

Test Report

Report No. : MTi250312008-0401E1

Date of issue : 2025-04-09

Applicant : Shenzhen Jiayz photo industrial ., Ltd

Product : Al-Powered Mini Wireless Microphone

Model(s) : BOYAMIC 2-TX, BOYAMIC 2 Lite-TX

FCC ID : 2ARN3-40501TX

Shenzhen Microtest Co., Ltd.

Report No.: MTi250312008-0401E1

Table of contents

		Table of contents	
1	Gene	ral Description	4
	1.1	Pal Description Description of the EUT	4
	1.2	Description of test modes	4
	1.3	Environmental Conditions	
	1.4	Description of support units	
	1.5	Measurement uncertainty	
2	Sumr Test F	mary of Test ResultFacilities and accreditations	7 8
	3.1	Test laboratory	8
4	List o	of test equipment	9
5	Evalu	ation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radio	Spectrum Matter Test Results (RF)	12
	6.1	Conducted Emission at AC power line	12
	6.2	20dB Bandwidth	15
	6.3	Maximum Conducted Output Power	17
	6.4	Channel Separation	19
	6.5	Number of Hopping Frequencies	21
	6.6	Dwell Time	23
	6.7	RF conducted spurious emissions and band edge measurement	
	6.8	Band edge emissions (Radiated)	
	6.9	Radiated emissions (below 1GHz)	
	6.10	Radiated emissions (above 1GHz)	34
Ph	otogra	phs of the test setup	38
		phs of the EUT	
		A: 20dB Emission Bandwidth	
		B: Maximum conducted output power	
		D: Time of occupancy	
		E: Number of hopping channels	
		F: Band edge measurements	
Ap	pendix	G: Conducted Spurious Emission	55
	lici _©	iest.	

Report No.: MTi250312008-0401E1

Test Result Certific	cation			
Applicant	Shenzhen	Jiayz photo industrial ., Ltd		
Applicant Address		ng, Intelligent Terminal Industria onghua District, Shenzhen, Ch		
Manufacturer	Shenzhen	Jiayz photo industrial ., Ltd		
Manufacturer Address		ng, Intelligent Terminal Industria onghua District, Shenzhen, Ch		
Product description	n			
Product name Al-Power		d Mini Wireless Microphone		
Trademark	ВОҮА			
Model name	BOYAMIC	2-TX		
Series Model(s)	BOYAMIC	2 Lite-TX		
Standards	47 CFR Pa	Part 15.247		
Test Method	KDB 55807 ANSI C63.	74 D01 15.247 Meas Guidance 10-2013	v05r02	
Testing Informatio	n		Micro	
Date of test	2025-03-19	9 to 2025-04-07		
Test result	Pass			
Prepared t	by:	Yanice.Xie	Yanice Xie	
Reviewed I	oy:	David Lee	Yanice Xie Dowid. Cee Lewis lian	
Approved I	oy:	Lewis Lian	lewis liam	

Report No.: MTi250312008-0401E1

1 General Description

1.1 Description of the EUT

LOT
Al-Powered Mini Wireless Microphone
BOYAMIC 2-TX
BOYAMIC 2 Lite-TX
All the models are the same circuit and module, except the model name.
Input:DC 5V Battery: DC 3.8V 220mAh 0.836Wh
 Charging case*1 USC-C to USB-C cable 0.3m*1 3.5mm TRS to TRS Audio cable 0.3m*1 Microphone*2 RX *1 USB-C Adapter*1
V1.0
2.0.3
MTi250312008-04-R001
2402-2480MHz
79
GFSK
Ceramic antenna
1.78 dBi

1.2 Description of test modes

No.	Emission test modes
Mode1	TX-GFSK

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
0	2402	20	2422	40	2442	60	2462		
1	2403	21	2423	41	2443	61	2463		
2	2404	22	2424	42	2444	62	2464		
3	2405	23	2425	43	2445	63	2465		
4	2406	24	2426	44	2446	64	2466		
5	2407	25	2427	45	2447	65	2467		

Report No.: MTi250312008-0401E1

					rtoport	140 WITIZ000 I	2000 0 10 12 1
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

Test Channel List

Operation Band: 2400-2483.5 MHz

Bandwidth (MHz)	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(IVITIZ)	(MHz)	(MHz)	(MHz)
1	2402	2441	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: SmartLink FCC tool V1.2.0

For power setting, refer to below table.

Mode	2402MHz	2441MHz	2480MHz
GFSK	22	22	22

Report No.: MTi250312008-0401E1

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C	
Humidity:	20% RH ~ 75% RH	
Atmospheric pressure:	98 kPa ~ 101 kPa	

1.4 Description of support units

Support equipment list				
Description	Model	Serial No.	Manufacturer	
Adapter	A2443	/	Apple	
Support cable list			(B))	
Description	Length (m)	From	То	
-x0°7	/	/	/	

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Time	±1 %
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	±5%

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: MTi250312008-0401E1

Anicrotest

MMicrotest

2 Summary of Test Result

No.	Item	Requirement	Result
1	Antenna requirement	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR 15.207(a)	Pass
3	20dB Bandwidth	47 CFR 15.247(a)(1)	Pass
4	Maximum Conducted Output Power	47 CFR 15.247(b)(1)	Pass
5	Channel Separation	47 CFR 15.247(a)(1)	Pass
6	Number of Hopping Frequencies	47 CFR 15.247(a)(1)(iii)	Pass
7	Dwell Time	47 CFR 15.247(a)(1)(iii)	Pass
8	RF conducted spurious emissions and band edge measurement	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Band edge emissions (Radiated)	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
11	Radiated emissions (above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass

