FCC TEST REPORT # **FOR** # SHENZHEN DNS INDUSTRIES CO., LTD Type C HUB with Wireless Charger Test Model: CK-102A Additional Model No.: Please Refer to Page 6 Prepared for : SHENZHEN DNS INDUSTRIES CO., LTD Address : 23/F Building A, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian, Shenzhen, China Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd. Address : 101, 601, Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com Mail : webmaster@LCS-cert.com Date of receipt of test sample : August 07, 2019 Number of tested samples : 1 Serial number : Prototype Date of Test : August 08, 2019 ~ August 15, 2019 Date of Report : August 16, 2019 FCC TEST REPORT FCC CFR 47 PART 15C Report Reference No.: LCS190805070AEA Date of Issue: August 16, 2019 Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd. Address: 101, 601, Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China Testing Location/ Procedure: Full application of Harmonised standards ■ Partial application of Harmonised standards Other standard testing method \square Applicant's Name: SHENZHEN DNS INDUSTRIES CO., LTD Address : 23/F Building A, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian, Shenzhen, China **Test Specification** Standard.....: FCC CFR 47 PART 15C Test Report Form No.: LCSEMC-1.0 TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd. Master TRF : Dated 2011-03 # **Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.** This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Test Item Description.....: Type C HUB with Wireless Charger Trade Mark: DNS, QDOS Test Model.....: CK-102A Ratings: Input :PD 60W USB 3.0 Output: DC 5V, 0.9A, USB 2.0 Output :DC 5V, 0.5A (each) USB 3.0+2*USB 2.0 total Output :7W Wireless charger Output :5W, 7.5W, 10W Result: Positive Compiled by: Supervised by: Approved by: Juydan Thus Aking Jin Gnins Zimog Jayden Zhuo / Administrators Aking Jin / Technique principal Gavin Liang/ Manager # **FCC -- TEST REPORT** Test Report No.: LCS190805070AEA August 16, 2019 Date of issue Test Model..... : CK-102A EUT..... : Type C HUB with Wireless Charger : SHENZHEN DNS INDUSTRIES CO., LTD Applicant..... Address..... : 23/F Building A, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian, Shenzhen, China Telephone..... Fax..... : / Manufacturer..... : SHENZHEN DNS INDUSTRIES CO., LTD : 23/F Building A, Shenzhen International Innovation Center, Address..... No.1006 Shennan Road, Futian, Shenzhen, China Telephone..... : / Fax..... : / : HUIZHOU D&S CABLE CO., LTD. Factory..... Address..... : Longjin Dongjiang Industry ZoneShuikou, Huicheng, Huizhou, Guangdong, China Telephone..... : / : / Fax..... | Test Result | Positive | |-------------|----------| |-------------|----------| The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. # **Revision History** | Revision | Issue Date | Revisions | Revised By | |----------|-----------------|---------------|-------------| | 000 | August 16, 2019 | Initial Issue | Gavin Liang | | | | | | | | | | | # **TABLE OF CONTENTS** | 1. GENERAL INFORMATION | 6 | |--|----| | 1.1 Description of Device (EUT) | 6 | | 1.2 Support equipment List | | | 1.3 External I/O Cable | 6 | | 1.4 Description of Test Facility | 7 | | 1.5 Statement of the Measurement Uncertainty | 7 | | 1.6 Measurement Uncertainty | | | 1.7 Description of Test Modes | 8 | | 2. TEST METHODOLOGY | 9 | | 2.1 EUT Configuration | 9 | | 2.2 