Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8\ Page 1 of 27 # **FCC Test Report** **Client Name** Lithiutech Canada Inc 614-9320 Saint Laurent Montreal Canada Client Address Product Name **TABLET** Feb. 25, 2023 **Report Date** Compliance Laboration Anbotek Shenzhen Anbotek Compliance Laboratory Limited * Approved # **Contents** | 1. General In | formation | otek Anb | D. D. | <u>, kal</u> | Wipo _{fer} | 7UF | |---------------|---|--------------------------------|----------------------|---|-----------------------|--------------------| | 1.1. Clie | nt Information | 1646 | epoter. | Anbo | totek. | Anbor | | 1.2. Des | nt Informationcription of Device (EUT) | iup. M | - Jodek | Anbore | bu. | botor | | 1.3. Auxi | liary Equipment Used D | urina Test | br. | abote. | AUG | k wotek | | 1.4. Ope | ration State | "upo _{ter} | Ann | | ie _k Vupo, | have been a second | | 1.5 Env | ironmental Conditions | | | | | ofe. And | | 1.6. Test | Equipment Listsurement Uncertainty | | iel ^k | pote. Ar | | 3.000 Harton | | 1.7. Mea | surement Uncertainty | And And | | . npotek | Anbo. p | | | 1.8. Des | cription of Test Facility | MOJE. AT | W | 716/r | "upo. | | | 2. Summary | of Test | nte/k | Aupo, | | hote. | 10 | | 2.1. Sum | nmary of test result | An | Kilpo _{tek} | Anbo | | 10 | | 3. Conducted | Output Power Test Standard and Limit Setup Procedure | Aupo | | ek pobol | - An- | , ok1: | | 3.1. Test | Standard and Limit | Aupore | V PL | | ooten Anbi | | | 3.2. Test | Setup | [†] 0d ₁₇₂ | er Ant |) - N | , botek A | 1 | | 3.3. Test | Procedure | | ootek | Anbore | br. | | | 3.4. Test | Data | /po. N. | 40 | "poje" | Vur | 1 | | 4. Peak-Aver | age RatioStandard and Limit | Arboter | PUDD. | , otek | Aupor | 12 | | 4.1. Test | Standard and Limit | | Anbore | V | k Wooley | Ano | | 4.2. Test | Setup | | , bote | VUD. | | | | 4.3. Test | Procedure | by | N | oter Ant | | | | 4.4. Test | Data | e _K Vupor | <i>b</i> 11. | Work. | apoler Ar | 1 | | 5. Modulation | n Characteristicpied Bandwidth & 26 dB | امير العلي | oter p | iun. | | .Anbo | | 6. 99% Occu | pied Bandwidth & 26 dB | Bandwidth | Mootek | Anbor | bu. | 1 | | 6.1 Test | Standard and Limit | | | | | hotek 1 | | 6.2. Test | Setup | anbore | Vu. | 6 100te | K Anbo | 14 | | 6.3. Test | Procedure | Motek | Anbor | bo. | tek pobot | 1 | | 6.4. Test | Data | | k 60pc | Ster Ant | | 14 | | 7. Band Edge | Data
Standard and Limit | Arr. | ,,oV | (botek | upo M | 19 | | 7.1. Test | Standard and Limit | iotek Anb | | , gotek | Aupore. | 1 | | 7.2. Test | Setup | wolek | nbore | Yu. Yok | rupotek | 15 | | 7.3. Test | Procedure | Vu. | Mpotek | Anbo | , wotek | 1! | | 7.4. Test | Data | Anbo | wotek. | Aupore | V. Vi | k1! | | 8. Conducted | Setup Procedure Data I Spurious Emission | Anbore | VUr | 20,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ter Aupo. | 10 | | 8.1. Test | Standard and Limit | r mpotel | Anbo | | otek Ant | 1 | | 8.2. Test | Standard and Limit Setup Procedure | | yek Ar | por A | | 10 | | 8.3. Test | Procedure | ore Ans | Yayı | nobotek | Aup. | 16 | | .V | VIII. | 184 | | V. 1 | 1001 | V11. | **Shenzhen Anbotek Compliance Laboratory Limited** Code:AB-RF-05-b Hotline 400-003-0500 www.anbotek.com.cn | Report No.: 1822000C20274300 FCC ID. ZAZ9RTAB80 | Page 3 01 27 | |--|---------------| | 8.4. Test Data | 16 | | 8.4. Test Data9. Radiated Spurious Emission | 17 | | 9.1. Test Standard and Limit | Aria hotel 17 | | 9.2. Test Setup | 17 | | | | | 9.4. Test Data | 19 | | 10. ERP and EIRP | 22 | | 10.1. Test Standard and Limit | 22 | | 10.2. Test Setup | 22 | | 10.3. Test Procedure | 22 | | 9.3. Test Procedure 9.4. Test Data 10. ERP and EIRP 10.1. Test Standard and Limit 10.2. Test Setup 10.3. Test Procedure 10.4. Test Data 11. Frequency stability VS Voltage measurement 11.1. Test Standard and Limit 11.2. Test Setup | 24 | | 11. Frequency stability VS Voltage measurement | 25 | | 11.1. Test Standard and Limit | 25 | | 11.2. Test Setup | 25 | | 11.5. 