

# JianYan Testing Group Shenzhen Co., Ltd.

ACCREDITED certificate 4346 01

Report No.: JYTSZ-R12-2201528

# FCC RF Test Report

Applicant: PAX Technology Limited

Address of Applicant: Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour, Hong

Kong

**Equipment Under Test (EUT)** 

Product Name: POS Terminal

Model No.: IM20

Trade Mark: PAX

FCC ID: V5PIM20BWL

**Applicable Standards:** FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 08 Aug., 2022

**Date of Test:** 09 Aug., to 17 Sep., 2022

Date of Report Issued: 19 Sep., 2022

Test Result: PASS

Tested by: \_\_\_\_\_\_ Date: \_\_\_\_\_ 19 Sep., 2022

Reviewed by: Date: 19 Sep., 2022

Approved by: \_\_\_\_\_\_ Date: \_\_\_\_\_ 19 Sep., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





# 1 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 19 Sep., 2022 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |





# 2 Contents

|   |         |                                                         | Page |
|---|---------|---------------------------------------------------------|------|
| С | over Pa | ge                                                      | 1    |
| 1 | Vers    | sion                                                    | 2    |
| 2 | Con     | tents                                                   | 3    |
| 3 | Gen     | eral Information                                        | 4    |
|   | 3.1     | Client Information                                      | 4    |
|   | 3.2     | General Description of E.U.T.                           | 4    |
|   | 3.3     | Test Mode and Test Environment                          |      |
|   | 3.4     | Description of Test Auxiliary Equipment                 | 5    |
|   | 3.5     | Measurement Uncertainty                                 |      |
|   | 3.6     | Additions to, Deviations, or Exclusions from the Method | 5    |
|   | 3.7     | Laboratory Facility                                     | 5    |
|   | 3.8     | Laboratory Location                                     | 5    |
|   | 3.9     | Test Instruments List                                   | 6    |
| 4 | Mea     | surement Setup and Procedure                            | 7    |
|   | 4.1     | Test Channel                                            | 7    |
|   | 4.2     | Test Setup                                              | 7    |
|   | 4.3     | Test Procedure                                          | 9    |
| 5 | Test    | Results                                                 | 10   |
|   | 5.1     | Summary                                                 | 10   |
|   | 5.1.1   | Clause and Data Summary                                 | 10   |
|   | 5.1.2   | Past Limit                                              | 11   |
|   | 5.2     | Antenna requirement                                     | 12   |
|   | 5.3     | AC Power Line Conducted Emission                        | 13   |
|   | 5.4     | Emissions in Restricted Frequency Bands                 | 15   |
|   | 5.5     | Emissions in Non-restricted Frequency Bands             | 19   |
| Α | ppendix | : A – BLE                                               | 22   |





# 3 General Information

# 3.1 Client Information

| Applicant:    | PAX Technology Limited                                                                                      |
|---------------|-------------------------------------------------------------------------------------------------------------|
| Address:      | Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour, Hong Kong                                                |
| Manufacturer: | PAX Computer Technology (Shenzhen) Co., Ltd.                                                                |
| Address:      | 401 and 402, Building 3, Shenzhen Software Park, Nanshan District, Shenzhen City, Guangdong Province, P.R.C |

3.2 General Description of E.U.T.

| oiz Contoral Docorip   |                                                                               |
|------------------------|-------------------------------------------------------------------------------|
| Product Name:          | POS Terminal                                                                  |
| Model No.:             | IM20                                                                          |
| Operation Frequency:   | 2402 MHz - 2480 MHz                                                           |
| Channel Numbers:       | 40                                                                            |
| Channel Separation:    | 2MHz                                                                          |
| Modulation Technology: | GFSK                                                                          |
| Data Speed:            | 1 Mbps (LE 1M PHY)                                                            |
| Antenna Type:          | Ceramic Antenna                                                               |
| Antenna Gain:          | 2 dBi (declare by applicant)                                                  |
| Antenna transmit mode: | SISO (1TX, 1RX)                                                               |
| Power Supply:          | 12-48Vdc by MDB or 5Vdc by USB                                                |
| Test Sample Condition: | The test samples were provided in good working order with no visible defects. |



Report No.: JYTSZ-R12-2201528

## 3.3 Test Mode and Test Environment

| Test Mode:                     |                                                                                       |  |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|
| Transmitting mode              | Keep the EUT in continuous transmitting with modulation                               |  |  |  |  |
| Remark: For AC power line con- | ducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed, |  |  |  |  |
| found 1 Mbps (LE 1M PHY) was   | worse case mode. The report only reflects the test data of worst mode.                |  |  |  |  |
| Operating Environment:         |                                                                                       |  |  |  |  |
| Temperature:                   | Temperature: $15^{\circ}$ C ~ $35^{\circ}$ C                                          |  |  |  |  |
| Humidity: 20 % ~ 75 % RH       |                                                                                       |  |  |  |  |
| Atmospheric Pressure:          | 1008 mbar                                                                             |  |  |  |  |

# 3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

# 3.5 Measurement Uncertainty

| Parameter                                    | Expanded Uncertainty (Confidence of 95%(U = 2Uc(y))) |
|----------------------------------------------|------------------------------------------------------|
| Conducted Emission for LISN (9kHz ~ 150kHz)  | ±3.11 dB                                             |
| Conducted Emission for LISN (150kHz ~ 30MHz) | ±2.62 dB                                             |
| Radiated Emission (30MHz ~ 1GHz) (3m SAC)    | ±4.45 dB                                             |
| Radiated Emission (1GHz ~ 18GHz) (3m SAC)    | ±5.34 dB                                             |
| Radiated Emission (18GHz ~ 40GHz) (3m SAC)   | ±5.34 dB                                             |

