

Test Report

Report No. : MTi250301001-0303E1

Date of issue : 2025-03-27

Applicant : RADIOSHACK WORLDWIDE CORP.

Product : Magnetic Wireless Charger With USB-C port

Model(s) : 2733366

FCC ID : 2BDUR-2733367

Shenzhen Microtest Co., Ltd.

Mhicrotest

TEST REPORT

Report No.: MTi250301001-0303E1

Microtest

Table of contents

1	Gen	eral Description	4
(ADS)	1.1	Description of the EUT	4
	1.2	Description of test modes	
	1.3	Environmental Conditions	
	1.4	Description of support units	5
	1.5	Measurement uncertainty	5
2 3	Sum Test	mary of Test ResultFacilities and accreditations	6 7
	3.1	Test laboratory	7
4 5	Eval	of test equipmentuation Results (Evaluation)	9
	5.1	Antenna requiremento Spectrum Matter Test Results (RF)	9
6	Radi	o Spectrum Matter Test Results (RF)	10
	6.1	Conducted Emission at AC power line	10
	6.2	20dB Occupied Bandwidth	13
	6.3	Emissions in frequency bands (below 30MHz)	17
	6.4	Emissions in frequency bands (30MHz - 1GHz)	
Ph Ph	otogra otogra	aphs of the test setupaphs of the EUT	26 27
	NiC'	otest	
	A.C.	stest	

Microfest

Microtest

TEST REPORT

Report No.: MTi250301001-0303E1

Me			Test Result Certification		
7		ACK WORLDWIDE CORP.	RADIOSHA	Applicant	
75 Col.	Escalon Number 3675	Tower, 18th floor Paseo Genera an Salvador El Salvador		Applicant Address	
		ACK WORLDWIDE CORP.	RADIOSHA	Manufacturer	
75 Col.	Escalon Number 3675	Tower, 18th floor Paseo Genera an Salvador El Salvador		Manufacturer Address	
NiCLO C			on	Product descriptio	
	t (B)	Vireless Charger With USB-C po	Magnetic V	Product name	
			N/A	Trademark	
		est	2733366	Model name	
		iiCi ^{Ole}	N/A	Series Model(s)	
		art 15C	47 CFR Pa	Standards	
st		10-2013	ANSI C63.	Test Method	
Core	ni CY ^C		n	Testing Information	
		1 to 2025-03-25	2025-03-21	Date of test	
			Pass	Test result	
	Letter. Lar	Letter Lan	Prepared by:		
Cee	Dowid. (David Lee	by:	Reviewed b	
mest	Lewis lion	Lewis Lian	by:	Approved b	
	Zetter. 2. Dowid. Lewis lion	Letter Lan David Lee	Pass by:	Test result Prepared b	

Report No.: MTi250301001-0303E1

Microtest

1 General Description

1.1 Description of the EUT

Product name:	Magnetic Wireless Charger With USB-C port	
Model name:	2733366	
Series Model(s):	N/A	
Model difference:	N/A	
Electrical rating:	Input: 5VDC 1A Output: 2.5W	
Accessories:	N/A	· Crole
Hardware version:	V1.0	(SAM)
Software version:	V1.0	
Test sample(s) number:	MTi250301001-03-R001	
RF specification		
Operating frequency range:	Apple Watch: 329.065kHz Samsung Watch: 187.300kHz	
Modulation type:	ASK	
Antenna(s) type:	Coil	

1.2 Description of test modes

Microlest

No.	Emission test modes
Mode1	Wireless Output(Apple Watch)
Mode2	Wireless Output(Samsung Watch)
Mode3	Stant by

Microfest

Report No.: MTi250301001-0303E1

Microtes

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

3		
Temperature:	15°C ~ 35°C	
Humidity:	20% RH ~ 75% RH	
Atmospheric pressure:	98 kPa ~ 101 kPa	

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment	list		
Description	Model	Serial No.	Manufacturer
Watch	Apple Watch S7	M0JVGQG1VP	Apple
Watch	Galaxy Watch 5	R32T5467890	Samsung
Support cable list			
Description	Length (m)	From	То
1	1	CO I	/