EUT Exercise | | | 2.3 General Test Procedures | 9 | | 2.3.1 Conducted Emissions | 9 | | 2.3.2 Radiated Emissions | 9 | | 3. SYSTEM TEST CONFIGURATION | 10 | | 3.1 Justification | 10 | | 3.2 EUT Exercise Software | 10 | | 3.3 Special Accessories | | | 3.4 Block Diagram/Schematics | | | 3.5 Equipment Modifications | | | 3.6 Test Setup | | | 4. SUMMARY OF TEST EQUIPMENT | 11 | | 5. SUMMARY OF TEST RESULT | 12 | | 6. POWER LINE CONDUCTED MEASUREMENT | 13 | | 7. RADIATED EMISSION MEASUREMENT | | | 7.1. Block Diagram of Test Setup | 15 | | 7.2. Radiated Emission Limit | 16 | | 7.3. EUT Configuration on Measurement | | | 7.4. Operating Condition of EUT | | | 7.5. Measuring Setting | | | 7.6. Test Procedure | | | 7.7. Test Results | | | 8. PHOTOGRAPHS OF TEST SETUP | 21 | | 9. EXTERNAL PHOTOGRAPHS OF THE EUT | 21 | | 10 INTERNAL PHOTOGRAPHS OF THE FUT | 21 | # 1. GENERAL INFORMATION # 1.1 Description of Device (EUT) EUT : Type C HUB with Wireless Charger Test Model : CK-102A Additional Model No. : QD-5139C-HUB, QD-5139C-HUBSG All the models are identical with each other except the model name is different, therefore, full test was applied on CK-102A, Model Declaration : other models are deemed to fulfill the requirement without further test. Hardware Version : / Software Version : / Operating Frequency : 110KHz~205.0KHz Modulation Type : CW (Continuous Wave) Antenna Type : Coil Antenna Power supply : Input :PD 60W USB 3.0 Output: DC 5V, 0.9A, USB 2.0 Output :DC 5V, 0.5A (each) USB 3.0+2*USB 2.0 total Output :7W Wireless charger Output :5W, 7.5W, 10W # 1.2 Support equipment List | Manufacturer | Description | Model | Serial Number | Certificate | |--------------|--------------|----------|---------------|-------------| | Apple Inc. | Mobile Phone | iphone X | | FCC | ### 1.3 External I/O Cable | I/O Port Description | Quantity | Cable | |----------------------|----------|-------| | Micro USB Port | 2 | N/A | ### 1.4 Description of Test Facility FCC Registration Number is 254912. Industry Canada Registration Number is 9642A-1. EMSD Registration Number is ARCB0108. UL Registration Number is 100571-492. TUV SUD Registration Number is SCN1081. TUV RH Registration Number is UA 50296516-001. NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier: CN0071 The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz. ### 1.5 Statement of the Measurement Uncertainty The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. ### 1.6 Measurement Uncertainty | Test Item | | Frequency Range | Uncertainty | Note | |------------------------|---|-----------------|-------------|------| | | | 9KHz~30MHz | 3.10dB | (1) | | | | 30MHz~200MHz | 2.96dB | (1) | | Radiation Uncertainty | : | 200MHz~1000MHz | 3.10dB | (1) | | | | 1GHz~26.5GHz | 3.80dB | (1) | | | | 26.5GHz~40GHz | 3.90dB | (1) | | Conduction Uncertainty | : | 150kHz~30MHz | 1.63dB | (1) | | Power disturbance | : | 30MHz~300MHz | 1.60dB | (1) | (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. # 1.7 Description of Test Modes Equipment under test was operated during the measurement under the following conditions: ☐ Charging and communication mode Modulation Type: CW (Continuous Wave) | Test Mod | Test Modes: | | | | | | |-----------|---|------------|--|--|--|--| | Mode 1 | AC/DC Adapter + EUT + Mobile Phone (Battery Status: <1%) | Record | | | | | | Mode 2 | AC/DC Adapter + EUT + Mobile Phone (Battery Status: <50%) | Pre-tested | | | | | | Mode 3 | AC/DC Adapter + EUT + Mobile Phone (Battery Status: 100%) | Pre-tested | | | | | | Note: All | Note: All test modes were pre-tested, but we only recorded the worst case in this report. | | | | | | For AC conducted emission, pre-test at both AC 120V/60Hz and AC 240V/50Hz, recorded worst case; ### 2. TEST METHODOLOGY The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR PART 15C 15.207 and 15.209. ### 2.1 EUT Configuration The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application. #### 2.2 EUT Exercise The EUT was operated in the charging and compunction mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207 and 15.209 under the FCC Rules Part 15 Subpart C. #### 2.3 General Test Procedures ### 2.3.1 Conducted Emissions The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes. ### 2.3.2 Radiated Emissions The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 # 3. SYSTEM TEST CONFIGURATION # 3.1 Justification The system was configured for testing in a normal condition. ### 3.2 EUT Exercise Software N/A. # 3.3 Special Accessories | No. | Equipment | Manufacturer | Model No. | Serial No. | shielded/
unshielded | Notes | |-----|------------|-----------------|-----------|------------|-------------------------|-----------------| | 1 | Apple Inc. | Mobile
Phone | iphone X | | Apple Inc. | Mobile
Phone | # 3.4 Block Diagram/Schematics Please refer to the related document. # 3.5 Equipment Modifications Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT. # 3.6 Test Setup Please refer to the test setup photo. # 4. SUMMARY OF TEST EQUIPMENT | Item | Equipment | Manufacturer | Model No. | Serial No. | Cal Date | Due Date | | |-------|--|----------------|--------------|-----------------|------------|------------|--| | 1 | MXA Signal Analyzer | Agilent | N9020A | MY49100040 | 2019-06-11 | 2020-06-10 | | | 2 | SPECTRUM ANALYZER | R&S | FSP40 | 100503 | 2018-11-15 | 2019-11-14 | | | 3 | 3m Semi Anechoic Chamber | SIDT FRANKONIA | SAC-3M | 03CH03-HY | 2019-06-12 | 2020-06-11 | | | 4 | Positioning Controller | MF | MF-7082 | / | 2019-06-12 | 2020-06-11 | | | 5 | EMI Test Software | AUDIX | E3 | / | N/A | N/A | | | 6 | EMI Test Receiver | R&S | ESR 7 | 101181 | 2019-06-12 | 2020-06-11 | | | 7 | Active Loop Antenna | SCHWARZBECK | FMZB 1519B | 00005 | 2019-07-25 | 2020-07-24 | | | 8 | By-log Antenna | SCHWARZBECK | VULB9163 | 9163-470 | 2019-07-25 | 2020-07-24 | | | 9 | Horn Antenna | SCHWARZBECK | BBHA 9120D | 9120D-1925 | 2019-07-01 | 2020-06-30 | | | 10 | RF Cable-R03m | Jye Bao | RG142 | CB021 | 2019-06-12 | 2020-06-11 | | | 11 | RF Cable-HIGH | SUHNER | SUCOFLEX 106 | 03CH03-HY | 2019-06-12 | 2020-06-11 | | | 12 | EMI Test Receiver | R&S | ESPI | 101840 | 2019-06-11 | 2020-06-10 | | | 13 | Artificial Mains | R&S | ENV216 | 101288 | 2019-06-12 | 2020-06-11 | | | 14 | 10dB Attenuator | SCHWARZBECK | MTS-IMP-136 | 261115-001-0032 | 2019-06-11 | 2020-06-10 | | | Note: | Note: All equipment is calibrated through CHINA CEPREI LABORATORY and GUANGZHOU LISAI CALIBRATION AND TEST CO., LTD. | | | | | | | # 5. SUMMARY OF TEST RESULT | Test Item | FCC Rule
No. | Temperature conditions | Power source conditions | С | NC | NA | NP | Remark | |-----------------------|-----------------|------------------------|-------------------------|-------------|----|----|----|--------| | Radiated