**Note:** All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

# 3.6 Additions to, Deviations, or Exclusions from the Method

No

# 3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

## A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

# 3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366





# 3.9 Test Instruments List

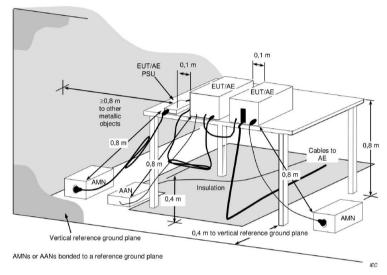
| Radiated Emission(3m SAC):       |                 |                 |            |                         |                             |  |
|----------------------------------|-----------------|-----------------|------------|-------------------------|-----------------------------|--|
| Test Equipment                   | Manufacturer    | Model No.       | Manage No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| 3m SAC                           | ETS             | 9m*6m*6m        | WXJ001-1   | 04-14-2021              | 04-13-2024                  |  |
| Loop Antenna                     | Schwarzbeck     | FMZB 1519 B     | WXJ002-4   | 03-07-2022              | 03-06-2023                  |  |
| BiConiLog Antenna                | Schwarzbeck     | VULB9163        | WXJ002     | 03-08-2022              | 03-07-2023                  |  |
| Horn Antenna                     | Schwarzbeck     | BBHA9120D       | WXJ002-2   | 03-08-2022              | 03-07-2023                  |  |
| Horn Antenna                     | Schwarzbeck     | BBHA9170        | WXJ002-5   | 04-07-2022              | 04-06-2023                  |  |
| Pre-amplifier<br>(30MHz ~ 1GHz)  | Schwarzbeck     | BBV9743B        | WXJ001-2   | 01-20-2022              | 01-19-2023                  |  |
| Pre-amplifier<br>(1GHz ~ 18GHz)  | SKET            | LNPA_0118G-50   | WXJ001-3   | 01-20-2022              | 01-19-2023                  |  |
| Pre-amplifier<br>(18GHz ~ 40GHz) | RF System       | TRLA-180400G45B | WXJ002-7   | 03-30-2022              | 03-29-2023                  |  |
| EMI Test Receiver                | Rohde & Schwarz | ESRP7           | WXJ003-1   | 03-05-2022              | 03-04-2023                  |  |
| Spectrum Analyzer                | Rohde & Schwarz | FSP 30          | WXJ004     | 01-20-2022              | 01-19-2023                  |  |
| Spectrum Analyzer                | KEYSIGHT        | N9010B          | WXJ004-2   | 10-27-2021              | 10-26-2022                  |  |
| Coaxial Cable<br>(30MHz ~ 1GHz)  | JYTSZ           | JYT3M-1G-NN-8M  | WXG001-4   | 01-20-2022              | 01-19-2023                  |  |
| Coaxial Cable<br>(1GHz ~ 18GHz)  | JYTSZ           | JYT3M-18G-NN-8M | WXG001-5   | 01-20-2022              | 01-19-2023                  |  |
| Coaxial Cable<br>(18GHz ~ 40GHz) | JYTSZ           | JYT3M-40G-SS-8M | WXG001-7   | 01-20-2022              | 01-19-2023                  |  |
| Band Reject Filter<br>Group      | Tonscend        | JS0806-F        | WXJ089     | N/A                     |                             |  |
| Test Software                    | Tonscend        | TS+             |            | Version: 3.0.0.1        |                             |  |

| Conducted Emission:                  |                 |                |            |                         |                             |  |
|--------------------------------------|-----------------|----------------|------------|-------------------------|-----------------------------|--|
| Test Equipment                       | Manufacturer    | Model No.      | Manage No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| EMI Test Receiver                    | Rohde & Schwarz | ESR3           | WXJ003-2   | 10-21-2021              | 10-20-2022                  |  |
| LISN                                 | Schwarzbeck     | NSLK 8127      | QCJ001-13  | 02-24-2022              | 02-23-2023                  |  |
| LISN                                 | Rohde & Schwarz | ESH3-Z5        | WXJ005-1   | 03-30-2022              | 03-29-2023                  |  |
| LISN Coaxial Cable<br>(9kHz ~ 30MHz) | JYTSZ           | JYTCE-1G-NN-2M | WXG003-1   | 02-24-2022              | 02-23-2023                  |  |
| RF Switch                            | TOP PRECISION   | RSU0301        | WXG003     | N/A                     |                             |  |
| Test Software                        | AUDIX           | E3             | V          | Version: 6.110919b      |                             |  |

| Conducted Method:            |              |            |            |                         |                             |  |
|------------------------------|--------------|------------|------------|-------------------------|-----------------------------|--|
| Test Equipment               | Manufacturer | Model No.  | Manage No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| Spectrum Analyzer            | Keysight     | N9010B     | WXJ004-3   | 10-27-2021              | 10-26-2022                  |  |
| DC Power Supply              | Keysight     | E3642A     | WXJ025-2   | N/A                     |                             |  |
| Temperature Humidity Chamber | ZHONG ZHI    | CZ-A-80D   | WXJ032-3   | 03-19-2021              | 03-18-2023                  |  |
| Power Detector Box           | MWRFTEST     | MW100-PSB  | WXJ007-4   | 11-19-2021              | 11-18-2022                  |  |
| RF Control Unit              | MWRFTEST     | MW100-RFCB | WXG006     | N/A                     |                             |  |
| Test Software                | MWRFTEST     | MTS 8310   |            | Version: 2.0.0.0        |                             |  |



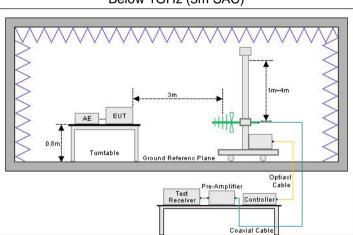
# 4 Measurement Setup and Procedure


## 4.1 Test Channel

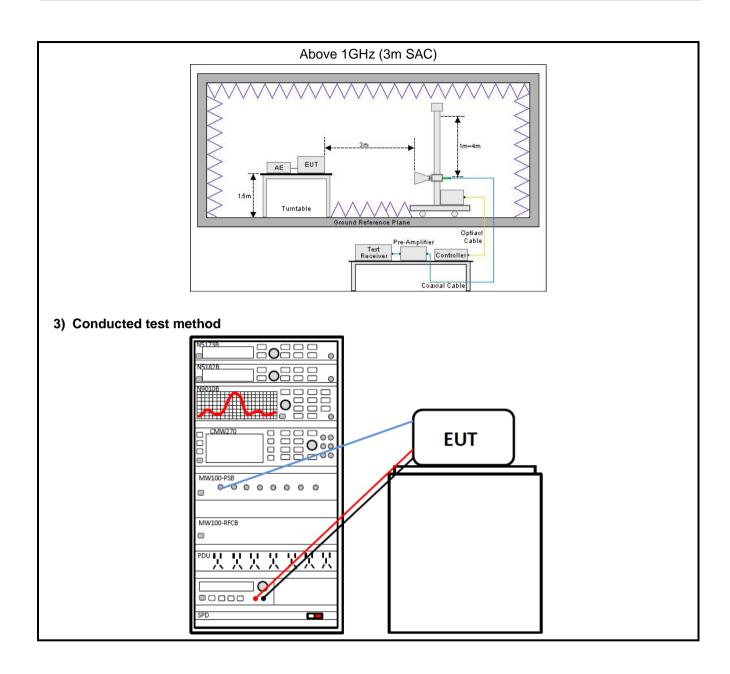
According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

| Lowest channel |                    | Midd        | le channel         | Highe       | st channel         |
|----------------|--------------------|-------------|--------------------|-------------|--------------------|
| Channel No.    | Frequency<br>(MHz) | Channel No. | Frequency<br>(MHz) | Channel No. | Frequency<br>(MHz) |
| 0              | 2402               | 20          | 2442               | 39          | 2480               |