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: MTi250301001-0303E1

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15C	47 CFR Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15C	47 CFR Part 15.207(a)	Pass
3	20dB Occupied Bandwidth	47 CFR Part 15C	47 CFR Part 15.215(c)	Pass
4	Emissions in frequency bands (below 30MHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass
5	Emissions in frequency bands (30MHz - 1GHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass

Microtest

Microfest

TEST REPORT

Report No.: MTi250301001-0303E1

Microtest

Microtest

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

Microfest

Report No.: MTi250301001-0303E1

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
	rest	Conducted Emiss	ion at AC power	line		
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2025-03- 13	2026-03- 12
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2025-03- 18	2026-03- 17
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2025-03- 18	2026-03- 17
		20dB Occup	ied Bandwidth			tes
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2025-03- 18	2026-03- 17
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB400512 40	2025-03- 14	2026-03- 13
3	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2025-03- 14	2026-03- 13
4	Synthesized Sweeper	Agilent	83752A	3610A019 57	2025-03- 18	2026-03- 17
5	MXA Signal Analyzer	Agilent	N9020A	MY501434 83	2025-03- 18	2026-03- 17
6	RF Control Unit	Tonscend	JS0806-1	19D80601 52	2025-03- 18	2026-03- 17
7	Band Reject Filter Group	Tonscend	JS0806-F	19D80601 60	2025-03- 18	2026-03- 17
8	ESG Vector Signal Generator	Agilent	N5182A	MY501437 62	2025-03- 14	2026-03- 13
9	DC Power Supply	Agilent	E3632A	MY400276 95	2025-03- 18	2026-03- 17
	Em	nissions in frequenc	y bands (below	30MHz)	MICIE	7
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2025-03- 14	2026-03- 13
2	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2026-03- 22
3	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2025-03- 18	2026-03- 17
	Em	issions in frequency	y bands (30MHz	- 1GHz)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2025-03- 14	2026-03- 13
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06- 10
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2026-03- 22
4	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2025-03- 18	2026-03- 17

Report No.: MTi250301001-0303E1

Microtest

Microtest

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

5.1.1 Conclusion:

Mhicrotest

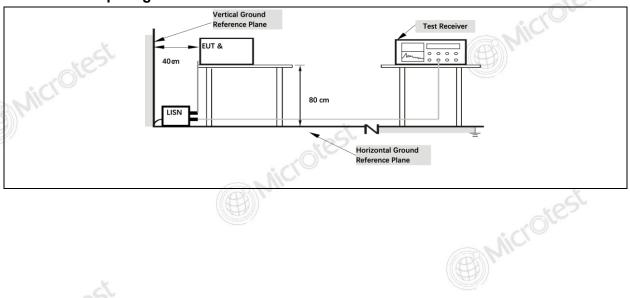
Microtest

The antenna of the EUT is permanently attached.

The EUT complies with the requirement of FCC PART 15.203.