(B)Microtest

Report No.: MTi250312008-0401E1

AMicrolest

Microtest

3 Test Facilities and accreditations

3.1 Test laboratory

276	
Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093
	(B) Microtest

(B)Microtest

Report No.: MTi250312008-0401E1

2025-06-

10

9163-1338 2023-06-11

1	List of test equipment o. Equipment Manufacturer Model Serial No. Cal. date C									
No.	Equipment	Serial No.	Cal. date	Cal. Due						
	COLC.	Conducted Emiss	ion at AC power	line						
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2025-03- 13	2026-03 12				
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2025-03- 18	2026-03 17				
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2025-03- 18	2026-03 17				
	Fr	Maximum Condu Channel Number of Hop	Separation ping Frequencie Il Time	es	(B) Mil	7 _{Ore}				
1	Wideband Radio	Rohde&schwarz	CMW500	149155	2025-03-	2026-03				
1	Communication Tester	Rondeaschwarz	CIVIVV500		18	17				
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB400512 40	2025-03- 14	2026-03 13				
3	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2025-03- 14	2026-03 13				
4	Synthesized Sweeper	Agilent	83752A	3610A019 57	2025-03- 18	2026-03 17				
5	MXA Signal Analyzer	Agilent	N9020A	MY501434 83	2025-03- 18	2026-03 17				
6	RF Control Unit	Tonscend	JS0806-1	19D80601 52	2025-03- 18	2026-03 17				
7	Band Reject Filter Group	Tonscend	JS0806-F	19D80601 60	2025-03- 18	2026-03 17				
8	ESG Vector Signal Generator	Agilent	N5182A	MY501437 62	2025-03- 14	2026-03 13				
9	DC Power Supply	Agilent	E3632A	MY400276 95	2025-03- 18	2026-03 17				
Mir.	En	Band edge emi	ssions (Radiated							
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2025-03- 14	2026-03 13				
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06- 17	2025-06 16				
3	Amplifier	Agilent	8449B	3008A0112 0	2025-03- 18	2026-03 17				
4	MXA signal analyzer	Agilent	N9020A	MY544408 59	2025-03- 14	2026-03 13				
5	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2025-03- 14	2026-03 13				
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06- 17	2025-06 16				
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2025-03- 19	2026-03 18				
	Er	nissions in frequen		1GHz)						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2025-03- 14	2026-03 13				
	TPILOG Broadband					2025-06				

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1

schwarabeck

VULB 9163

TRILOG Broadband

Antenna

2

Report No.: MTi250312008-0401E1

Mhiici^{©test}

AMicrotest

(B) Microtest

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2026-03- 22
4	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2025-03- 18	2026-03- 17
Air			ost			
		«C				
		ARIN ME				rest
					60	C.O.

(B) Microtest

Report No.: MTi250312008-0401E1

(B)Microtest

Microtest

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

CKES	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible
NCI C	party shall be used with the device. The use of a permanently attached
Test Requirement:	antenna or of an antenna that uses a unique coupling to the intentional
).	radiator shall be considered sufficient to comply with the provisions of
	this section.

5.1.1 Conclusion:

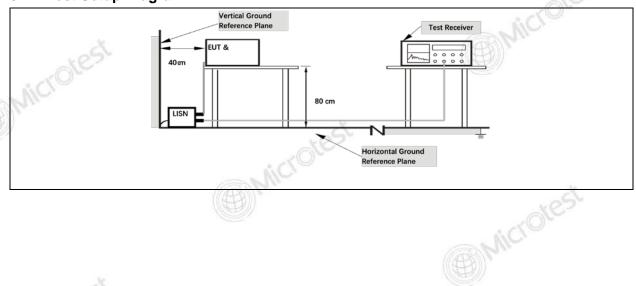
The antenna of the EUT is permanently attached.

The EUT complies with the requirement of FCC PART 15.203.

(B) Microtest

Report No.: MTi250312008-0401E1

6 Radio Spectrum Matter Test Results (RF)

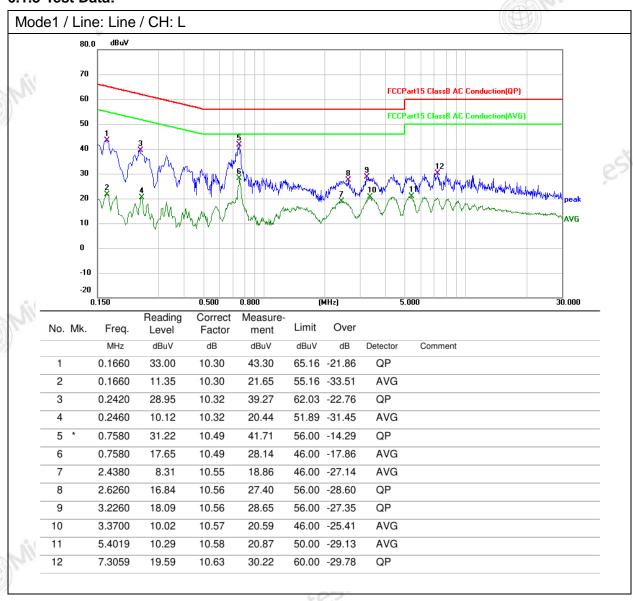

6.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)	MHz) Conducted limit (dBµV)					
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
is.	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 sect power-line conducted emissions						

6.1.1 E.U.T. Operation:

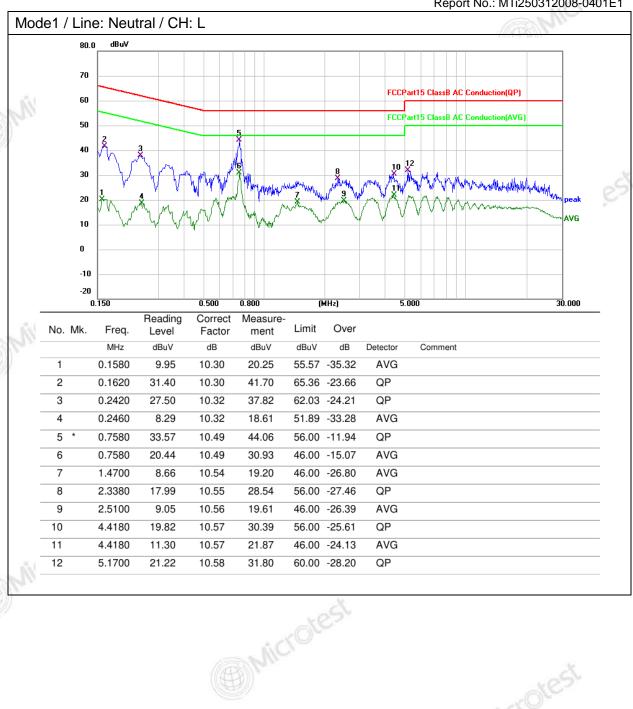
Operating Environment:								
Temperature: 21.3 °C Humidity: 41 % Atmospheric Pressure: 100 kPa								
Pre test mode: Mode1								
Final test mode: Mode			e1			9		