## 4.2 Test Setup


## 1) Conducted emission measurement:




**Note:** The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

## 2) Radiated emission measurement:

Below 1GHz (3m SAC)











## 4.3 Test Procedure

| Test method           | Test step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Conducted emission    | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.</li> </ol> |  |  |  |  |
| Radiated emission     | For below 1GHz:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                       | The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                       | 2. EUT works in each mode of operation that needs to be tested, and having                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                       | the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.  3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.                                                                                                                                                                                                                 |  |  |  |  |
|                       | For above 1GHz:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                       | The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                       | 2. EUT works in each mode of operation that needs to be tested, and having                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                       | the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.  3. Open the test software to control the test antenna and test turntable. Perform                                                                                                                                                                                                                                                                            |  |  |  |  |
|                       | the test, save the test results, and export the test data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Conducted test method | <ol> <li>The BLE antenna port of EUT was connected to the test port of the test system through an RF cable.</li> <li>The EUT is keeping in continuous transmission mode and tested in all</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                       | modulation modes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                       | Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                       | the test software.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |



# 5 Test Results

# 5.1 Summary

## 5.1.1 Clause and Data Summary

| Test items                                      | Standard clause         | Test data        | Result |
|-------------------------------------------------|-------------------------|------------------|--------|
| Antenna Requirement                             | 15.203<br>15.247 (b)(4) | See Section 6.2  | Pass   |
| AC Power Line Conducted Emission                | 15.207                  | See Section 6.3  | Pass   |
| Conducted Output Power                          | 15.247 (b)(3)           | Appendix A – BLE | Pass   |
| 6dB Emission Bandwidth 99% Occupied Bandwidth   | 15.247 (a)(2)           | Appendix A – BLE | Pass   |
| Power Spectral Density                          | 15.247 (e)              | Appendix A – BLE | Pass   |
| Band-edge Emission Conduction Spurious Emission | 15.247 (d)              | Appendix A – BLE | Pass   |
| Emissions in Restricted<br>Frequency Bands      | 15.205<br>15.247 (d)    | See Section 6.4  | Pass   |
| Emissions in Non-restricted Frequency Bands     | 15.209<br>15.247(d)     | See Section 6.5  | Pass   |

#### Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02



## 5.1.2 Test Limit

| Test items                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               | Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nit                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
|                                                  | Frequency Limit (dBµV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                            |  |
| !                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (MHz)                                                                                                                                                                                                         | Quas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | si-Peak                                                                                                                                                                              | Average                                                                                                                                                                                                                                                                                  |                            |  |
| AC Power Line Conducted                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.15 – 0.5                                                                                                                                                                                                    | 66 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56 Note 1                                                                                                                                                                            | 56 to 46 Note 1                                                                                                                                                                                                                                                                          |                            |  |
| Emission                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5 – 5                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56                                                                                                                                                                                   | 46                                                                                                                                                                                                                                                                                       |                            |  |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 – 30                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                   | 50                                                                                                                                                                                                                                                                                       |                            |  |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The limit level in dB <sub>L</sub><br>The more stringent li                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                    | of frequency.                                                                                                                                                                                                                                                                            |                            |  |
| Conducted Output Power                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns using digital i<br>5850 MHz band                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the 902-928 M                                                                                                                                                                        | MHz, 2400-2483.5 MHz                                                                                                                                                                                                                                                                     | Ζ,                         |  |
| 6dB Emission Bandwidth                           | The minim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | um 6 dB bandw                                                                                                                                                                                                 | idth shall be a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at least 500 kH                                                                                                                                                                      | lz.                                                                                                                                                                                                                                                                                      |                            |  |
| 99% Occupied Bandwidth                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                            |  |
| Power Spectral Density                           | intentional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                               | antenna shall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | not be greater                                                                                                                                                                       | ensity conducted from<br>than 8 dBm in any 3 k<br>ion.                                                                                                                                                                                                                                   |                            |  |
| Band-edge Emission  Conduction Spurious Emission | spectrum of frequency places the peak of power limit permitted ut this paragral limits specially spectrum of the peak of power limit permitted ut this paragral limits specially | or digitally modu<br>power that is pot<br>hat in the 100 kell of the desire<br>easurement, pronducted powers<br>s based on the<br>under paragraph<br>aph shall be 30<br>ified in §15.209<br>on the restricted | alated intention roduced by the characteristic and width display power, base rovided the train r limits. If the trains of RMS and (b)(3) of this debinstead of (a) is not requisional requisionali requisional requisional requisional requisional requisional req | nal radiator is a intentional radiator is a within the bar d on either an ansmitter demonstrate ansmitter converaging over section, the a 20 dB. Attenuired. In additioned in §15.20 | I in which the spread operating, the radio diator shall be at least and that contains the RF conducted or a constrates compliance with the conducted a time interval, as ttenuation required unuation below the generon, radiated emissions (5(a), must also comply a) (see §15.205(c)). | vith<br>eted<br>der<br>ral |  |
|                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | requency<br>(MHz)                                                                                                                                                                                             | Limit (d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                      | Detector                                                                                                                                                                                                                                                                                 |                            |  |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 – 88                                                                                                                                                                                                       | <b>@ 3m</b><br>40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>@ 10m</b><br>30.0                                                                                                                                                                 | Quasi-peak                                                                                                                                                                                                                                                                               | 1                          |  |
| Emissions in Restricted                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88 – 216                                                                                                                                                                                                      | 43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33.5                                                                                                                                                                                 | Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                 | 1                          |  |
| Frequency Bands                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 216 – 960                                                                                                                                                                                                     | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.0                                                                                                                                                                                 | Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                 | 1                          |  |
| 1 Toquotioy Barias                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 – 1000                                                                                                                                                                                                     | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44.0                                                                                                                                                                                 | Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                 | 1                          |  |
| Emigaiona in Non vestriata d                     | Notes The second of the second |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                            |  |
| Emissions in Non-restricted                      | 110101 1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit (dBµV/m                                                                                                                                                                        | ) @ 3m                                                                                                                                                                                                                                                                                   | 1                          |  |
| Frequency Bands                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | requency                                                                                                                                                                                                      | Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rage                                                                                                                                                                                 | Peake                                                                                                                                                                                                                                                                                    | 1                          |  |
| 1                                                | Ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ove 1 GHz                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      | 74.0                                                                                                                                                                                                                                                                                     | 1                          |  |
|                                                  | Above 1 GHz 54.0 74.0  Note: The measurement bandwidth shall be 1 MHz or greater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                            |  |



Report No.: JYTSZ-R12-2201528

## 5.2 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

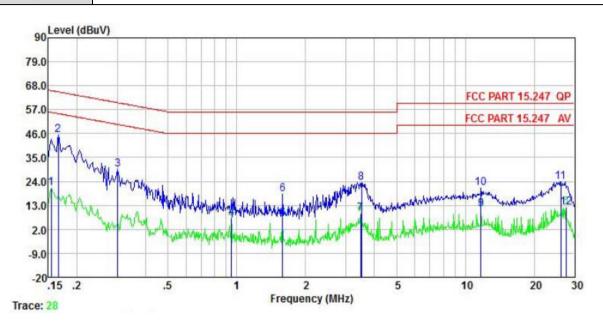
## 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

## 15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

## E.U.T Antenna:


The BLE antenna is a Ceramic antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi. See product internal photos for details.