Report No.: MTi250301001-0303E1

6 Radio Spectrum Matter Test Results (RF)

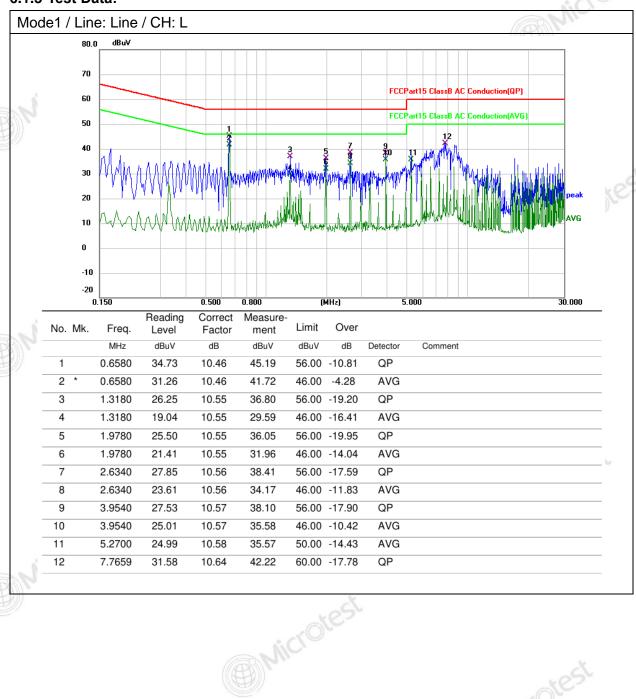

6.1 Conducted Emission at AC power line

Test Requirement:	(b)and (c)of this section, ned to be connected to the ency voltage that is conducted to the ency voltage that is conducted to the ency or frequencies, not exceed the limits in the impedan	e public utility ucted back within the e following			
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)			
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	*Decreases with the logarithm of the frequency.				
Test Method:	ANSI C63.10-2013 section 6.2				
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices				

6.1.1 E.U.T. Operation:

Operating Environment:						
Temperature:	21.3 °C	Humidity:	41 %	Atmospheric Pressure:	100 kPa	
Pre test mode:		Mode1, Mode2				
I FINALIDEI MOGO.		All of the listed pre-test mode were tested, only the data of the worst mode (Mode1) is recorded in the report				

6.1.2 Test Setup Diagram:

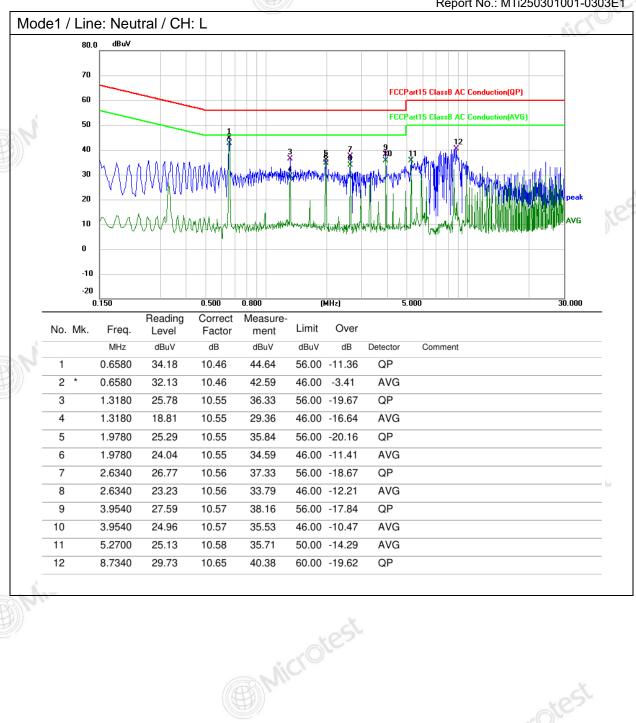


Report No.: MTi250301001-0303E1

Microtest

6.1.3 Test Data:

Microfest



Microfest

TEST REPORT

Report No.: MTi250301001-0303E1

Report No.: MTi250301001-0303E1

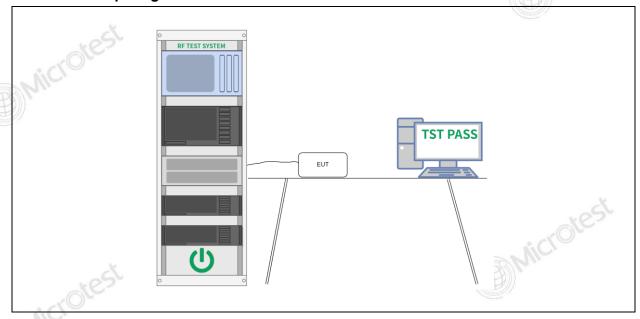
6.2 20dB Occupied Bandwidth

6.2 20dB Occupied	Danuwidin
Test Requirement:	47 CFR Part 15.215(c)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 6.9.2
Procedure:	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be
Microtest	approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the
Microtest	specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then
Microtest	turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the