6.1.2 Test Setup Diagram:



Report No.: MTi250312008-0401E1

Microtest


6.1.3 Test Data:

Report No.: MTi250312008-0401E1

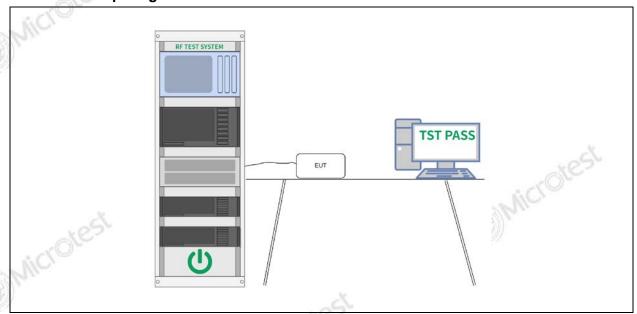
(B) Microtest

Report No.: MTi250312008-0401E1

6.2 20dB Bandwidth

6.2 20dB Bandwid	in	
Test Requirement:	47 CFR 15.247(a)(1)	(((E(3)))
Test Limit:	alternative provisions to the ger 15.217 through 15.257 and in s to ensure that the 20 dB bandw bandwidth may otherwise be spunder which the equipment ope	entional radiators operating under the neral emission limits, as contained in §§ subpart E of this part, must be designed width of the emission, or whatever pecified in the specific rule section erates, is contained within the frequency etion under which the equipment is
Test Method:	ANSI C63.10-2013, section 7.8 measurements, use the proced KDB 558074 D01 15.247 Meas	ure in 6.9.2.
Procedure:	channel center frequency. The	er frequency is set to the nominal EUT span range for the EMI receiver or ween two times and five times the
Micro	b) The nominal IF filter bandwice 1% to 5% of the OBW and vide approximately three times RBW applicable requirement. c) Set the reference level of the signal from exceeding the maxi operation. In general, the peak than [10 log (OBW/RBW)] below is given in 4.1.5.2.	v, unless otherwise specified by the einstrument as required, keeping the mum input mixer level for linear of the spectral envelope shall be more with the reference level. Specific guidance
Microtest	specified tolerances. e) The dynamic range of the insmore than 10 dB below the targif the requirement calls for meannoise floor at the selected RBW reference value. f) Set detection mode to peak a g) Determine the reference valuunmodulated carrier or modulated	
Microtest	xx]. Alternatively, this calculation delta function of the instrument i) If the reference value is deter turn the EUT modulation ON, as a new trace on the spectrum ar stabilize. Otherwise, the trace fij) Place two markers, one at the highest frequency of the envelopeach marker is at or slightly beldetermined in step h). If a mark amplitude" value, then it shall be the occupied bandwidth is the	amplitude" using [(reference value) – n may be made by using the marker- mined by an unmodulated carrier, then nd either clear the existing trace or start nalyzer and allow the new trace to rom step g) shall be used for step j). The lowest frequency and the other at the ope of the spectral display, such that ow the "-xx dB down amplitude"

Report No.: MTi250312008-0401E1


envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

6.2.1 E.U.T. Operation:

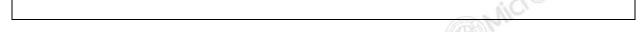
Operating Env	ironme	nt:				MCI
Temperature:	22.5 °	Č	Humidity:	46 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	e1			<i>50)</i>
Final test mode: M		Mod	le1			

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.

Report No.: MTi250312008-0401E1

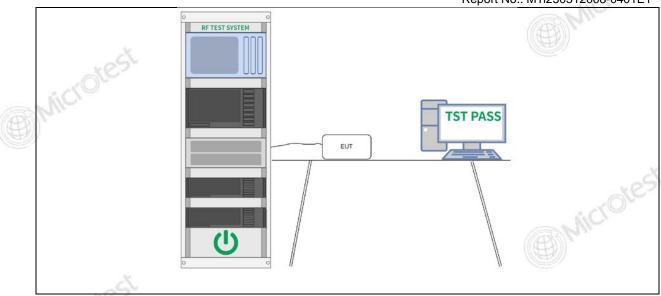

6.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)	
Test Limit:	Refer to 47 CFR 15.247(b)(1), For free operating in the 2400-2483.5 MHz bar overlapping hopping channels, and all the 5725-5850 MHz band: 1 watt. For systems in the 2400-2483.5 MHz band	nd employing at least 75 non- frequency hopping systems in all other frequency hopping
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guida	nce v05r02
Procedure:	This is an RF-conducted test to evaluate Use a direct connection between the awireless device and the spectrum analytenuation. The hopping shall be disated a) Use the following spectrum analyzed 1) Span: Approximately five times the hopping channel. 2) RBW > 20 dB bandwidth of the emmand of the	antenna port of the unlicensed lyzer, through suitable abled for this test: er settings: 20 dB bandwidth, centered on a dission being measured. set the marker to the peak of the out power, after any corrections description shall be included in ter may be used, where the
"CLOIC"	occupied bandwidth of the unlicensed spectrum analyzer.	wireless device, rather than a

6.3.1 E.U.T. Operation:

Operating Environment:								
Temperature: 22.5 °C Humidity: 46 % Atmospheric Pressure: 101 kPa						101 kPa		
Pre test mode: N			e1	CI				
Final test mode: M			e1	•		Ž.		

6.3.2 Test Setup Diagram:



Report No.: MTi250312008-0401E1

(B)Microtest

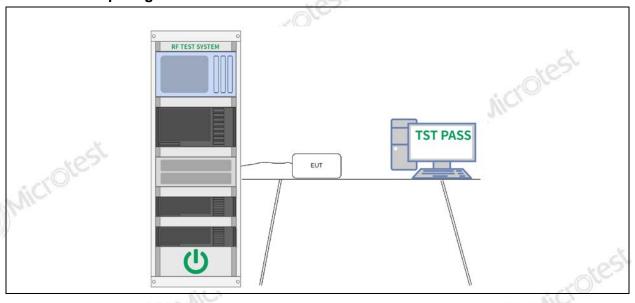
MMicrotest

6.3.3 Test Data:

Please Refer to Appendix for Details.

(B) Microtest

Report No.: MTi250312008-0401E1


6.4 Channel Separation

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.4.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.5 °	C	Humidity:	46 %	Atmospheric Pressure:	101 kPa	
Pre test mode:			e1				
Final test mode: Mod			e1				

6.4.2 Test Setup Diagram:

Report No.: MTi250312008-0401E1

(B) Microtest

(B)Microtest

(B) Microtest

6.4.3 Test Data:

Please Refer to Appendix for Details.