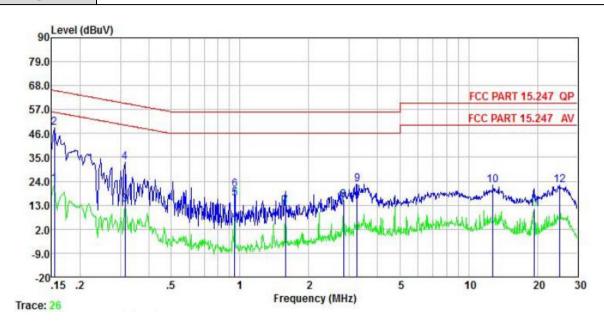




## 5.3 AC Power Line Conducted Emission

| Product name:   | POS Terminal     | Product model: | IM20               |
|-----------------|------------------|----------------|--------------------|
| Test by:        | Mike             | Test mode:     | BLE Tx (LE 1M PHY) |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Line               |
| Test voltage:   | AC 120 V/60 Hz   |                |                    |




|                                           | Freq   | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------------------------------------|--------|---------------|----------------|---------------|-------|---------------|---------------|---------|
| -                                         | MHz    | dBu∀          | dB             | ₫B            | dBu₹  | dBu∜          | dB            |         |
| 1                                         | 0.154  | 21.11         | 0.04           | 0.01          | 21.16 | 55.78         | -34.62        | Average |
| 2                                         | 0.166  | 45.38         | 0.04           | 0.01          | 45.43 |               | -19.73        |         |
| 3                                         | 0.302  | 29.57         | 0.06           | 0.03          | 29.66 | 60.19         | -30.53        | QP      |
| 4                                         | 0.948  | 7.06          | 0.07           | 0.05          | 7.18  | 46.00         | -38.82        | Average |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 1.585  | 6.73          | 0.08           | 0.16          | 6.97  | 46.00         | -39.03        | Average |
| 6                                         | 1.585  | 17.98         | 0.08           | 0.16          | 18.22 | 56.00         | -37.78        | QP      |
| 7                                         | 3.472  | 9.15          | 0.10           | 0.08          | 9.33  | 46.00         | -36.67        | Average |
| 8                                         | 3.509  | 23.08         | 0.10           | 0.08          | 23.26 | 56.00         | -32.74        | QP      |
| 9                                         | 11.683 | 10.79         | 0.25           | 0.10          | 11.14 | 50.00         | -38.86        | Average |
| 10                                        | 11.683 | 20.63         | 0.25           | 0.10          | 20.98 | 60.00         | -39.02        | QP      |
| 11                                        | 26.139 | 23.42         | 0.39           | 0.21          | 24.02 | 60.00         | -35.98        | QP      |
| 12                                        | 27.562 | 11.43         | 0.40           | 0.19          | 12.02 |               | -37.98        | Average |

## Remark:

1. Level = Read level + LISN Factor + Cable Loss.

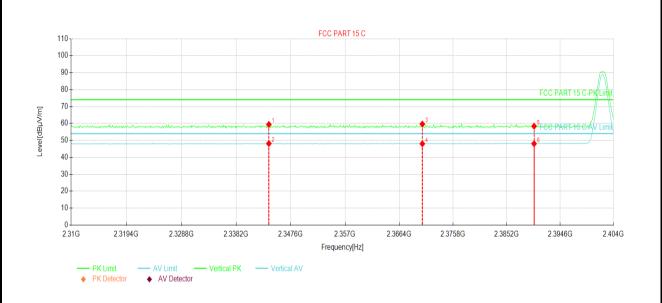


| Product name:   | POS Terminal     | Product model: | IM20               |
|-----------------|------------------|----------------|--------------------|
| Test by:        | Mike             | Test mode:     | BLE Tx (LE 1M PHY) |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Neutral            |
| Test voltage:   | AC 120 V/60 Hz   |                |                    |



|                                           | Freq   | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------------------------------------|--------|---------------|----------------|---------------|-------|---------------|---------------|---------|
| 10                                        | MHz    | dBu∜          | dB             | d₿            | dBu₹  | dBu∜          | <u>dB</u>     |         |
| 1                                         | 0.154  | 22.44         | 0.06           | 0.01          | 22.51 | 55.78         | -33.27        | Average |
| 2                                         | 0.154  | 48.63         | 0.06           | 0.01          | 48.70 | 65.78         | -17.08        | QP      |
| 3                                         | 0.313  | 13.15         | 0.05           | 0.03          | 13.23 | 49.88         | -36.65        | Average |
| 4                                         | 0.313  | 32.56         | 0.05           | 0.03          | 32.64 | 59.88         | -27.24        | QP      |
| 5                                         | 0.948  | 15.83         | 0.06           | 0.05          | 15.94 | 46.00         | -30.06        | Average |
| 6                                         | 0.948  | 20.27         | 0.06           | 0.05          | 20.38 | 56.00         | -35.62        | QP      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 1.577  | 12.20         | 0.07           | 0.16          | 12.43 | 46.00         | -33.57        | Average |
| 8                                         | 2.839  | 15.27         | 0.09           | 0.09          | 15.45 | 46.00         |               | Average |
| 9                                         | 3.258  | 22.58         | 0.09           | 0.07          | 22.74 | 56.00         | -33.26        | QP      |
| 10                                        | 12.784 | 21.69         | 0.25           | 0.11          | 22.05 | 60.00         | -37.95        | QP      |
| 11                                        | 19.428 | 10.67         | 0.32           | 0.15          | 11.14 |               |               | Average |
| 12                                        | 25.055 | 21.61         | 0.40           | 0.19          | 22.20 |               | -37.80        |         |