Emission | §15.209 | Nominal | Nominal | \boxtimes | | | | -/- | | AC conducted emission | §15.207 | Nominal | Nominal | \boxtimes | | | | -/- | Remark: The measurement uncertainty is not included in the test result. # 6. POWER LINE CONDUCTED MEASUREMENT ### 6.1. Block Diagram of Test Setup ### 6.2. Standard Applicable According to §15.207: For all the consumer devices which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows: | Frequency Range | Limits (dBµV) | | | | |-----------------|---------------|----------|--|--| | (MHz) | Quasi-peak | Average | | | | 0.15 to 0.50 | 66 to 56 | 56 to 46 | | | | 0.50 to 5 | 56 | 46 | | | | 5 to 30 | 60 | 50 | | | ^{*} Decreasing linearly with the logarithm of the frequency #### 6.3 Test Results #### PASS. The test data please refer to following page. | Temperature | 25.1 ℃ | Humidity | 53.2% | |---------------|---------------|----------|-------| | Test Engineer | Wang Chuang | | | # AC Conducted Emission of charge from power adapter mode @ AC 240V/50Hz ### Line | Env. | Ins: | 25.1*/53.2 | |-------|------|------------| | Do1 • | | TIME | | | rreq | Reading | LISHFAC | Capros | measured | TIMIT | Over | Velligtx | |----|------|---------|---------|--------|----------|-------|--------|----------| | | MHz | dBuV | dB | dB | dBuV | dBuV | dB | | | | | | | | | | | | | 1 | 0.19 | 41.18 | 9.62 | 0.02 | 60.82 | 64.20 | -3.38 | QP | | 2 | 0.19 | 18.74 | 9.62 | 0.02 | 38.38 | 54.19 | -15.81 | Average | | 3 | 0.38 | 34.52 | 9.62 | 0.04 | 54.18 | 58.34 | -4.16 | QP | | 4 | 0.38 | 15.81 | 9.62 | 0.04 | 35.47 | 48.34 | -12.87 | Average | | 5 | 0.48 | 33.37 | 9.62 | 0.04 | 53.03 | 56.36 | -3.33 | QP | | 6 | 0.48 | 17.50 | 9.62 | 0.04 | 37.16 | 46.36 | -9.20 | Average | | 7 | 0.83 | 30.70 | 9.64 | 0.04 | 50.38 | 56.00 | -5.62 | QP | | 8 | 0.83 | 17.09 | 9.64 | 0.04 | 36.77 | 46.00 | -9.23 | Average | | 9 | 1.59 | 31.53 | 9.64 | 0.05 | 51.22 | 56.00 | -4.78 | QP | | 10 | 1.59 | 13.42 | 9.64 | 0.05 | 33.11 | 46.00 | -12.89 | Average | | 11 | 2.75 | 28.91 | 9.64 | 0.05 | 48.60 | 56.00 | -7.40 | QP | | 12 | 2.75 | 9.81 | 9.64 | 0.05 | 29.50 | 46.00 | -16.50 | Average | ### Neutral | | Freq | Reading | LisnFac | CabLos | Measured | Limit | Over | Remark | |----|------|---------|---------|--------|----------|-------|--------|---------| | | MHz | dBuV | dB | dB | dBuV | dBuV | dB | | | 1 | 0.19 | 40.64 | 9.62 | 0.02 | 60.28 | 64.20 | -3.92 | QP | | 2 | 0.19 | 22.55 | 9.62 | 0.02 | 42.19 | 54.19 | -12.00 | Average | | 3 | 0.58 | 33.12 | 9.62 | 0.04 | 52.78 | 56.00 | -3.22 | QP | | 4 | 0.58 | 7.87 | 9.62 | 0.04 | 27.53 | 46.00 | -18.47 | Average | | 5 | 0.83 | 32.16 | 9.63 | 0.04 | 51.83 | 56.00 | -4.17 | QP | | 6 | 0.83 | 10.61 | 9.63 | 0.04 | 30.28 | 46.00 | -15.72 | Average | | 7 | 1.22 | 33.02 | 9.63 | 0.05 | 52.70 | 56.00 | -3.30 | QP | | 8 | 1.22 | 11.56 | 9.63 | 0.05 | 31.24 | 46.00 | -14.76 | Average | | 9 | 1.60 | 30.69 | 9.63 | 0.05 | 50.37 | 56.00 | -5.63 | QP | | 10 | 1.60 | 8.17 | 9.63 | 0.05 | 27.85 | 46.00 | -18.15 | Average | | 11 | 1.74 | 29.78 | 9.63 | 0.05 | 49.46 | 56.00 | -6.54 | QP | | 12 | 1.74 | 7.60 | 9.63 | 0.05 | 27.28 | 46.00 | -18.72 | Average | Remarks: 1. Measured = Reading + Lisn Factor +Cable Loss. 2. The emission levels that are 20dB below the official limit are not reported. Remarks: 1. Measured = Reading + Lisn Factor +Cable Loss. 2. The emission levels that are 20dB below the official limit are not reported. ^{***}Note: Pre-scan all modes and recorded the worst case results in this report. # 7. RADIATED EMISSION MEASUREMENT # 7.1. Block Diagram of Test Setup Below 30MHz Below 1GHz Above 1GHz ### 7.2. Radiated Emission Limit 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below: | MHz | MHz | MHz | GHz | |-------------------|---------------------|---------------|-------------| | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | \1\ 0.