(B)Microtest

Report No.: MTi250312008-0401E1

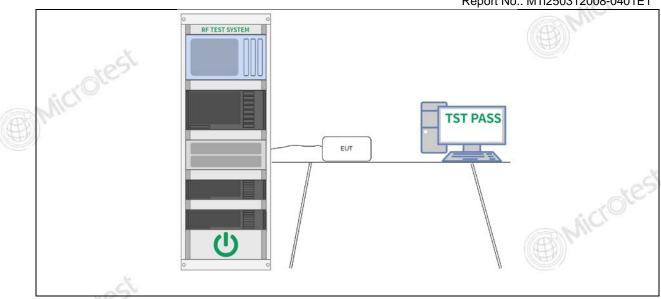
6.5 Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)	(((44)))
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fe 2400-2483.5 MHz band shall use at time of occupancy on any channel s seconds within a period of 0.4 secon hopping channels employed. Freque or suppress transmissions on a part that a minimum of 15 channels are uniform to the control of th	least 15 channels. The average shall not be greater than 0.4 ands multiplied by the number of ency hopping systems may avoid icular hopping frequency provided
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guid	dance v05r02
Procedure:	The EUT shall have its hopping fund spectrum analyzer settings: a) Span: The frequency band of oper of channels the device supports, it is frequency range of operation across individual channels to be clearly see b) RBW: To identify clearly the individual set than 30% of the channel spacing whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the clearly all of the hopping frequencies appropriate regulatory limit shall be hopping channels. A plot of the data report.	eration. Depending on the number may be necessary to divide the smultiple spans, to allow the en. idual channels, set the RBW to ag or the 20 dB bandwidth, the span up into subranges to show so a compliance of an EUT with the determined for the number of

6.5.1 E.U.T. Operation:

Operating Envi	ironme	nt:					
Temperature:	22.5 °	,C	Humidity:	46 %	Jr.	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	le1	100	5		
Final test mode	e:	Mod	le1	10°			

6.5.2 Test Setup Diagram:



Report No.: MTi250312008-0401E1

(B)Microtest

MMicrotest

6.5.3 Test Data:

MMicrotest Please Refer to Appendix for Details.

MMicrotest

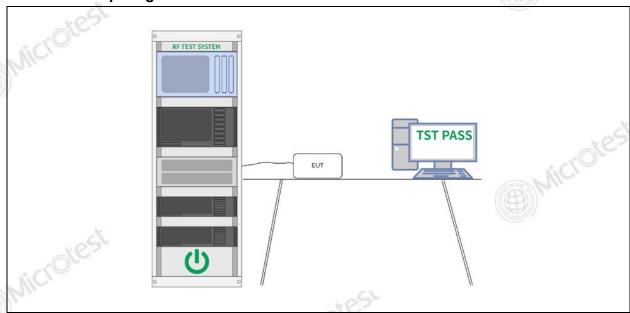
Report No.: MTi250312008-0401E1

6.6 Dwell Time

Test Requirement:	47 CFR 15.247(a)(1)(iii)	
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping syst 2400-2483.5 MHz band shall use at least 15 channels. Th time of occupancy on any channel shall not be greater that seconds within a period of 0.4 seconds multiplied by the n hopping channels employed. Frequency hopping systems or suppress transmissions on a particular hopping frequent that a minimum of 15 channels are used.	e average in 0.4 umber of may avoid
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	rotes
Procedure:	The EUT shall have its hopping function enabled. Use the spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible is be set >> 1 / T, where T is the expected dwell time per channel; where possible use a video trigger and trigger dethe transmitted signal starts a little to the right of the start of the trigger level might need slight adjustment to prevent the when the system hops on an adjacent channel; a second needed with a longer sweep time to show two successive channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time if this value varies with different modes of operation (data modulation format, number of hopping channels, etc.), the	RBW should annel. er hopping play so that of the plot. riggering plot might be hops on a
Microtest	for each variation in transmit time. Repeat the measurement using a longer sweep time to de number of hops over the period specified in the requirement sweep time shall be equal to, or less than, the period specified in requirements. Determine the number of hops over the sweet calculate the total number of hops in the period specified in requirements, using the following equation: (Number of hops in the period specified in the requirement (number of hops on spectrum analyzer) × (period specified requirements / analyzer sweep time) The average time of occupancy is calculated from the transper hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varied different modes of operation (data rate, modulation format hopping channels, etc.), then repeat this test for each varied the measured transmit time and time between hops shall consistent with the values described in the operational destine EUT.	ents. The cified in the eep time and in the ents) = d in the existence in the existence in the es with ents, number of ation.

6.6.1 E.U.T. Operation:

Operating Envi	ironme	nt:				15
Temperature:	22.5 °	C	Humidity:	46 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	e1			: (0)


Report No.: MTi250312008-0401E1

(B)Microtest

Microtest

Final test mode: Mode1

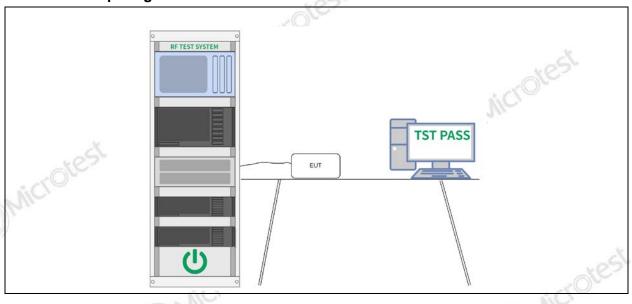
6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Please Refer to Appendix for Details.

(B) Microtest

Report No.: MTi250312008-0401E1


6.7 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

6.7.1 E.U.T. Operation:

Operating Envi	ironme	nt:				
Temperature:	22.5 °	C	Humidity:	46 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	e1			
Final test mode	э:	Mod	e1			

6.7.2 Test Setup Diagram:

Report No.: MTi250312008-0401E1

(B) Microtest

(B)Microtest

(B) Microtest

6.7.3 Test Data:

Please Refer to Appendix for Details.