Report No.: MTi250301001-0303E1

Microtest

marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.


k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

6.2.1 E.U.T. Operation:

Operating Environment:						
Temperature:	25.6 °	C	Humidity: 57 %	Atmospheric Pressure:	101 kPa	
Pre test mode: Me			le1, Mode2			
Final test mode: Mo		Mod	le1, Mode2		~ VICI	

6.2.2 Test Setup Diagram:

Microtest

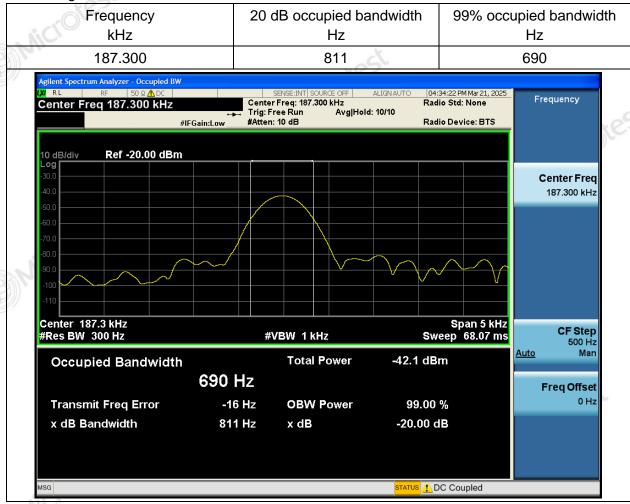

Report No.: MTi250301001-0303E1

Mhicrotest

6.2.3 Test Data:

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

Apple Watch


Report No.: MTi250301001-0303E1

BNicrotest

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

Samsung Watch

Microtest

Report No.: MTi250301001-0303E1

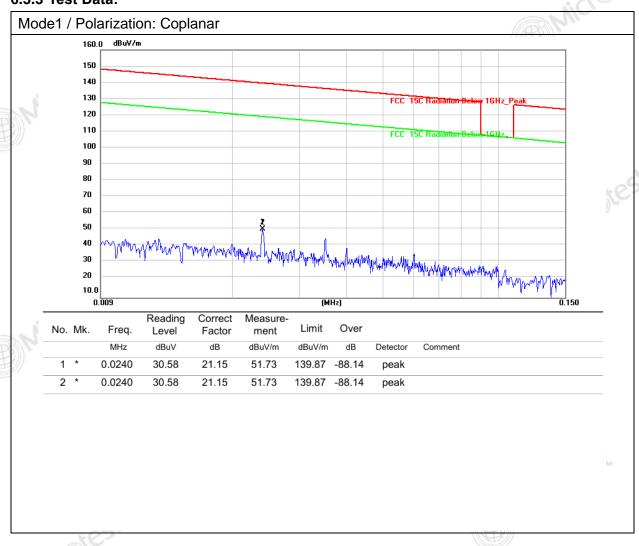
6.3 Emissions in frequency bands (below 30MHz)

Test Requirement:	47 CFR Part 15.209				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)		
. ~	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
Microtest	permitted under other In the emission table at The emission limits she measurements employ frequency bands 9–90 Radiated emission limit measurements employ As shown in § 15.35(b) strength limits in paragaverage limits. However not exceed the maxim more than 20 dB under operation under paragarants.	peration within these frequence sections of this part, e.g., §§ above, the tighter limit applies own in the above table are bying a CISPR quasi-peak deto kHz, 110–490 kHz and above its in these three bands are bying an average detector. If the peak field strength of the peak field strength of the permitted average limits of the permitted average limits of the peak field strength (b) of this section, the peak field strength (b) of this section and the peak field strength (c) of the peak field	15.231 and 15.241. Is at the band edges. Is assed on ector except for the Item 1000 MHz. Item 200 MHz, the field Item 200 MHz,		
Test Method:	ANSI C63.10-2013 se	ction 6.4	3///		
Procedure:	ANSI C63.10-2013 se	ction 6.4			

