

Appendix B. Maximum Permissible Exposure

FCC ID: QDS-BRCM1082 Page No. : B1 of B4

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)			Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f	(900 / f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-100,000			5	6	

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or \$ (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: QDS-BRCM1082 Page No. : B2 of B4

Report No.: FR431243

1.3. Calculated Result and Limit

For 5GHz UNII Band:

For Beamforming

Antenna Type: WLAN/BT antenna

Conducted Power for IEEE 802.11ac MCS0/Nss1 VHT40: 19.62dBm

Directional Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
10.37	10.8923	19.6222	91.6679	0.198742	1	Complies

Note: Directional gain = $G_{ANT} + 10 \log(N_{ANT}/N_{SS})$

For Non-Beamforming

Antenna Type: WLAN/BT antenna

Conducted Power for IEEE 802.11ac MCS0/Nss1 VHT80: 23.69dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (\$) (mW/cm²)	Test Result
5.80	3.8019	23.6895	233.8554	0.176969	1	Complies

For 5GHz ISM Band:

For Beamforming

Antenna Type: WLAN/BT antenna

Conducted Power for IEEE 802.11ac MCS0/Nss1 VHT20: 25.21dBm

Directional Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (\$) (mW/cm²)	Test Result
10.57	11.4057	25.2086	331.7870	0.753236	1	Complies

Note: $Directional\ gain = G_{ANT} + 10\ log(N_{ANT}/N_{SS})$

For Non-Beamforming

Antenna Type: WLAN/BT antenna

Conducted Power for IEEE 802.11a: 25.93dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (\$) (mW/cm²)	Test Result
5.80	3.8019	25.9253	391.3201	0.296130	1	Complies

FCC ID: QDS-BRCM1082 Page No. : B3 of B4

Report No.: FR431243

For 2.4GHz Band:

For WLAN

Antenna Type: WLAN/BT antenna

Conducted Power for IEEE 802.11n HT20 MCS0: 27.05 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
3.90	2.4547	27.0488	506.8459	0.247643	1	Complies

For Bluetooth

Antenna Type: WLAN/BT antenna

Max Conducted Power for Bluetooth EDR (8DPSK) 3Mbps: -1.35 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (\$) (mW/cm²)	Test Result
3.90	2.4547	-1.3500	0.7328	0.000358	1	Complies

Antenna Type: WLAN/BT antenna

Max Conducted Power for Bluetooth 4.0: -1.43 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
3.90	2.4547	-1.4300	0.7194	0.000352	1	Complies

CONCULSION:

Both of the WLAN 2.4GHz Band and Bluetooth can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.247643 / 1 + 0.000358 / 1 = 0.248001, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

CONCULSION:

Both of the WLAN 5GHz Band and Bluetooth can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.753236 / 1 + 0.000358 / 1 = 0.753594, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

FCC ID: QDS-BRCM1082 Page No. : B4 of B4