(B)Microtest

Report No.: MTi250312008-0401E1

6.8 **Band edge emissions (Radiated)**

Test Requirement:	in the restricted bands,	7(d), In addition, radiated emissi as defined in § 15.205(a), must ion limits specified in § 15.209(a	also comply
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Microtest	intentional radiators op the frequency bands 54 806 MHz. However, op permitted under other s In the emission table a The emission limits sho measurements employ frequency bands 9–90 Radiated emission limit	n paragraph (g), fundamental en erating under this section shall r 4-72 MHz, 76-88 MHz, 174-216 eration within these frequency b sections of this part, e.g., §§ 15.2 bove, the tighter limit applies at town in the above table are baseding a CISPR quasi-peak detector kHz, 110–490 kHz and above 10 ts in these three bands are baseding an average detector.	not be located in MHz or 470- ands is 231 and 15.241. The band edges. It on or except for the 200 MHz.
Test Method:	ANSI C63.10-2013 sed KDB 558074 D01 15.2	rtion 6.10 47 Meas Guidance v05r02	COL
Procedure:	ANSI C63.10-2013 sed	tion 6.10.5.2	22

6.8.1 E.U.T. Operation:

Operating Env	ironme	nt:				
Temperature:	19.3 °	,C	Humidity:	45.2 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	e1	120		
Final test mode	e:	Mod	e1	- Ole-		
Noto:				Ve		

Note:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.8.2 Test Setup Diagram:

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Q/MTI-QP-12-FE038 Ver./Rev.: A1 Page 27 of 59 Ver./Rev.: A1

Report No.: MTi250312008-0401E1

6.8.3 Test Data:

								-111-2	PS201	
Mod	e1 / P	olari	zation: Hori	zontal / CH:	L					
W.	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		2310.000	47.93	-4.83	43.10	74.00	-30.90	peak	
	2		2310.000	38.16	-4.83	33.33	54.00	-20.67	AVG	05
	3		2390.000	48.20	-4.31	43.89	74.00	-30.11	peak	-0
	4	*	2390.000	38.42	-4.31	34.11	54.00	-19.89	AVG	

1 / P	olari	zation: Verti	cal / CH: L					
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	48.44	-4.83	43.61	74.00	-30.39	peak
2		2310.000	38.11	-4.83	33.28	54.00	-20.72	AVG
3		2390.000	48.18	-4.31	43.87	74.00	-30.13	peak
4	*	2390.000	38.33	-4.31	34.02	54.00	-19.98	AVG
	No.	No. Mk.	No. Mk. Freq. MHz 1 2310.000 2 2310.000 3 2390.000	No. Mk. Freq. Level MHz dBuV 1 2310.000 48.44 2 2310.000 38.11 3 2390.000 48.18	No. Mk. Freq. Reading Level Level Factor Correct Factor MHz dBuV dB 1 2310.000 48.44 -4.83 2 2310.000 38.11 -4.83 3 2390.000 48.18 -4.31	No. Mk. Freq. Reading Level Correct Factor Measurement MHz dBuV dB dBuV/m 1 2310.000 48.44 -4.83 43.61 2 2310.000 38.11 -4.83 33.28 3 2390.000 48.18 -4.31 43.87	No. Mk. Freq. Reading Level Correct Factor Measurement Limit MHz dBuV dB dBuV/m dBuV/m 1 2310.000 48.44 -4.83 43.61 74.00 2 2310.000 38.11 -4.83 33.28 54.00 3 2390.000 48.18 -4.31 43.87 74.00	No. Mk. Freq. Reading Level Correct Factor Measurement Limit Over MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB dB dBuV/m dB dB

Report No.: MTi250312008-0401E1

Mod	le1 / P	olari	zation: Hori	zontal / CH:	Н			flat	Min	
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	54.111	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
PVI	1		2483.500	52.25	-4.21	48.04	74.00	-25.96	peak	
)	2	*	2483.500	42.04	-4.21	37.83	54.00	-16.17	AVG	
	3		2500.000	49.34	-4.10	45.24	74.00	-28.76	peak	.3
	4		2500.000	38.62	-4.10	34.52	54.00	-19.48	AVG	-e5
1										

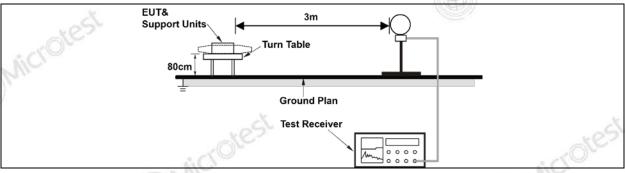
le1 / P	olari	zation: Verti	cal / CH: H		5)			
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	47.66	-4.21	43.45	74.00	-30.55	peak
2		2483.500	38.21	-4.21	34.00	54.00	-20.00	AVG
3		2500.000	48.19	-4.10	44.09	74.00	-29.91	peak
4	*	2500.000	38.33	-4.10	34.23	54.00	-19.77	AVG

Report No.: MTi250312008-0401E1

6.9 Radiated emissions (below 1GHz)

Test Requirement:	in the restricted bands,	7(d), In addition, radiated em as defined in § 15.205(a), m sion limits specified in § 15.20	nust also comply
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Microtest	intentional radiators op the frequency bands 54 806 MHz. However, op permitted under other s In the emission table a The emission limits sho measurements employ frequency bands 9–90 Radiated emission limit	n paragraph (g), fundamental erating under this section shuf-72 MHz, 76-88 MHz, 174-2 eration within these frequent sections of this part, e.g., §§ bove, the tighter limit applies own in the above table are baing a CISPR quasi-peak detains a CISPR quasi-peak detains in these three bands are baing an average detector.	all not be located in 216 MHz or 470- cy bands is 15.231 and 15.241. at the band edges. ased on ector except for the 7e 1000 MHz.
Test Method:	ANSI C63.10-2013 sed KDB 558074 D01 15.2	tion 6.6.4 47 Meas Guidance v05r02	· victore
Procedure:	ANSI C63.10-2013 sec	etion 6.6.4	

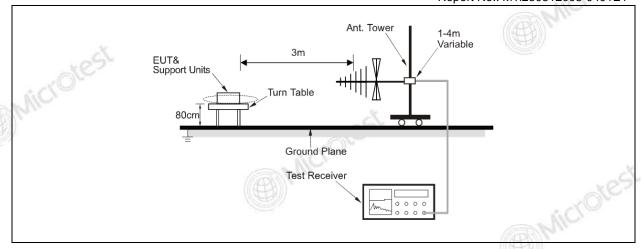
6.9.1 E.U.T. Operation:


Operating Envi	ronme	nt:				
Temperature:	19.3 °	,C	Humidity:	45.2 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	e1	120		
Final test mode	e:	Mod	e1	-0/c-		

Note:

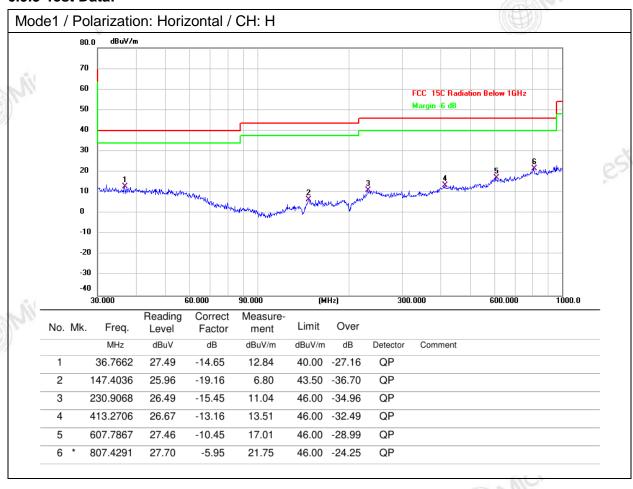
The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.