6.3.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.5 °C		Humidity:	43 %	Atmospheric Pressure:	101 kPa	
Pre test mode:			Mode1, Mode2, Mode3				
					e were tested, only the dat corded in the report	a of the worst	

6.3.2 Test Setup Diagram:

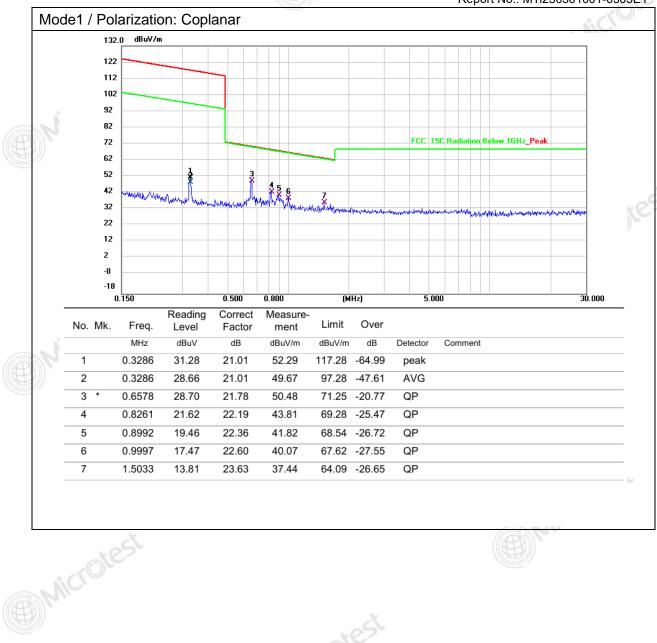


Report No.: MTi250301001-0303E1

Microtest

6.3.3 Test Data:

Microfest

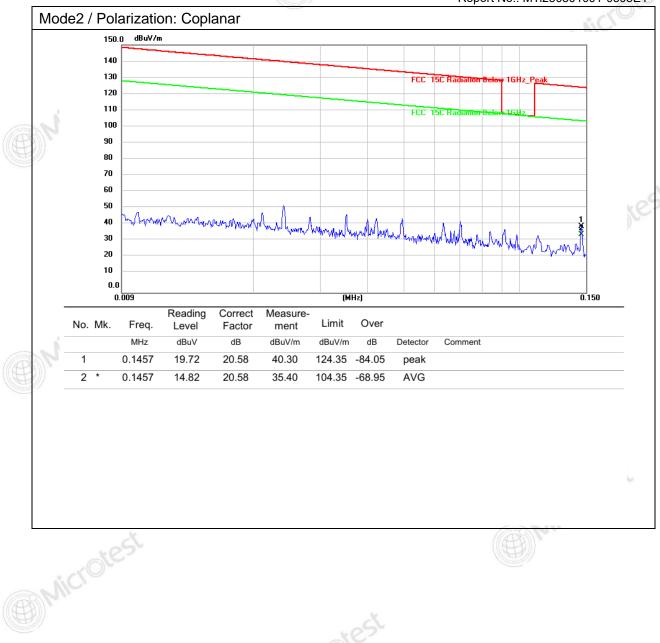


Microtest

TEST REPORT

Report No.: MTi250301001-0303E1

Microtest



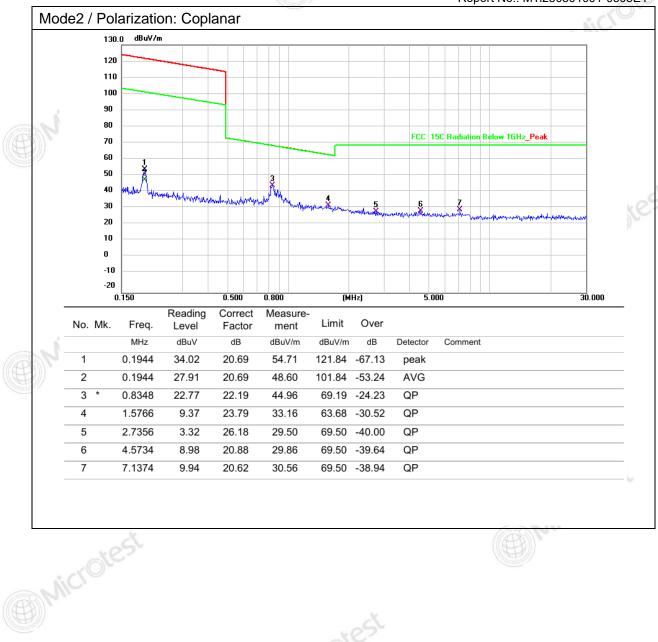
MANICIOlest

TEST REPORT

Report No.: MTi250301001-0303E1

Microtest

Microfest



Microlest

TEST REPORT

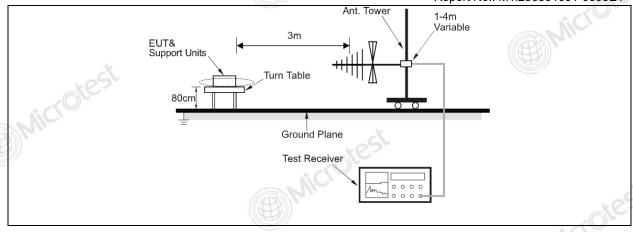
Report No.: MTi250301001-0303E1

Microtest

Report No.: MTi250301001-0303E1

6.4 Emissions in frequency bands (30MHz - 1GHz)

Test Requirement:	47 CFR Part 15.209	(FB) 1	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Microtest	permitted under other In the emission table at The emission limits she measurements employ frequency bands 9–90 Radiated emission limit measurements employ As shown in § 15.35(b) strength limits in paragaverage limits. However not exceed the maxim more than 20 dB under operation under paragarage limits.	peration within these frequence sections of this part, e.g., §§ above, the tighter limit applies own in the above table are baying a CISPR quasi-peak detector. Also an average detector. The peak field strength of a sum permitted average limits or any condition of modulation raph (b)of this section, the peak field strength of a sum permitted average limits or any condition of modulation raph (b)of this section, the peak field strength of a sum permitted average limits or any condition of modulation raph (b)of this section, the peak field strength of a sum permitted average limits or any condition of modulation raph (b)of this section, the peak field strength of a sum permitted average limits or any condition of modulation raph (b)of this section, the peak field strength of a sum permitted average limits or any condition of modulation raph (b)of this section, the peak field strength of a sum permitted average limits or any condition of modulation raph (b)of this section, the peak field strength of a sum permitted average limits or any condition of modulation raph (b)of this section, the peak field strength of a sum permitted average limits or any condition of modulation raph (b)of this section, the peak field strength of a sum permitted average limits or any condition of modulation raph (b)of this section and condition of modulation raph (b) of this section and condition of modulation raph (b) of this section and condition raph (b) of this section and condition raph (b) of this section and condition raph (c) of this section raph (c)	15.231 and 15.241 at the band edges ased on ector except for the e 1000 MHz. ased on 0 MHz, the field on are based on any emission shall specified above by a field strength
Test Method:	ANSI C63.10-2013 se	ction 6.5	
Procedure:	ANSI C63.10-2013 se	ction 6.5	

