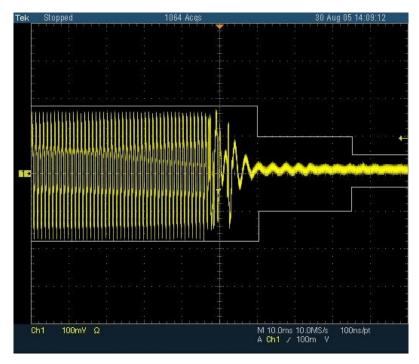
Report # RSZ05081002


Shenzhen HYT Science & Technology Co., Ltd

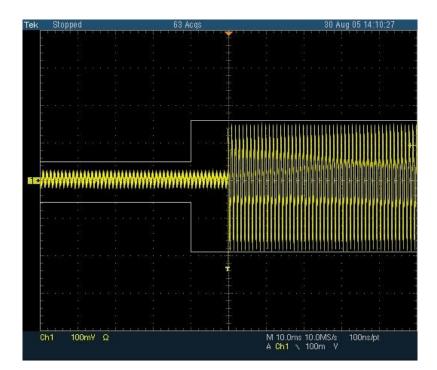
For 12.5 kHz

Turn on

Turn off



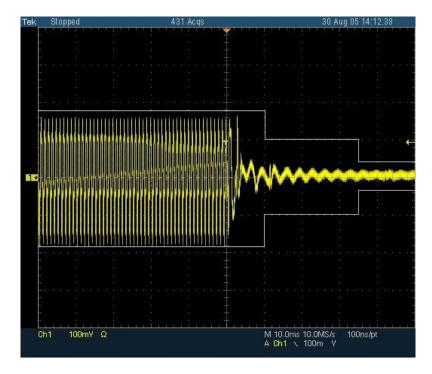
Report # RSZ05081002


Shenzhen HYT Science & Technology Co., Ltd

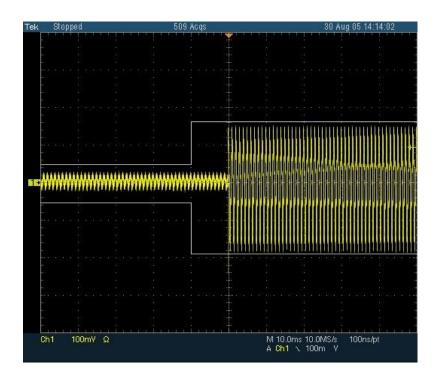
For 20.0 kHz

Turn on

Turn off


Report # RSZ05081002

Page 30 of 31


FCC PART 90 TYPE APPROVAL Report

For 25.0 kHz

Turn on

Turn off

Report # RSZ05081002

Page 31 of 31

FCC PART 90 TYPE APPROVAL Report