6.9.2 Test Setup Diagram:

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1

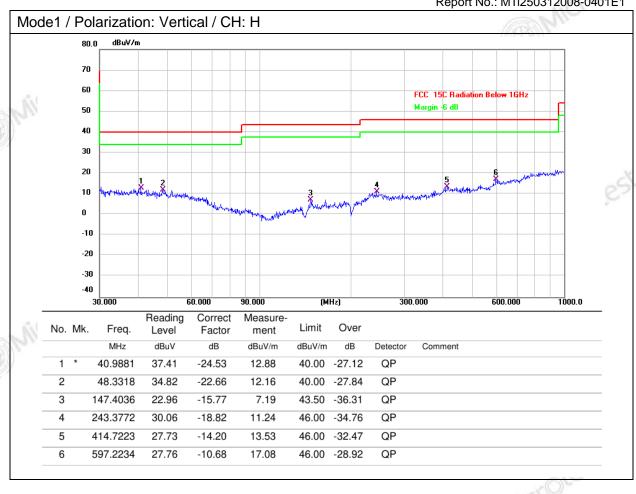
Report No.: MTi250312008-0401E1


(B)Microtest

Report No.: MTi250312008-0401E1

(B) Microtest

6.9.3 Test Data:



(B) Microtest

Report No.: MTi250312008-0401E1

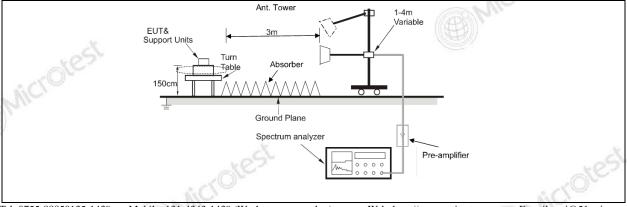
Mhicrotest

(B) Microtest

Report No.: MTi250312008-0401E1

6.10 Radiated emissions (above 1GHz)

Test Requirement:	defined in § 15.205(a),	nissions which fall in the rest must also comply with the ra 209(a)(see § 15.205(c)).`	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Microtest	intentional radiators op the frequency bands 5- 806 MHz. However, op permitted under other s In the emission table a The emission limits sho measurements employ frequency bands 9–90 Radiated emission limi	n paragraph (g), fundamental perating under this section should be section within these frequences are the tighter limit applies own in the above table are being a CISPR quasi-peak detakt, 110–490 kHz and above the tighter bands are being an average detector.	all not be located in 216 MHz or 470- cy bands is 15.231 and 15.241. at the band edges. ased on ector except for the re 1000 MHz.
Test Method:	ANSI C63.10-2013 sed KDB 558074 D01 15.2	otion 6.6.4 47 Meas Guidance v05r02	otest
Procedure:	ANSI C63.10-2013 sed	etion 6.6.4	MICI


6.10.1 E.U.T. Operation:

Operating Envi	ironme	nt:				
Temperature:	19.3 °	C	Humidity:	45.2 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	e1			
Final test mode	e:	Mod	e1	5		
Note: Test from	110001	ara fra	m 10Uz to	OFCUT the	amplitude of apurious ami	ooiona which

Note: Test frequency are from 1GHz to 25GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

6.10.2 Test Setup Diagram:

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1

Report No.: MTi250312008-0401E1

6.10.3 Test Data:

W.	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		4804.000	45.48	0.53	46.01	74.00	-27.99	peak	
	2		4804.000	40.70	0.53	41.23	54.00	-12.77	AVG	
	3		7206.000	44.21	7.90	52.11	74.00	-21.89	peak	
	4	*	7206.000	40.33	7.90	48.23	54.00	-5.77	AVG	
	5		9608.000	44.70	8.85	53.55	74.00	-20.45	peak	
	6		9608.000	38.39	8.85	47.24	54.00	-6.76	AVG	

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4804.000	43.14	0.53	43.67	74.00	-30.33	peak
-	2		4804.000	37.73	0.53	38.26	54.00	-15.74	AVG
eu.	3		7206.000	44.81	7.90	52.71	74.00	-21.29	peak
1	4	*	7206.000	39.64	7.90	47.54	54.00	-6.46	AVG
	5		9608.000	44.40	8.85	53.25	74.00	-20.75	peak
	6		9608.000	38.30	8.85	47.15	54.00	-6.85	AVG

Report No.: MTi250312008-0401E1

							- 1	-		-	
Mod	e1 / P	olari	zation: Horiz	zontal / CH:	ontal / CH: M						
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	- SA 11 1		
20.1			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector		
1211	1		4882.000	43.56	0.57	44.13	74.00	-29.87	peak		
/	2		4882.000	38.00	0.57	38.57	54.00	-15.43	AVG	_	
	3		7323.000	42.61	7.57	50.18	74.00	-23.82	peak	J.	
	4		7323.000	37.66	7.57	45.23	54.00	-8.77	AVG	62	
	5		9764.000	44.04	9.33	53.37	74.00	-20.63	peak		
	6	*	9764.000	38.23	9.33	47.56	54.00	-6.44	AVG		

	No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	4882.000	43.19	0.57	43.76	74.00	-30.24	peak
	2	4882.000	37.99	0.57	38.56	54.00	-15.44	AVG
	3	7323.000	43.03	7.57	50.60	74.00	-23.40	peak
	4	7323.000	37.70	7.57	45.27	54.00	-8.73	AVG
Ŵ.	5	9764.000	43.79	9.33	53.12	74.00	-20.88	peak
200	6 *	9764.000	40.18	9.33	49.51	54.00	-4.49	AVG

Report No.: MTi250312008-0401E1

									00012000 0	
Mod	e1 / P	olari	zation: Horiz	zontal / CH:	Н					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	54.111	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
PVI	1		4960.000	44.36	0.66	45.02	74.00	-28.98	peak	
)	2		4960.000	39.60	0.66	40.26	54.00	-13.74	AVG	_
	3		7440.000	43.49	7.94	51.43	74.00	-22.57	peak	. 39
	4		7440.000	36.33	7.94	44.27	54.00	-9.73	AVG	65
	5		9920.000	44.30	9.69	53.99	74.00	-20.01	peak	_
	6	*	9920.000	39.99	9.69	49.68	54.00	-4.32	AVG	_
										_

	No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	4960.000	44.14	0.66	44.80	74.00	-29.20	peak
	2	4960.000	39.55	0.66	40.21	54.00	-13.79	AVG
	3	7440.000	43.34	7.94	51.28	74.00	-22.72	peak
	4	7440.000	38.29	7.94	46.23	54.00	-7.77	AVG
Ž.	5	9920.000	44.38	9.69	54.07	74.00	-19.93	peak
200	6 *	9920.000	40.02	9.69	49.71	54.00	-4.29	AVG

Report No.: MTi250312008-0401E1

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Report No.: MTi250312008-0401E1

Photographs of the EUT

Refer to Appendix - EUT Photos

Microtes!