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293. | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (\2\) | | 13.36-13.41 | | _ | | \1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. #### \2\ Above 38.6 | Frequencies
(MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) | |----------------------|-----------------------------------|-------------------------------| | 0.009~0.490 | 2400/F(KHz) | 300 | | 0.490~1.705 | 24000/F(KHz) | 30 | | 1.705~30.0 | 30 | 30 | | 30~88 | 100 | 3 | | 88~216 | 150 | 3 | | 216~960 | 200 | 3 | | Above 960 | 500 | 3 | # 7.3. EUT Configuration on Measurement The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. # 7.4. Operating Condition of EUT - (1) Setup the EUT as shown in Section 4.1. - (2) Let the EUT work in worst test mode (Mode 1) and measure it. ### 7.5. Measuring Setting The following table is the setting of spectrum analyzer and receiver. | Receiver Parameter | Setting | |------------------------|---------------------------------------| | Attenuation | Auto | | Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP/Average | | Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP/Average | | Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP | ### 7.6. Test Procedure ### 1) Sequence of testing 9 kHz to 30 MHz #### Setup: - --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer. - --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used. - --- If the EUT is a floor standing device, it is placed on the ground. - --- Auxiliary equipment and cables were positioned to simulate normal operation conditions. - --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - --- The measurement distance is 3 meter. - --- The EUT was set into operation. #### **Premeasurement:** - --- The turntable rotates from 0° to 315° using 45° steps. - --- The antenna height is 0.8 meter. - --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions #### Final measurement: - --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°). - --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with. - --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored. ### 2) Sequence of testing 30 MHz to 1 GHz ### Setup: - --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer. - --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane. - --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both. - --- Auxiliary equipment and cables were positioned to simulate normal operation conditions - --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - --- The measurement distance is 3 meter. - --- The EUT was set into operation. #### Premeasurement: - --- The turntable rotates from 0° to 315° using 45° steps. - --- The antenna is polarized vertical and horizontal. - --- The antenna height changes from 1 to 3 meter. - --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions. #### Final measurement: - --- The final measurement will be performed