163L1 100GUUIG | | | 11.4. Test Data | 25 | | 12. Frequency stability VS Temperature measurement | 26 | | 12.1. Test Standard and Limit | 26 | | 12.2. Test Setup | 26 | | 12.2. Test Setup | 26 | | 12.4 Test Data | 26 | | APPENDIX I TEST SETUP PHOTOGRAPH | 27 | | APPENDIX II EXTERNAL PHOTOGRAPH | | | ADDENDIY III INTEDNAL DHOTOGDADH | Anbor Air | Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 4 of 27 # **TEST REPORT** Applicant : Lithiutech Canada Inc Manufacturer : Lithiutech Canada Inc Product Name : TABLET Model No. : TAB8V Trade Mark : Vortex Rating(s) : Input: DC 5V, 1A (with DC 3.8V, 4000mAh Battery inside) Test Standard(s) : FCC PART 2, FCC Part 22(H), FCC Part 24(E), FCC Part 27(C) ANSI C63.26-2015 Test Method(s) : KDB 971168 D01 Power Meas License Digital Systems v03r01 The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 22, FCC Part 24, FCC Part 27 requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited. Date of Receipt Nov. 30, 2022 Date of Test: Nov. 30, 2022~Jan. 06, 2023 Prepared by: (TuTu Hong) ok boyer And (Kingkong Jin) Approved & Authorized Signer: # **Revision History** | Report Version | | | Description | | | | Issued Date | | | |----------------|---------|-------|----------------|----------------|-----------|---------|---------------|-------|--| | Ant | R00 | Anbot | ek Aupo, | Original Issue | upoje, VL | abotek | Feb. 25, 2023 | 3 | | | e/r | Anbotek | An | otek Anbotek | Anbotek | Anborek | Anbotek | Anboren | Villa | | | otek | Anbotek | | Anbo otek Anbo | lek Pupor | hotek. | Anboli. | Auponiek | - | | Report No.: 18220WC20274306 # 1. General Information ### 1.1. Client Information | Applicant | : | Lithiutech Canada Inc | |--------------|---|--| | Address | : | 614-9320 Saint Laurent Montreal Canada | | Manufacturer | : | Lithiutech Canada Inc | | Address | : | 614-9320 Saint Laurent Montreal Canada | | Factory | : | Lithiutech Canada Inc | | Address | : | 614-9320 Saint Laurent Montreal Canada | # 1.2. Description of Device (EUT) | Product Name | : TABLET Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek | |------------------------|--| | Model No. | : TAB8V Anbotek Anbotek Anbotek Anbotek | | Trade Mark | : Vortex | | Test Power Supply | DC 3.8V Battery inside | | Test Sample No. | : 1-2-1(Normal Sample), 1-2-2(Engineering Sample) | | Adapter | Model: BCT050200-078EU : Input: 100-240~ 50/60Hz 0.3A Output: 5V= 2000mA 10W | | RF Specification | | | Support Band | : ⊠FDD Band II ⊠FDD Band V ⊠FDD Band IV | | Transmit
Frequency | FDD Band II: 1852.40MHz~1907.60MHz
: FDD Band V: 826.40MHz~846.60MHz
FDD Band IV: 1712.40MHz~1752.60MHz | | Receive
Frequency | FDD Band II: 1932.40MHz~1987.60MHz
: FDD Band V: 871.40MHz~891.60MHz
FDD Band IV: 2112.40MHz~2152.60MHz | | Modulation Type | : QPSK | | Power Class | : Class 3 | | Antenna Type | : FPC Antenna | | Antenna
Gain(Peak): | FDD Band II: 3.38 dBi (Provided by customer) FDD Band V: -6.78 dBi (Provided by customer) FDD Band IV: 2.54 dBi (Provided by customer) | Remark: 1) For a more detailed or the User's Manual. Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 7 of 27 ### 1.3. Auxiliary Equipment Used During Test | Description | | Rating(s) | | | | | | | | |-------------|-------|-----------|---------|-----|-----|-------|-------|----|------| | botek | Aupor |
Ar. | Anboter | AUG | Jo. | botek | Anbor | b: | o'ek | #### 1.4. Operation State #### Test frequency list: | | FDD E | Band II | FDD B | and V | FDD Band IV | | | |-----|---------|--------------------|---------|--------------------|-------------|--------------------|--| | c) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | | | 9262 | 1852.40 | 4132 | 826.40 | 1312 | 1712.40 | | | | 9400 | 1880.00 | 4183 | 836.60 | 1413 | 1732.60 | | | 1/3 | 9538 | 1907.60 | 4233 | 846.60 | 1513 | 1752.60 | | #### Test mode: Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v03 and ANSI C63.26-2015 with maximum output power. Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission. Radiated emissions were investigated as following frequency range: 30 MHz to 10th harmonic for FDD Band II, Band V, Band IV All modes and data rates and positions were investigated. Test modes are chosen to be reported as the worst case configuration below: | -V 401 | DI., TIGHT | -/r ro, b,, | | | | | | | |---------------|---------------------|---------------------|--|--|--|--|--|--| | | Test modes | | | | | | | | | Band | Radiated | Conducted | | | | | | | | FDD Band II | ■ RMC 12.2Kbps Link | ■ RMC 12.2Kbps Link | | | | | | | | FDD Band V | ■ RMC 12.2Kbps Link | RMC 12.2Kbps Link | | | | | | | | WCDMA Band IV | ■ RMC 12.2Kbps Link | ■ RMC 12.2Kbps Link | | | | | | | #### 1.5. Environmental Conditions | Temperature range: | 21-25℃ | Anboatek | nbotek | Anbore | Air. | |--------------------|-----------|-----------|--------|--------|------------| | Humidity range: | 40-75% | Aupo rek | nborek | Anboro | Arr. Potek | | Pressure range: | 86-106kPa | Aupo, rak | abotek | Anbore | Amb | # 1.6. Test Equipment List | Item | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Cal.
Interval | |------------------|---|-----------------|---------------------------|-----------------------------|---------------|------------------| | 1. _{ps} | EMI Preamplifier | SKET Electronic | LNPA-0118G-4
5 | SKET-PA-002 | Oct. 13, 2022 | 1 Year | | 2. | EMI Test Receiver | Rohde & Schwarz | ESR26 | 101481 | Oct. 23, 2022 | 1 Year | | 3. | Double Ridged Horn
Antenna | SCHWARZBECK | BBHA 9120D | 02555 | Oct. 16, 2022 | 3 Year | | 4.o | Bilog Broadband
Antenna | Schwarzbeck | VULB9163 | VULB 9163-289 | Oct. 23, 2022 | 2 Year | | 5. 00 | Pre-amplifier | SONOMA | 310N | 186860 | Oct. 23, 2022 | 1 Year | | 6. | EMI Test Software
EZ-EMC | SHURPLE | N/A | oo ^{tek} N/A Moote | N/A | N/A | | Jogok
Jogok | MXA Spectrum Analysis | Agilent | N9020A | MY51170037 | Oct. 13, 2022 | 1 Year | | 8. | MXG RF Vector
Signal Generator | Agilent | N5182A | MY48180656 | Oct. 13, 2022 | 1 Year | | 9. | DC Power Supply | And LW. | TPR-6420D | 374470 | Oct. 22, 2022 | 1 Year | | 10. | Constant Temperature Humidity Chamber | ZHONGJIAN | ZJ-KHWS80B | N/A | Nov. 01, 2021 | 1 Year | | A17. | Wideband Radio
Communication
Tester | Rohde & Schwarz | CMW 500 | 167336 | Oct. 13, 2022 | 1 Year | | 12. | High-Pass Filter | CDKMV | ZHPF-BM1100
-4000-0730 | B2015094550 | Oct. 22, 2022 | 1 Year | | 13. | High-Pass Filter | CDKMV | ZHPF-M3.5
-18G-3834 | 1307006523 | Oct. 22, 2022 | 1 Year | Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 9 of 27 ### 1.7. Measurement Uncertainty #### Maximum measurement uncertainty | Parameter | Uncertainty | | | |-----------------------------------|-----------------------|--|--| | RF output power, conducted | And ±1,5 dB Andor | | | | Power Spectral Density, conducted | ±3 dB | | | | Unwanted Emissions, conducted | Anbores 40 ±3 dB | | | | All emissions, radiated | ±6 dB | | | | Temperature | ±1 ℃ | | | | Humidity | ±5 % | | | | DC and low frequency voltages | ±3 % | | | | Anbatek apporte Time Anbatek | ±5 % | | | | Confidence interval: 95%. 0 | Confidence factor:k=2 | | | ### 1.8. Description of Test Facility The test facility is recognized, certified, or accredited by the following organizations: #### FCC-Registration No.: 184111 Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111. #### ISED-Registration No.: 8058A Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A. #### **Test Location** Shenzhen Anbotek Compliance Laboratory Limited. 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102 Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 10 of 27 # 2. Summary of Test ### 2.1. Summary of test result | FCC Rules | Description of Test | Result | |------------------------------|---|---------------| | Part 2.1046 | ek obotek Anbore Arra | Anbotek Anbo | | Part 22.913(a) | Conducted Output Power | Compliance | | Part 24.232(c) | Conducted Output Fower | Compliance | | Part 27.50(d) | shorek Anbore An otek Anbore | Anbo | | Part 24.232 | Peak-Average Ratio | Compliance | | Part 27.50(d) | reak-Average Natio | Compliance | | § 2.1047 | Modulation Characteristics | N/A Moore | | Part 2.1049 | 99% Occupied Bandwidth & 26 dB