TEST REPORT

Report No.: MTi250312008-0401E1

Microtest

(B)Microtest

Microtest

Report No.: MTi250312008-0401E1

Appendix A: 20dB Emission Bandwidth

Test Result

Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]
<i>K</i>	Ant1	2402	0.936
GFSK		2441	0.951
		2480	0.948

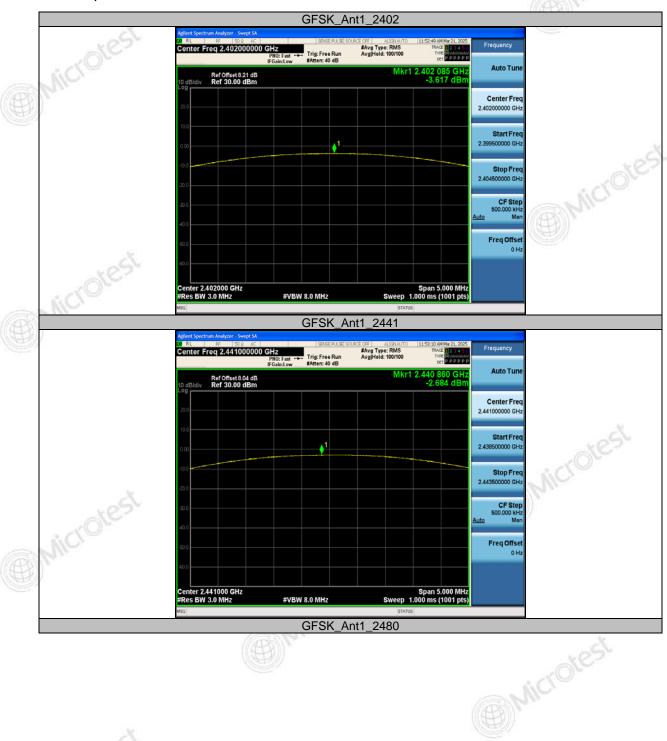
Report No.: MTi250312008-0401E1

Report No.: MTi250312008-0401E1

(B) Microtest

(B))Microtest

Report No.: MTi250312008-0401E1


Appendix B: Maximum conducted output power

Test Result Peak

	Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
	40.		2402	-3.62	≤20.97	PASS
7)))	GFSK	Ant1	2441	-2.68	≤20.97	PASS
89			2480	-2.24	≤20.97	PASS

Report No.: MTi250312008-0401E1

Report No.: MTi250312008-0401E1

(B)Microtest

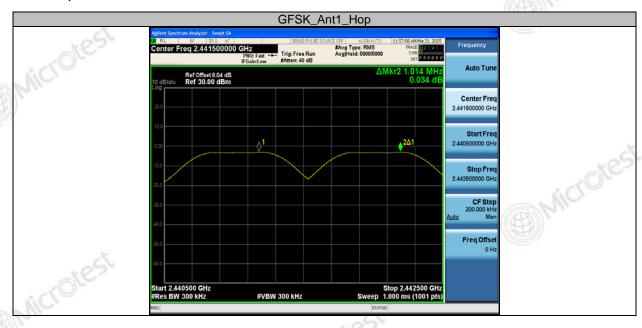
(B) Microtest

Report No.: MTi250312008-0401E1

Appendix C: Carrier frequency separation

Test Result

Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
GFSK	Ant1	Нор	1.014	≥0.634	PASS



Report No.: MTi250312008-0401E1

AMicrotest

Microtest.

Test Graphs

Report No.: MTi250312008-0401E1

Microtest

(B)Microtest

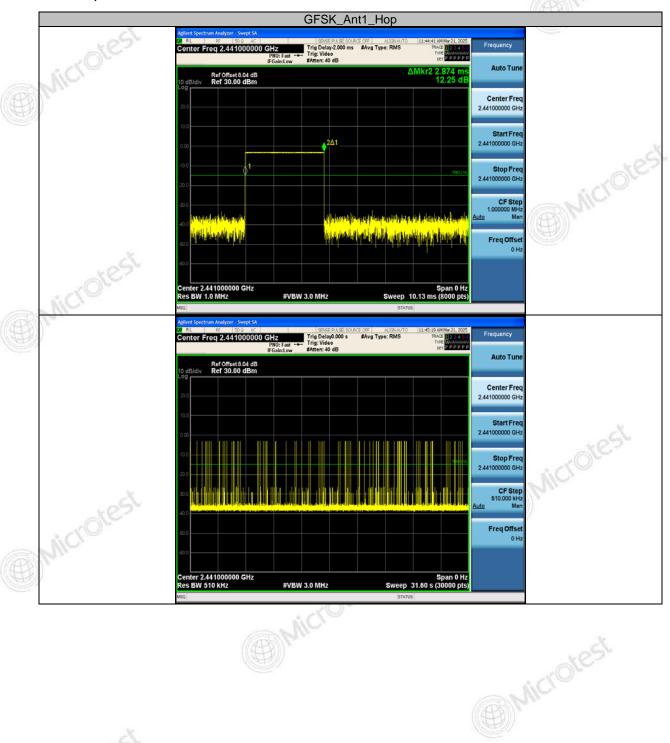
Mhicrotest

Appendix D: Time of occupancy

Test Result

Test Mode	Antenna	Frequency [MHz]	BurstWidth [ms]	Hops in 31.6s [Num]	Result [s]	Limit [s]	Verdict
GFSK	Ant1	Нор	2.874	77	0.221	≤0.4	PASS

Notes:


- 1. Period time = 0.4s * 79 = 31.6s
- 2. Result (Time of occupancy) = BurstWidth[ms] * Hops in 31.6s [Num]