## Remark:


1. Level = Read level + LISN Factor + Cable Loss.

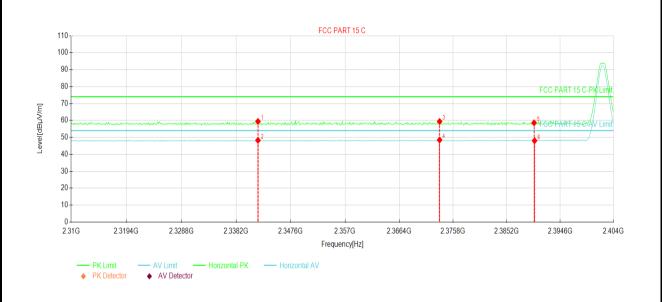




5.4 Emissions in Restricted Frequency Bands

| Product Name: | POS Terminal   | Product Model: | IM20               |
|---------------|----------------|----------------|--------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Channel: | Lowest channel | Polarization:  | Vertical           |
| Test Voltage: | DC 5V          |                |                    |




| Suspe | ected Data     | List                |                |                   |                   |                |       |          |
|-------|----------------|---------------------|----------------|-------------------|-------------------|----------------|-------|----------|
| NO.   | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Factor<br>[dB] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Trace | Polarity |
| 1     | 2343.84        | 24.18               | 35.25          | 59.43             | 74.00             | 14.57          | PK    | Vertical |
| 2     | 2343.84        | 12.90               | 35.25          | 48.15             | 54.00             | 5.85           | AV    | Vertical |
| 3     | 2370.44        | 24.19               | 35.45          | 59.64             | 74.00             | 14.36          | PK    | Vertical |
| 4     | 2370.44        | 12.55               | 35.45          | 48.00             | 54.00             | 6.00           | AV    | Vertical |
| 5     | 2390.00        | 22.78               | 35.60          | 58.38             | 74.00             | 15.62          | PK    | Vertical |
| 6     | 2390.00        | 12.45               | 35.60          | 48.05             | 54.00             | 5.95           | AV    | Vertical |

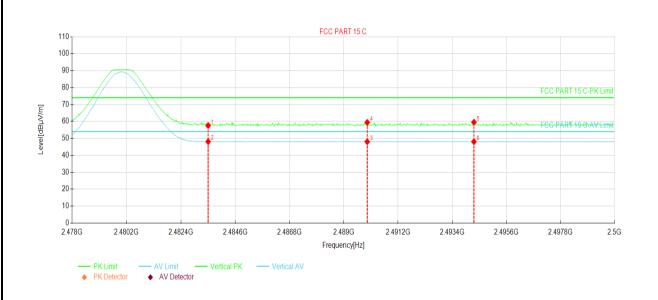
#### Remark.

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).



| Product Name: | POS Terminal   | Product Model: | IM20               |
|---------------|----------------|----------------|--------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Channel: | Lowest channel | Polarization:  | Horizontal         |
| Test Voltage: | DC 5V          |                |                    |




| Suspe | ected Data     | List                |                |                   |                   |                |       |            |
|-------|----------------|---------------------|----------------|-------------------|-------------------|----------------|-------|------------|
| NO.   | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Factor<br>[dB] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Trace | Polarity   |
| 1     | 2341.96        | 24.20               | 35.23          | 59.43             | 74.00             | 14.57          | PK    | Horizontal |
| 2     | 2341.96        | 13.05               | 35.23          | 48.28             | 54.00             | 5.72           | AV    | Horizontal |
| 3     | 2373.45        | 23.92               | 35.47          | 59.39             | 74.00             | 14.61          | PK    | Horizontal |
| 4     | 2373.45        | 13.03               | 35.47          | 48.50             | 54.00             | 5.50           | AV    | Horizontal |
| 5     | 2390.00        | 22.99               | 35.60          | 58.59             | 74.00             | 15.41          | PK    | Horizontal |
| 6     | 2390.08        | 12.47               | 35.60          | 48.07             | 54.00             | 5.93           | AV    | Horizontal |

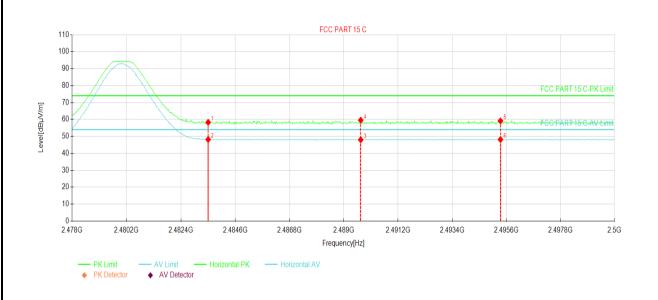
#### Remark

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).



| Product Name: | POS Terminal    | Product Model: | IM20               |
|---------------|-----------------|----------------|--------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Channel: | Highest channel | Polarization:  | Vertical           |
| Test Voltage: | DC 5V           |                |                    |




| Suspe | ected Data     | List                |                |                   |                   |                |       |          |
|-------|----------------|---------------------|----------------|-------------------|-------------------|----------------|-------|----------|
| NO.   | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Factor<br>[dB] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Trace | Polarity |
| 1     | 2483.50        | 22.08               | 35.51          | 57.59             | 74.00             | 16.41          | PK    | Vertical |
| 2     | 2483.50        | 12.62               | 35.51          | 48.13             | 54.00             | 5.87           | AV    | Vertical |
| 3     | 2489.94        | 12.55               | 35.50          | 48.05             | 54.00             | 5.95           | AV    | Vertical |
| 4     | 2489.94        | 23.92               | 35.50          | 59.42             | 74.00             | 14.58          | PK    | Vertical |
| 5     | 2494.28        | 24.07               | 35.49          | 59.56             | 74.00             | 14.44          | PK    | Vertical |
| 6     | 2494.28        | 12.57               | 35.49          | 48.06             | 54.00             | 5.94           | AV    | Vertical |

## Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

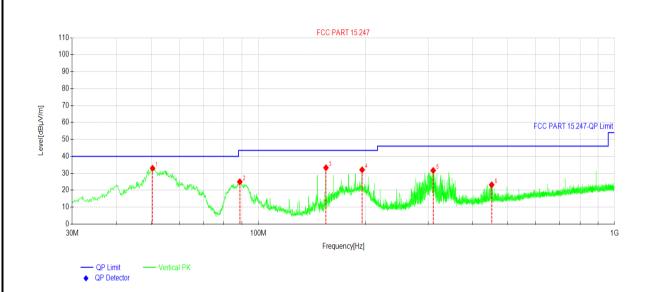


| Product Name: | POS Terminal    | Product Model: | IM20               |
|---------------|-----------------|----------------|--------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Channel: | Highest channel | Polarization:  | Horizontal         |
| Test Voltage: | DC 5V           |                |                    |



| Suspe | Suspected Data List |                     |                |                   |                   |                |       |            |  |
|-------|---------------------|---------------------|----------------|-------------------|-------------------|----------------|-------|------------|--|
| NO.   | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Factor<br>[dB] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Trace | Polarity   |  |
| 1     | 2483.50             | 22.80               | 35.51          | 58.31             | 74.00             | 15.69          | PK    | Horizontal |  |
| 2     | 2483.50             | 12.69               | 35.51          | 48.20             | 54.00             | 5.80           | AV    | Horizontal |  |
| 3     | 2489.68             | 12.52               | 35.50          | 48.02             | 54.00             | 5.98           | AV    | Horizontal |  |
| 4     | 2489.68             | 24.08               | 35.50          | 59.58             | 74.00             | 14.42          | PK    | Horizontal |  |
| 5     | 2495.35             | 23.66               | 35.49          | 59.15             | 74.00             | 14.85          | PK    | Horizontal |  |
| 6     | 2495.35             | 12.65               | 35.49          | 48.14             | 54.00             | 5.86           | AV    | Horizontal |  |

## Remark:


1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

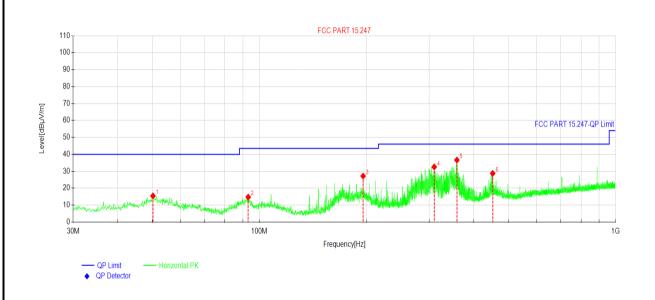


# 5.5 Emissions in Non-restricted Frequency Bands

## **Below 1GHz:**

| Product Name:   | POS Terminal   | Product Model: | IM20               |
|-----------------|----------------|----------------|--------------------|
| Test By:        | Mike           | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Frequency: | 30 MHz ~ 1 GHz | Polarization:  | Vertical           |
| Test Voltage:   | DC 5V          |                |                    |




| Suspe | Suspected Data List |                     |                   |                |                   |                |       |          |  |  |
|-------|---------------------|---------------------|-------------------|----------------|-------------------|----------------|-------|----------|--|--|
| NO.   | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Trace | Polarity |  |  |
| 1     | 50.4690             | 45.79               | 32.98             | -12.81         | 40.00             | 7.02           | PK    | Vertical |  |  |
| 2     | 88.6909             | 41.69               | 24.99             | -16.70         | 43.50             | 18.51          | PK    | Vertical |  |  |
| 3     | 154.851             | 51.39               | 33.27             | -18.12         | 43.50             | 10.23          | PK    | Vertical |  |  |
| 4     | 195.595             | 47.44               | 32.05             | -15.39         | 43.50             | 11.45          | PK    | Vertical |  |  |
| 5     | 309.679             | 44.41               | 31.67             | -12.74         | 46.00             | 14.33          | PK    | Vertical |  |  |
| 6     | 451.992             | 33.16               | 23.21             | -9.95          | 46.00             | 22.79          | PK    | Vertical |  |  |

#### Remark.

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).



| Product Name:   | POS Terminal   | Product Model: | IM20               |
|-----------------|----------------|----------------|--------------------|
| Test By:        | Mike           | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Frequency: | 30 MHz ~ 1 GHz | Polarization:  | Horizontal         |
| Test Voltage:   | DC 5V          |                |                    |



| Suspe | ected Data     | List                |                   |                |                   |                |       |            |
|-------|----------------|---------------------|-------------------|----------------|-------------------|----------------|-------|------------|
| NO.   | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Trace | Polarity   |
| 1     | 50.2750        | 28.25               | 15.46             | -12.79         | 40.00             | 24.54          | PK    | Horizontal |
| 2     | 93.0563        | 30.48               | 14.76             | -15.72         | 43.50             | 28.74          | PK    | Horizontal |
| 3     | 195.595        | 42.58               | 27.19             | -15.39         | 43.50             | 16.31          | PK    | Horizontal |
| 4     | 309.776        | 45.32               | 32.58             | -12.74         | 46.00             | 13.42          | PK    | Horizontal |
| 5     | 358.668        | 48.04               | 36.63             | -11.41         | 46.00             | 9.37           | PK    | Horizontal |
| 6     | 451.992        | 38.70               | 28.75             | -9.95          | 46.00             | 17.25          | PK    | Horizontal |

## Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).



#### Above 1GHz:

| bove IGHZ:              |            |        |                    |          |        |              |  |  |
|-------------------------|------------|--------|--------------------|----------|--------|--------------|--|--|
|                         |            | ВІ     | LE Tx (LE 1M PH    | IY)      |        |              |  |  |
|                         |            | Test o | hannel: Lowest cl  | hannel   |        |              |  |  |
|                         |            | D      | etector: Peak Val  | ue       |        |              |  |  |
| Frequency               | Read Level | Factor | Level              | Limit    | Margin | Polarization |  |  |
| (MHz)                   | (dBµV)     | (dB)   | (dBµV/m)           | (dBµV/m) | (dB)   | Polanzation  |  |  |
| 4804.00                 | 54.77      | -9.60  | 45.17              | 74.00    | 28.83  | Vertical     |  |  |
| 4804.00                 | 54.32      | -9.60  | 44.72              | 74.00    | 29.28  | Horizontal   |  |  |
| Detector: Average Value |            |        |                    |          |        |              |  |  |
| Frequency               | Read Level | Factor | Level              | Limit    | Margin | Polarization |  |  |
| (MHz)                   | (dBµV)     | (dB)   | (dBµV/m)           | (dBµV/m) | (dB)   | Polarization |  |  |
| 4804.00                 | 47.47      | -9.60  | 37.87              | 54.00    | 16.13  | Vertical     |  |  |
| 4804.00                 | 46.50      | -9.60  | 36.90              | 54.00    | 17.10  | Horizontal   |  |  |
|                         |            |        |                    |          |        |              |  |  |
|                         |            |        |                    |          |        |              |  |  |
|                         |            | Test o | channel: Middle ch | nannel   |        |              |  |  |
|                         |            | D      | etector: Peak Val  | ue       |        |              |  |  |
| Frequency               | Read Level | Factor | Level              | Limit    | Margin | Dolovinstiev |  |  |
| (MHz)                   | (dBµV)     | (dB)   | (dBµV/m)           | (dBµV/m) | (dB)   | Polarization |  |  |
| 4884.00                 | 54.95      | -9.04  | 45.91              | 74.00    | 28.09  | Vertical     |  |  |
| 4884.00                 | 54.55      | -9.04  | 45.51              | 74.00    | 28.49  | Horizontal   |  |  |
|                         |            | Det    | ector: Average Va  | alue     |        |              |  |  |