Bandwidth | Compliance | | Part 2.1051 | Anbore Anborek Anborek Anbo | ek aborek | | Part 22.917 | Conducted Spurious Emission | Compliance | | Part 24.238 | Conducted Spurious Emission | Compliance | | Part 27.53(h) | K hotek Anboten And | abotek Anbors | | Part 2.1051 | And stek upotek Anbo | W. Potek Wup. | | Part 22.917 | Band Edge | Compliance | | Part 24.238 | Band Edge | Compliance | | Part 27.53(h) | rek pore And ak ho | ek Anbore | | Part 2.1055(a)(1)(b) | Anbore Anbore Ans | otek Anbotek | | Part 22.355 | Frequency stability VS. temperature | Compliance | | Part 24.235 | rrequency stability vo. temperature | Compliance | | Part 27.54 | ak shotek Anbor All stek | Anboren Ano | | Part 2.1055(d)(1)(2) | o. Andrew Andrew Andrew | aborek Ar | | Part 22.355 | Frequency stability VS. voltage | Compliance | | Part 24.235 | Frequency stability VS. voltage | Compliance | | Part 27.54 | Andrek Anbote And tek and | otek Anbo. | | Part 2.1046 | Anbotek Anbotek Anbotek | botek Anbore | | Part 22.913(a) | ERP and EIRP | Compliance | | | LINI dilu LINI | Compliance | | Part 24.232(c) Part 27.50 | otek Aupo, W. ok Poter | Anbotek An | | Part 2.1053 | nbotek Anbotek Anbote Ann | k Anbotek | | Part 22.917 | | Compliance | | Part 24.238
Part 27.53(h) | Nadiated Spurious Emission | Compliance | | Part 27.53(h) | Anbotek Anbote Ant | nboten And | Note: Testing was performed by configuring EUT to maximum output power status, the declared output power class for different Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 11 of 27 # 3. Conducted Output Power Test ### 3.1. Test Standard and Limit | | | N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 0.00 | - 100 m | | | | |-----|------------|---|--------|-----------|-----------|------|------| | 7 | Applicable | Part 2.1046 | Anbore | 'un | anbotek | Anbo | hote | | | Standard: | Part 22.913(a) | | | | | Arr | | o'i | | Part 24.232(c) | | | | | Anb | | | | Part 27.50(d) | | | | | P | | | Limit: | N/A | Anbo | -6/4 -60° | lek Wupos | Pre- | rek | #### 3.2. Test Setup #### 3.3. Test Procedure - 1. The EUT output port was connected to communication tester. - 2. Set EUT at maximum power through communication tester. - 3. Select lowest, middle, and highest channels for each band and different modulation. - 4. Measure the maximum burst average power. #### 3.4. Test Data Pass Please refer to Appendix A of the Appendix Test Data. Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8 Page 12 of 2 # 4. Peak-Average Ratio #### 4.1. Test Standard and Limit | 1 | Applicable Standard: | Part 24.232 | Anbore | Ann | Anbotek | Aupo | -hotel | |----|----------------------|---------------|--------|--------|---------|---------|--------| | | | Part 27.50(d) | | | | | Vive | | 07 | Limit: | 13dB | abotek | Anboro | All. | Anboten | AUD | #### 4.2. Test Setup #### 4.3. Test Procedure #### According with KDB 971168 D01 Section 5.7: - 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter. - 2. Set EUT in maximum power output. - 3. Center Frequency = Carrier frequency, RBW > Emission bandwidth of signal. - 4. The signal analyzer was set to collect one million samples to generate the CCDF curve. - 5. The measurement interval was set depending on the type of signal analyzed. - i. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. - ii. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power - 6. Record the maximum PAPR level associated with a probability of 0.1%. #### 4.4. Test Data Pass Please refer to Appendix B of the Appendix Test Data. Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 13 of 27 ### 5. Modulation Characteristic According to FCC § 2.1047(d), Part 22H, Part 24E, Part 27C there is no specific requirement for digital modulation, therefore modulation characteristic is not presented. Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 14 of 27 # 6. 99% Occupied Bandwidth & 26 dB Bandwidth #### 6.1. Test Standard and Limit | 4 | Applicable Standard: | Part 2.1049 | Anbore | Aug | upotek | Aupo | -pore | |---|----------------------|-------------|---------|------|--------|-------|-------| | | Limit: | N/A | Anbotek | Anbo | abotek | Anbor | by. | ### 6.2. Test Setup #### 6.3. Test Procedure - 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter. - 2. Set EUT in maximum power output. - Spectrum analyzer setting as follow: Center Frequency= Carrier frequency, RBW=1% to 5% of anticipated OBW, VBW= 3 * RBW, Detector=Peak, Trace maximum hold. - 4. Record the value of 99% Occupied bandwidth and -26dB bandwidth. #### 6.4. Test Data **Pass** Please refer to Appendix C of the Appendix Test Data. Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 15 of 27 # 7. Band Edge ### 7.1. Test Standard and Limit | | No. 1 | ACC ACC ACC ACC | |-----|----------------------|---| | ļ. | Applicable Standard: | Part 2.1051 | | | | Part 22.917 | | 51 | | Part 24.238 | | n l | | Part 27.53(h) | | | Limit: | Part 24.238 and Part 22.917 and Part 27.53(h)specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. | | 46 | | The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes | | 1 | | 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. | ### 7.2. Test Setup #### 7.3. Test Procedure - 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter. - 2. Set EUT in maximum power output. - 3. The band edges of low and high channels were measured. - Spectrum analyzer setting as follow: RBW=3KHz, VBW = 10KHz, Sweep time= Auto - 5. Record the test plot. #### 7.4. Test Data Pass Please refer to Appendix D of the Appendix Test Data. Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 16 of 27 # 8. Conducted Spurious Emission ### 8.1. Test Standard and Limit | | Prince and the second | | |-----|-----------------------|---| | 4 | Applicable Standard: | Part 2.1051 | | | | Part 22.917 | | S, | | Part 24.238 | | n' | | Part 27.53(h) | | | Limit: | Part 24.238 and Part 22.917 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. | | 16 | | The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes | | 1/2 | | 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. | #### 8.2. Test Setup #### 8.3. Test Procedure - 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter. - 2. Set EUT in maximum power output. - Spectrum analyzer setting as follow: Below 1GHz, RBW=100KHz, VBW = 300KHz, Detector=Peak, Sweep time= Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peak, Sweep time= Auto Scan frequency range up to 10th harmonic. - 4. Record the test plot. #### 8.4. Test Data **Pass** Please refer to Appendix E of the Appendix Test Data. Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 17 of 27 # 9. Radiated Spurious Emission ### 9.1. Test Standard and Limit | 4 | Applicable Standard: | Part 2.1053 | Anbore | And | nbotek | Aupo ok | -botek | |-----|----------------------|---------------|-------------|---------|-------------|---------|--------| | | | Part 22.917 | | | | | Direc | | O' | | Part 24.238 | | | | | Anbo | | n' | | Part 27.53(h) | | | | | - Pic | | ,,, | Limit: | -13dBm | anborer Ant | rek abi | otek Anbore | k 200 | tek | #### 9.2. Test Setup #### 9.3. Test Procedure - 1. Place the EUT in the center of the turntable. - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane. - Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels. - 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode. - 4. Receiver or Spectrum set as follow: Shenzhen Anbotek Compliance Laboratory Limited Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hotline 400–003–0500 www.anbotek.com.cn Code: AB-RF-05-b Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8 Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto - 5. Each emission under consideration shall be evaluated: - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height. - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position. - c) Return the turntable to the azimuth where the highest emission amplitude level was observed. - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude. - e) Record the measured emission amplitude level and frequency - 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude. - 7. Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement. - 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna. - 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor. - 10. For each emission that was detected and measured in the initial test - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude. - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6. - c) Record the output power level of the signal generator when equivalence is achieved in step b) - 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization. - 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation: Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd) Pe = equivalent emission power in dBm Ps = source (signal generator) power in dBm NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole. 13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from: gain (dBd) = gain (dBi) - 2.15 dB. Shenzhen Anbotek Compliance Laboratory Limited Code: AB-RF-05-b 400-003-0500 www.anbotek.com.cn Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 19 of 27 If necessary, the antenna gain can be calculated from calibrated antenna factor information 14. Provide the complete measurement results as a part of the test report. ### 9.4. Test Data Pass Note: Worst case at WCDMA Band II/ WCDMA Band V/ WCDMA Band IV | | | | WCDMA | Band II | | | | | |---------|-----------|--------------|------------------|----------------|-------------|----------|------------|--| | | Frequency | | Spurious | Emission | | Limit | | | | Channel | (MHz) | Polarization | Reading
(dBm) | Factor
(dB) | Level (dBm) | (dBm) | Result | | | Anborel | 3704.80 | Vertical | -48.72 | 13.26 | -35.46 | sk Vupo, | bu. | | | | 5557.20 | V And | -55.73 | 16.62 | -39.11 | <-13.00 | PASS | | | | 7409.60 | pole, Au | -58.09 | 17.84 | -40.25 | | Anbore | | | 9262 | 3704.80 | Horizontal | -50.41 | 13.26 | -37.15 | Purplek | Anborer | | | | 5557.20 | AnbAtek | -57.32 | 16.62 | -40.70 | <-13.00 | PASS | | | | 7409.60 | Hoorek | -59.44 | 17.84 | -41.60 | | k anbot | | | Aupolea | 3760.00 | Vertical | -47.46 | 13.27 | -34.19 | Anbe | atek an | | | | 5640.00 | stek V anb | -54.41 | 16.49 | -37.92 | <-13.00 | PASS | | | otek | 7520.00 | V | -57.09 | 17.96 | -39.13 | | Aupr of Sk | | | 9400 | 3760.00 | Horizontal | -48.87 | 13.27 | -35.60 | Anbotek | Aupo | | | | 5640.00 | Anbot H | -55.94 | 16.49 | -39.45 | <-13.00 | PASS | | | | 7520.00 | HA HA | -58.37 | 17.96 | -40.41 | | k Aupor | | | Anbo | 3815.20 | Vertical | -45.62 | 13.59 | -32.03 | dn. Yor | otek Ant | | | | 5722.80 | otek V Anbr | -52.64 | 16.69 | -35.95 | <-13.00 | PASS | | | otek An | 7630.40 | abotekV A | -55.21 | 17.95 | -37.26 | | abotek | | | 9538 | 3815.20 | Horizontal | -48.43 | 13.59 | -34.84 | Anbore. | An botek | | | | 5722.80 | Hotek | -55.43 | 16.69 | -38.74 | <-13.00 | PASS | | | | 7630.40 | H otek | -57.75 | 17.95 | -39.80 | | Y Ans | | #### Remark: - 1. The emission behaviour belongs to narrowband spurious emission. - 2. The emission levels of not record in the report are very lower than the limit and not show in test report Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 20 of 27 | | | | WCDMA | Band V | | | | | |---------------|-----------------|--------------|------------------|----------------|----------------|-----------|----------|--| | | Fraguenav | | Spurious | Emission | | Limit | Result | | | Channel | Frequency (MHz) | Polarization | Reading
(dBm) | Factor
(dB) | Level
(dBm) | (dBm) | | | | Anbore | 1652.80 | Vertical | -38.34 | 5.62 | -32.72 | K MO | rek Anbo | | | | 2479.20 | rek V noboli | -46.62 | 9.32 | -37.30 | <-13.00 | PASS | | | otek 4400 Amb | 3305.60 | ovek V | -52.57 | 12.69 | -39.88 | abotek Ar | | | | 4132 | 1652.80 | Horizontal | -40.06 | 5.62 | -34.44 | Anbotek | Anbo | | | | 2479.20 | Aupo Hek | -48.24 | 9.32 | -38.92 | <-13.00 | PASS | | | | 3305.60 | Aupa, | -54.09 | 12.69 | -41.40 | Anborek | | | | Vien | 1673.20 | Vertical | -38.98 | 7.69 | -31.29 | lek vupos | ek Aupo | | | | 2509.80 | ek V Aupon | -45.41 | 9.46 | -35.95 | <-13.00 | PASS | | | tek Anbi | 3346.40 | botek V Anb | -50.88 | 12.26 | -38.62 | Upo. K. | | | | 4183 | 1673.20 | Horizontal | -40.94 | 7.69 | -33.25 | Aupo. | Anborek | | | | 2509.80 | P. Hek | -47.26 | 9.46 | -37.80 | <-13.00 | PASS | | | | 3346.40 | Hotek | -52.61 | 12.26 | -40.35 | Anbore | | | | Anbotek | 1693.20 | Vertical | -37.86 | 8.26 | -29.60 | Ask Mupor | Die N | | | | 2539.80 | V | -44.01 | 9.65 | -34.36 | <-13.00 | PASS | | | | 3386.40 | V Ann | -49.54 | 12.41 | -37.13 | abotek | | | | 4233 | 1693.20 | Horizontal | -40.11 | 8.26 | -31.85 | Anborek | Anboren | | | | 2539.80 | Anbatel | -46.13 | 9.65 | -36.48 | <-13.00 | PASS | | | | 3386.40 | A Hotek | -51.52 | 12.41 | -39.11 | K Wun | | | #### Remark: - 1. The emission behaviour belongs to narrowband spurious emission. - 2. The emission levels of not record in the report are very lower than the limit and not show in test report. Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 21 of 27 | | | | WCDMA | Band IV | | | | | |---------|-----------------|--------------|------------------|----------------|----------------|-----------|---------|--| | | Fraguenay | | Spurious | Emission | | Limit | | | | Channel | Frequency (MHz) | Polarization | Reading
(dBm) | Factor
(dB) | Level
(dBm) | (dBm) | Result | | | Anbore | 1652.80 | Vertical | -40.89 | 8.69 | -32.20 | N MILE | ek anb | | | | 2479.20 | ek V nbote | -46.01 | 9.23 | -36.78 | <-13.00 | PASS | | | rek | 3305.60 | Nek V | -51.95 | 12.59 | -39.36 | aboten Ar | | | | 1312 | 1652.80 | Horizontal | -42.97 | 8.69 | -34.28 | Anbotek | Anbo | | | | 2479.20 | Anber Hek | -47.96 | 9.23 | -38.73 | <-13.00 | PASS | | | | 3305.60 | Aupo, | -53.79 | 12.59 | -41.20 | k Anborok | | | | Anth | 1673.20 | Vertical | -39.25 | 8.78 | -30.47 | dek Aupol | Sk Vupe | | | | 2509.80 | Sk Aupor | -44.81 | 9.65 | -35.16 | <-13.00 | PASS | | | ak Anbo | 3346.40 | botek V Anti | -50.44 | 12.61 | -37.83 | upo. Fek | | | | 1413 | 1673.20 | Horizontal | -41.63 | 8.78 | -32.85 | Yupo, | Anborek | | | | 2509.80 | Hek. | -47.03 | 9.65 | -37.38 | <-13.00 | PASS | | | | 3346.40 | Hotek | -52.54 | 12.61 | -39.93 | Anbore | | | | Anborek | 1693.20 | Vertical | -37.13 | 8.69 | -28.44 | yek Mupor | V. Dur | | | | 2539.80 | V | -42.77 | 9.52 | -33.25 | <-13.00 | PASS | | | | 3386.40 | V Ant | -48.72 | 12.69 | -36.03 | spotek | | | | 1513 | 1693.20 | Horizontal | -39.85 | 8.69 | -31.16 | Anborek | Anborek | | | | 2539.80 | Anbatek | -45.31 | 9.52 | -35.79 | <-13.00 | PASS | | | | 3386.40 | Motek | -51.13 | 12.69 | -38.44 | Aur | | | #### Remark: - 1. The emission behaviour belongs to narrowband spurious emission. - 2. The emission levels of not record in the report are very lower than the limit and not show in test report. Report No.: 18220WC20274306 Page 22 of # 10. ERP and EIRP #### 10.1. Test Standard and Limit | | Part of the same o | VI VIV. VIV. | |----|--|---------------------------------| | Y. | Applicable Standard: | Part 2.1046 | | | | Part 22.913(a) | | 0, | | Part 24.232(c) | | | | Part 27.50 | | | Limit: | WCDMA Band II: 2W (33dBm) EIRP | | | | WCDMA Band V: 7W (38.45dBm) ERP | | | | WCDMA Band IV: 1W (30dBm) EIRP | #### 10.2. Test Setup #### 10.3. Test Procedure - 1. Place the EUT in the center of the turntable. - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane. - 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels. #### **Shenzhen Anbotek Compliance Laboratory Limited** Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8 - The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode. - 4. Receiver or Spectrum set as follow: Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto - Each emission under consideration shall be evaluated: - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height. - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position. - c) Return the turntable to the azimuth where the highest emission amplitude level was observed. - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude. - e) Record the measured emission amplitude level and frequency - 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude. - 7. Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement. - 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna. - 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor. - For each emission that was detected and measured in the initial test - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude. - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6. - c) Record the output power level of the signal generator when equivalence is achieved in step b). - 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization. - 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation: Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd) where Pe = equivalent emission power in dBm Ps = source (signal generator) power in dBm **Shenzhen Anbotek Compliance Laboratory Limited** Code: AB-RF-05-b 400-003-0500 www.anbotek.com.cn ### Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 24 of 27 NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole. - 13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from: - gain (dBd) = gain (dBi) 2.15 dB. - If necessary, the antenna gain can be calculated from calibrated antenna factor information - 14. Provide the complete measurement results as a part of the test report. #### 10.4. Test Data #### **Pass** | | | ERP&EIRF |) | | | | |--------------------------|---------|----------|---------------------|-------------|-------------|--| | Mada | Channal | (dE | Bm) | Limit (dBm) | Daniell | | | Mode | Channel | Vertical | Vertical Horizontal | | Result | | | An Monday Day July Anbol | 9262 | 22.09 | 20.57 | pr. spotek | Anbote. Ani | | | WCDMA Band II
(EIRP) | 9400 | 22.78 | 19.30 | <33.00 | PASS | | | hore (Chici) | 9538 | 21.79 | 20.35 | ok Potek | Anborek | | | MODAAA Damel M | 4132 | 21.08 | 19.85 | e Aug | sk Anbotek | | | WCDMA Band V
(ERP) | 4183 | 21.70 | 18.65 | <38.45 | PASS | | | Anbo(LIVI) Anbo | 4233 | 20.58 | 19.60 | Anboter An | otek nob | | | WODAA Daad IV | 1312 | 20.84 | 20.36 | Anboren | Aupa | | | WCDMA Band IV
(EIRP) | 1413 | 21.55 | 18.74 | <30.00 | PASS | | | wotek Anborek | 1513 | 20.55 | 19.95 | ek Anbotek | Anbo. | | www.anbotek.com.cn Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 25 of 27 # 11. Frequency stability VS Voltage measurement #### 11.1. Test Standard and Limit | Applicable Standard: | Part 2.1055(| (d)(1)(2) | Die. M | rek | anbotek | Aupo | hote | |----------------------|--------------|-----------|--------|--------|-----------|------|------| | | Part 22.355 | | | | | | Arra | | | Part 24.235 | | | | | | Anb | | | Part 27.54 | | | | | | | | Limit: | 2.5ppm | Anbotek | Anbo | ek abo | Hek Anbor | bre. | ick | ### 11.2. Test Setup #### 11.3. Test Procedure - 1. The equipment under test was connected to an external DC power supply and input rated voltage. - 2. The EUT output port was connected to communication tester. - 3. The EUT was placed inside the temperature chamber at 25°C. - The power supply voltage to the EUT was varied ±15% of the nominal value measured at the input to the EUT. - 5. Record the maximum frequency change. #### 11.4. Test Data Pass Please refer to Appendix F of the Appendix Test Data. Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 26 of 27 # 12. Frequency stability VS Temperature measurement #### 12.1. Test Standard and Limit | Applicable Standard: | Part 2.1055(| a)(1)(b) | Ve. bil | rek | nbotek | Aupo | hotel | |----------------------|--------------|----------|---------|--------|------------|------|-------| | | Part 22.355 | | | | | | Ville | | | Part 24.235 | | | | | | Anb | | | Part 27.54 | | | | | | | | Limit: | 2.5ppm | Anbotek | Anbo | ek abo | yek Aupore | bu. | iek | #### 12.2. Test Setup #### 12.3. Test Procedure - 1. The equipment under test was connected to an external DC power supply and input rated voltage. - 2. The EUT output port was connected to communication tester. - 3. The EUT was placed inside the temperature chamber. - 4. Turn EUT off and set the chamber temperature to –30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. - 5. Repeat step 4 measure with 10°C increased per stage until the highest temperature of +50°C reached. #### 12.4. Test Data **Pass** Please refer to Appendix G of the Appendix Test Data Report No.: 18220WC20274306 FCC ID: 2AZ9RTAB8V Page 27 of 27 ### **APPENDIX I -- TEST SETUP PHOTOGRAPH** Please refer to separated files Appendix I -- Test Setup Photograph_PCB ### APPENDIX II -- EXTERNAL PHOTOGRAPH Please refer to separated files Appendix II -- External Photograph # **APPENDIX III -- INTERNAL PHOTOGRAPH** Please refer to separated files Appendix III -- Internal Photograph