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1 Page 49 of 59

Microtest (

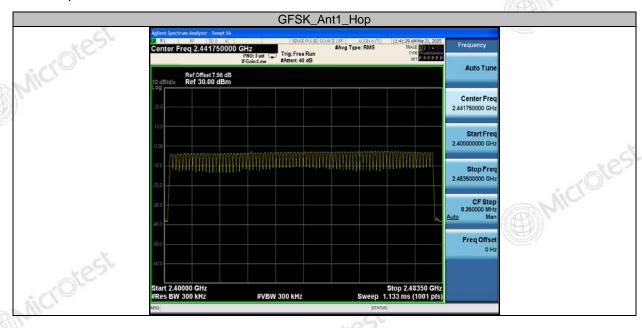
Report No.: MTi250312008-0401E1

Report No.: MTi250312008-0401E1

Appendix E: Number of hopping channels

Test Result

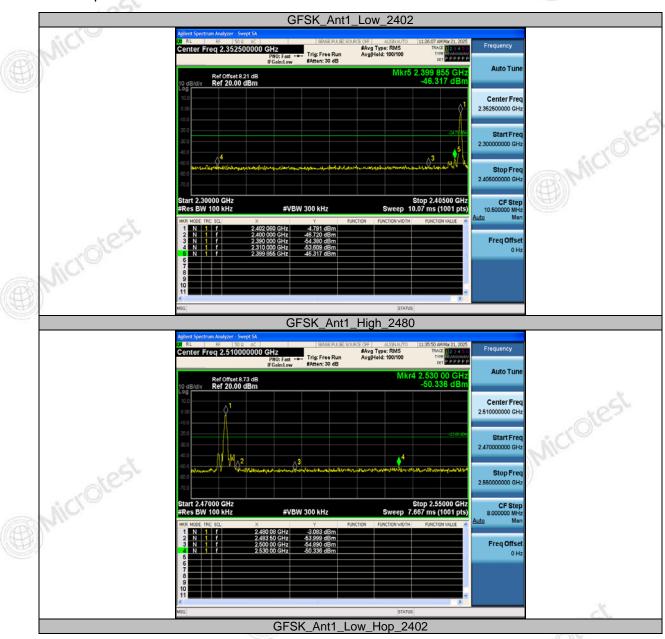
Test Mode	Antenna	Frequency [MHz]	Result [Num]	Limit [Num]	Verdict
GFSK	Ant1	Нор	79	≥15	PASS

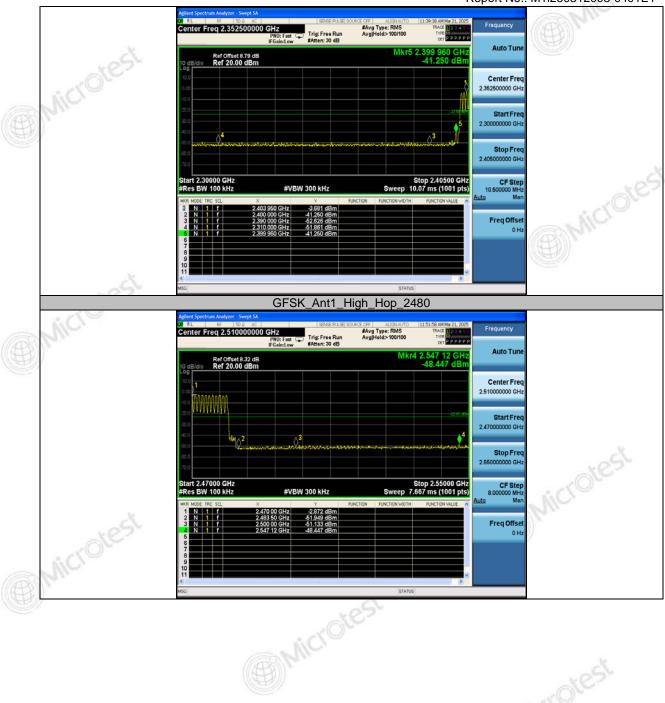


Report No.: MTi250312008-0401E1

AMicrotest

Microtest


Test Graphs


Report No.: MTi250312008-0401E1

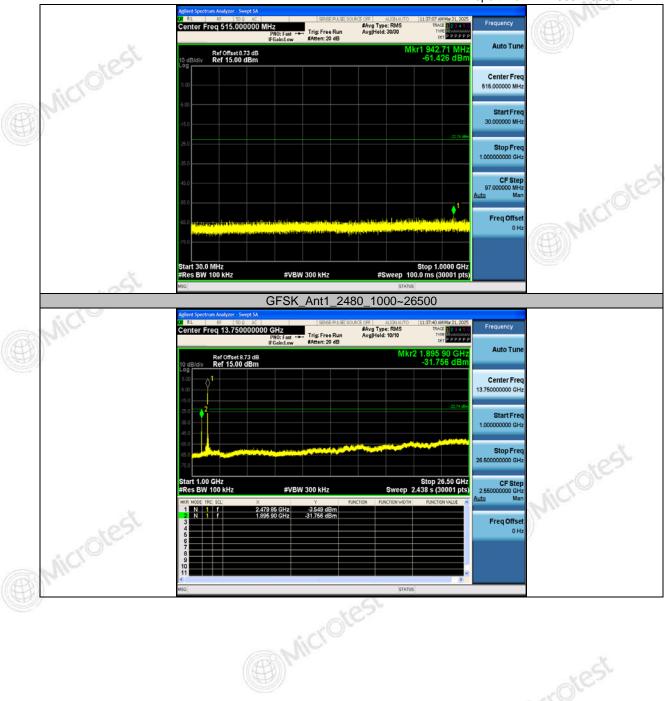
Appendix F: Band edge measurements

Report No.: MTi250312008-0401E1

Report No.: MTi250312008-0401E1

Appendix G: Conducted Spurious Emission

Report No.: MTi250312008-0401E1


Report No.: MTi250312008-0401E1

Microtest

Report No.: MTi250312008-0401E1

Report No.: MTi250312008-0401E1

- 1. This report is invalid without the seal and signature of the laboratory.
- 2. The test results of this report are only responsible for the samples submitted. Client shall be responsible for representativeness of the sample and authenticity of the material.
- 3. The report shall not be partially reproduced without the written consent of the Laboratory.
- 4. This report is invalid if transferred, altered or tampered with in any form without authorization.
- 5. The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.
- 6. Any objection to this report shall be submitted to the laboratory within 15 days from the date of receipt of the report.