| Ī                    |                               | Detector: Average Value |        |          |          |        |              |  |  |  |
|----------------------|-------------------------------|-------------------------|--------|----------|----------|--------|--------------|--|--|--|
| ľ                    | Frequency                     | Read Level              | Factor | Level    | Limit    | Margin | Polarization |  |  |  |
| l                    | (MHz)                         | (dBµV)                  | (dB)   | (dBµV/m) | (dBµV/m) | (dB)   | 1 Glanzation |  |  |  |
|                      | 4884.00                       | 47.81                   | -9.04  | 38.77    | 54.00    | 15.23  | Vertical     |  |  |  |
|                      | 4884.00                       | 46.78                   | -9.04  | 37.74    | 54.00    | 16.26  | Horizontal   |  |  |  |
|                      |                               |                         |        |          |          |        |              |  |  |  |
| l                    |                               |                         |        |          |          |        |              |  |  |  |
|                      | Test channel: Highest channel |                         |        |          |          |        |              |  |  |  |
| Detector: Peak Value |                               |                         |        |          |          |        |              |  |  |  |
| I                    | Frequency                     | Read Level              | Factor | Level    | Limit    | Margin |              |  |  |  |

|               | Detector. Feak value |        |                    |          |        |              |  |  |  |
|---------------|----------------------|--------|--------------------|----------|--------|--------------|--|--|--|
| Frequency     | Read Level           | Factor | Level              | Limit    | Margin | Dolorization |  |  |  |
| (MHz)         | (dBµV)               | (dB)   | (dBµV/m)           | (dBµV/m) | (dB)   | Polarization |  |  |  |
| 4960.00       | 55.21                | -8.45  | 46.76              | 74.00    | 27.24  | Vertical     |  |  |  |
| 4960.00 54.68 |                      | -8.45  | 46.23              | 74.00    | 27.77  | Horizontal   |  |  |  |
|               |                      | Det    | tector: Average Va | alue     |        |              |  |  |  |
| Frequency     | Read Level           | Factor | Level              | Limit    | Margin | Polarization |  |  |  |
| (MHz)         | (dBµV)               | (dB)   | (dBµV/m)           | (dBµV/m) | (dB)   | Polarization |  |  |  |
| 4960.00       | 48.04                | -8.45  | 39.59              | 54.00    | 14.41  | Vertical     |  |  |  |
| 4960.00       | 46.55                | -8.45  | 38.10              | 54.00    | 15.90  | Horizontal   |  |  |  |
| Domork        | Paracula.            |        |                    |          |        |              |  |  |  |

## Remark:

<sup>1.</sup> Level = Reading + Factor.

<sup>2.</sup> Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.





# Appendix A - BLE

# **Maximum Conducted Output Power**

| Condition | Mode | Frequency (MHz) | Antenna | Conducted Power (dBm) | Limit (dBm) | Verdict |
|-----------|------|-----------------|---------|-----------------------|-------------|---------|
| NVNT      | BLE  | 2402            | Ant1    | 2.823                 | 30          | Pass    |
| NVNT      | BLE  | 2442            | Ant1    | 3.496                 | 30          | Pass    |
| NVNT      | BLE  | 2480            | Ant1    | 3.549                 | 30          | Pass    |



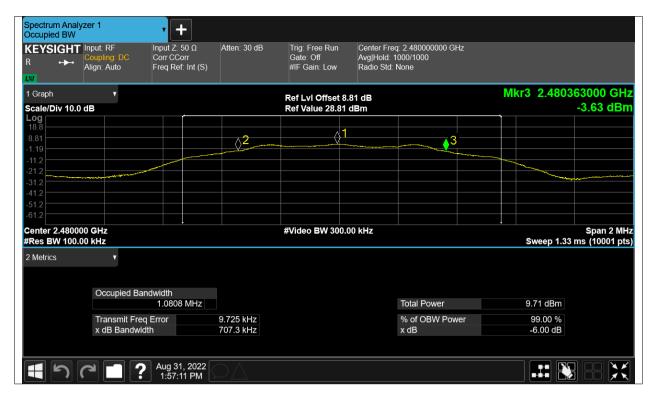








**Report No.: JYTSZ-R12-2201528** 


# -6dB Bandwidth

| Condition | Mode | Frequency (MHz) | Antenna | -6 dB Bandwidth (MHz) | limit | Verdic |
|-----------|------|-----------------|---------|-----------------------|-------|--------|
| NVNT      | BLE  | 2402            | Ant1    | 0.709                 | 0.5   | Pass   |
| NVNT      | BLE  | 2442            | Ant1    | 0.705                 | 0.5   | Pass   |
| NVNT      | BLE  | 2480            | Ant1    | 0.707                 | 0.5   | Pass   |











Report No.: JYTSZ-R12-2201528


**Occupied Channel Bandwidth** 

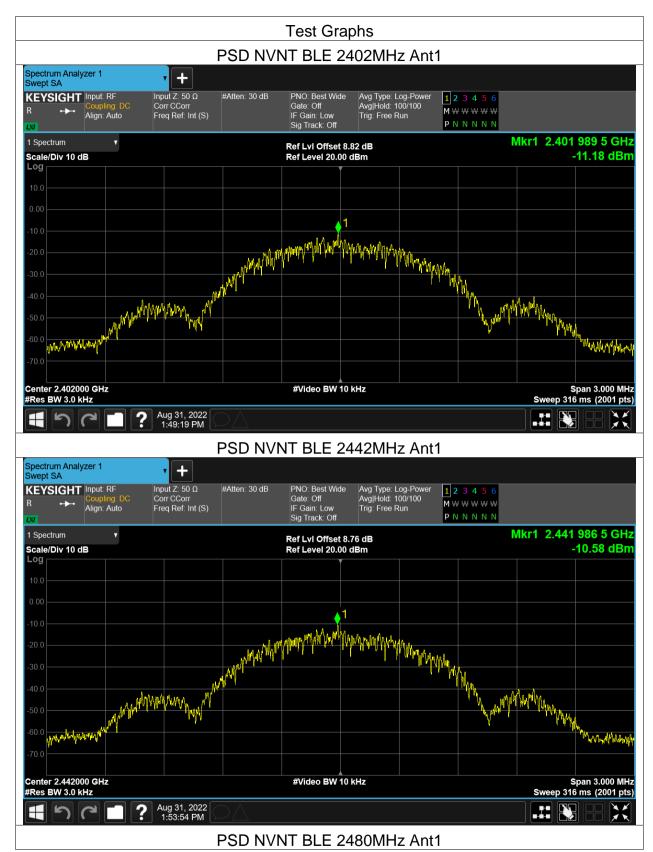
| Condition | Mode | Frequency (MHz) | Antenna | 99% OBW (MHz) |
|-----------|------|-----------------|---------|---------------|
| NVNT      | BLE  | 2402            | Ant1    | 1.06403652    |
| NVNT      | BLE  | 2442            | Ant1    | 1.063300792   |
| NVNT      | BLE  | 2480            | Ant1    | 1.061674312   |