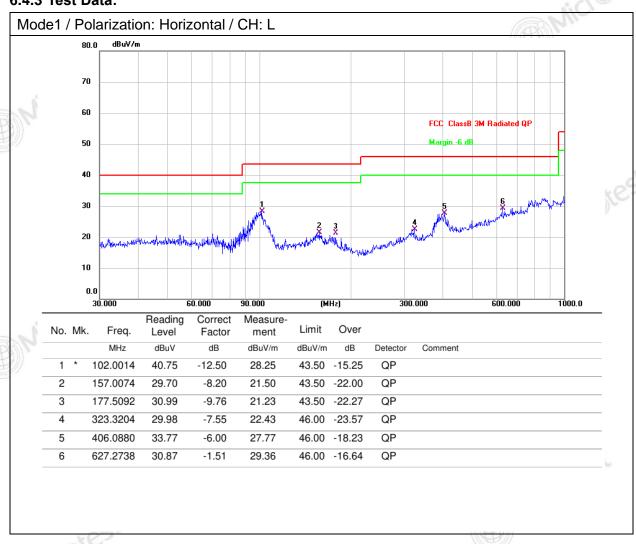

6.4.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.8 °C		Humidity:	60 %	Atmospheric Pressure:	98.3 kPa	
Pre test mode:			Mode1, Mode2, Mode3				
Final test mode.			111 64 1 1 1 1	re-test mode recorded in	e were tested, only the dat the report	a of the worst	

6.4.2 Test Setup Diagram:

Report No.: MTi250301001-0303E1

Microlest

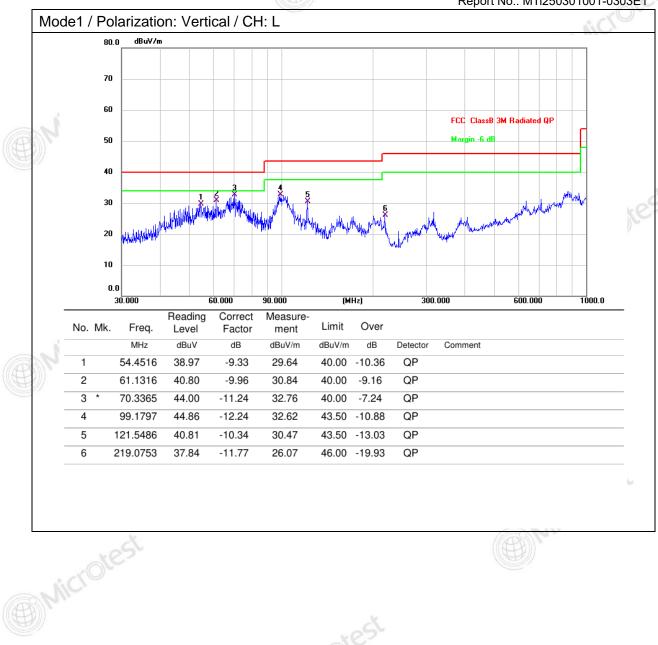


Report No.: MTi250301001-0303E1

Microtest

6.4.3 Test Data:

Microfest



Microfest

TEST REPORT

Report No.: MTi250301001-0303E1

Microtest

Microtest

Microtest

Microtest

TEST REPORT

Report No.: MTi250301001-0303E1

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Microtest

TEST REPORT

Report No.: MTi250301001-0303E1

Photographs of the EUT

Refer to Appendix - EUT Photos

Report No.: MTi250301001-0303E1

- This report is invalid without the seal and signature of the laboratory.
- The test results of this report are only responsible for the samples submitted. Client shall be responsible for representativeness of the sample and authenticity of the material.
- 3. The report shall not be partially reproduced without the written consent of the Laboratory.
- 4. This report is invalid if transferred, altered or tampered with in any form without authorization.
- 5. The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.
- 6. Any objection to this report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

****** END OF REPORT *****

| Image: Principles | Principles |
| Image: Principles | Principles |
| Image: Pri