with minimum the six highest peaks. - --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. - --- The final measurement will be done with QP detector with an EMI receiver. - --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored. ### 7.7. Test Results #### PASS. Only report the worst test data (Mode 1) in test report; The test data please refer to following page: | Temperature | 23.8℃ | Humidity | 53.7% | |---------------|-------------|----------|-------| | Test Engineer | Wang Chuang | | | ### 0.009~30MHz Env./Ins: 23.8℃/53.7% pol: | | Freq | Reading | CabLos | Antfac | Measure | d Limit | Over | Remark | |---|------|---------|--------|--------|---------|---------|--------|--------| | | MHz | dBuV | dВ | dB/m | dBuV/m | dBuV/m | dВ | | | 1 | 0.01 | 47.55 | 0.30 | 0.00 | 47.85 | 124.51 | -76.66 | QP | | 2 | 0.02 | 47.10 | 0.30 | 0.00 | 47.40 | 121.36 | -73.96 | QP | | 3 | 0.03 | 42.32 | 0.30 | 0.00 | 42.62 | 118.21 | -75.59 | QP | | 4 | 0.04 | 40.20 | 0.30 | 0.00 | 40.50 | 116.11 | -75.61 | QP | | 5 | 0.08 | 40.41 | 0.30 | 0.00 | 40.71 | 109.74 | -69.03 | QP | | 6 | 0.13 | 42.29 | 0.30 | 0.00 | 42.59 | 105.68 | -63.09 | QP | - Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that are 20db below the official limit are not reported #### 30MHz~1000MHz #### Horizontal Env./Ins: pol: 24.5°C/54.7% HORIZONTAL | | Freq | Reading | CabLos | Antfac | Measured | Limit | Over | Remark | |---|--------|---------|--------|--------|----------|--------|--------|--------| | | MHz | dBuV | dВ | dB/m | dBuV/m | dBuV/m | dВ | | | 1 | 60.07 | 14.14 | 0.49 | 12.66 | 27.29 | 40.00 | -12.71 | QP | | 2 | 135.03 | 24.92 | 0.74 | 8.56 | 34.22 | 43.50 | -9.28 | QP | | 3 | 195.82 | 27.17 | 0.96 | 10.57 | 38.70 | 43.50 | -4.80 | QP | | 4 | 209.31 | 27.16 | 0.86 | 10.86 | 38.88 | 43.50 | -4.62 | QP | | 5 | 305.68 | 22.80 | 1.05 | 13.14 | 36.99 | 46.00 | -9.01 | QP | | 6 | 890.73 | 15.55 | 1.86 | 20.99 | 38.40 | 46.00 | -7.60 | QP | | | | | | | | | | | Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that are 20db below the official limit are not reported #### Vertical Env./Ins: pol: 24.5℃/54.7% VERTICAL | | rred | Reading | Capros | Anciac | Measured | TIMIC | Over | Remark | |---|--------|---------|--------|--------|----------|--------|--------|--------| | | MHz | dBuV | dВ | dB/m | dBuV/m | dBuV/m | dВ | | | 1 | 53.32 | 13.70 | 0.46 | 13.10 | 27.26 | 40.00 | -12.74 | QP | | 2 | 119.86 | 22.29 | 0.64 | 10.51 | 33.44 | 43.50 | -10.06 | QP | | 3 | 148.44 | 26.13 | 0.86 | 8.25 | 35.24 | 43.50 | -8.26 | QP | | 4 | 189.07 | 22.29 | 0.86 | 10.48 | 33.63 | 43.50 | -9.87 | QP | | 5 | 349.25 | 17.45 | 1.13 | 14.26 | 32.84 | 46.00 | -13.16 | QP | | 6 | 480.53 | 16.38 | 1.31 | 16.08 | 33.77 | 46.00 | -12.23 | QP | Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that are 20db below the official limit are not reported ### Note: - 1). Pre-scan all modes and recorded the worst case results in this report. - 2). Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3). Corrected Reading: Antenna Factor + Cable Loss + Read Level = Level. # 8. PHOTOGRAPHS OF TEST SETUP Please refer to separated files for Test Setup Photos of the EUT. # 9. EXTERNAL PHOTOGRAPHS OF THE EUT Please refer to separated files for External Photos of the EUT. # 10. INTERNAL PHOTOGRAPHS OF THE EUT Please refer to separated files for Internal Photos of the EUT. -----THE END OF REPORT-----