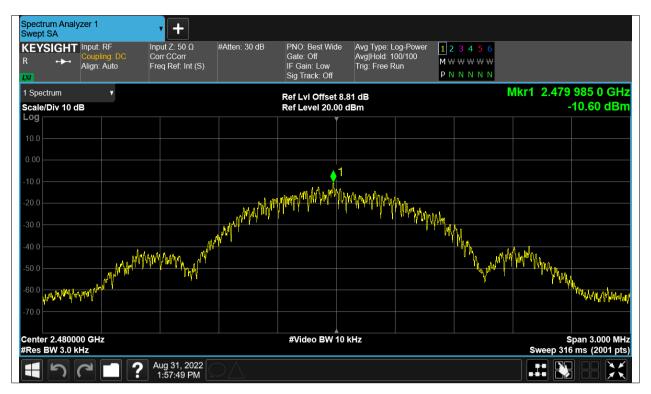







**Report No.: JYTSZ-R12-2201528** 

**Maximum Power Spectral Density Level** 


| Condition | Mode | Frequency (MHz) | Antenna | Max PSD (dBm) | Limit (dBm) | Verdict |
|-----------|------|-----------------|---------|---------------|-------------|---------|
| NVNT      | BLE  | 2402            | Ant1    | -11.182       | 8           | Pass    |
| NVNT      | BLE  | 2442            | Ant1    | -10.58        | 8           | Pass    |
| NVNT      | BLE  | 2480            | Ant1    | -10.596       | 8           | Pass    |



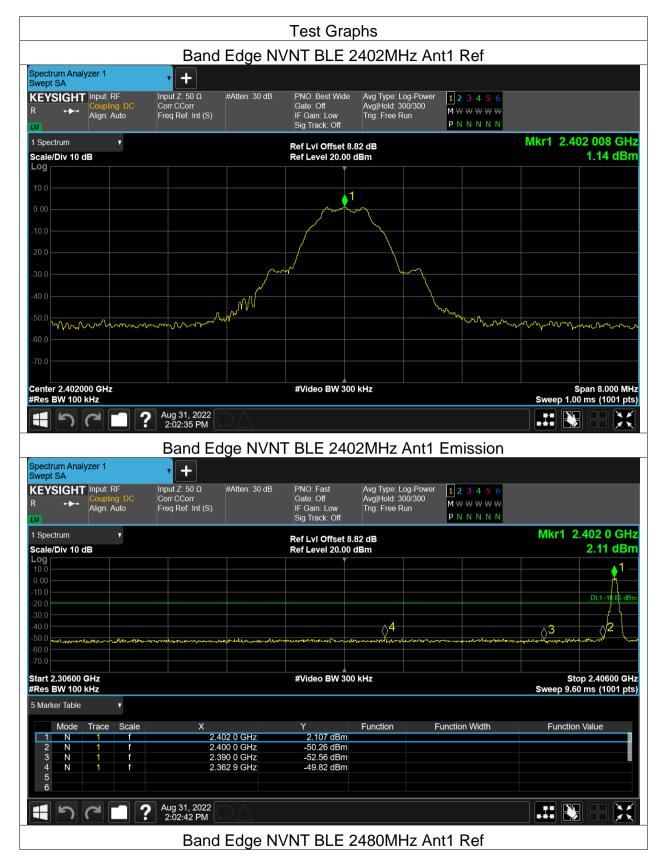




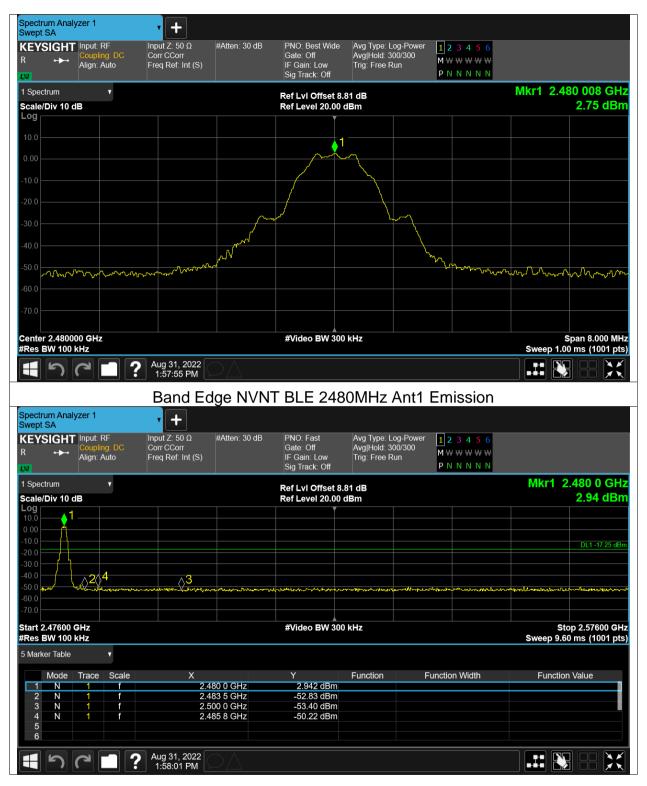







Report No.: JYTSZ-R12-2201528

**Band Edge** 


| Condition | Mode | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict |
|-----------|------|-----------------|---------|-----------------|-------------|---------|
| NVNT      | BLE  | 2402            | Ant1    | -50.95          | -20         | Pass    |
| NVNT      | BLE  | 2480            | Ant1    | -52.97          | -20         | Pass    |













**Report No.: JYTSZ-R12-2201528** 

**Conducted RF Spurious Emission** 

|           |      | •               |         |                 |             |         |
|-----------|------|-----------------|---------|-----------------|-------------|---------|
| Condition | Mode | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict |
| NVNT      | BLE  | 2402            | Ant1    | -46.23          | -20         | Pass    |
| NVNT      | BLE  | 2442            | Ant1    | -46.97          | -20         | Pass    |
| NVNT      | BLE  | 2480            | Ant1    | -46.12          | -20         | Pass    |


















-----End of report-----