

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Fax: +86-512-66308368 Web: www.mrt-cert.com

Report No.: 1502RSU00501 Report Version: V01 Issue Date: 04-01-2015

MEASUREMENT REPORT FCC PART 15.247 WLAN 802.11b/g/n

FCC ID:	2ABLK-8X4G-2V2
APPLICANT:	Calix Inc.
Application Type:	Certification
Product:	WIFI dual band 4 GE LAN GPON HGU
Model No.:	844G-2, 854G-2
Trademark:	Calix
FCC Classification:	Digital Transmission System (DTS)
FCC Rule Part(s):	Part 15.247
Test Procedure(s):	ANSI C63.10-2013, KDB 558074 D01v03r02,
	KDB 662911 D01v02r01
Test Date:	Jan. 13 ~ Mar. 08, 2015

Reviewed By : Robin Wu (Robin Wu)

Approved By : Marlinchen

(Marlin Chen)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 558074 D01v03r02. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: 2ABLK-8X4G-2V2

Revision History

Report No.	Version	Description	Issue Date
1502RSU00501	Rev. 01	Initial report	04-01-2015

CONTENTS

Des	scriptio	n	Page
§2. 1	033 Ge	eneral Information	5
1.	INTRO	ODUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROE	DUCT INFORMATION	7
	2.1.	Equipment Description	7
	2.2.	Applicable Standards	7
	2.3.	Working Frequencies	8
	2.4.	Description of Available Antennas	9
	2.5.	Description of Antenna RF Port	10
	2.6.	Test Mode	10
	2.7.	Test Software	
	2.8.	Device Capabilities	12
	2.9.	Test Configuration	13
	2.10.	EMI Suppression Device(s)/Modifications	13
	2.11.	Labeling Requirements	13
3.	DESC	CRIPTION of TEST	14
	3.1.	Evaluation Procedure	14
	3.2.	AC Line Conducted Emissions	14
	3.3.	Radiated Emissions	15
4.	ANTE	ENNA REQUIREMENTS	16
5.	TEST	EQUIPMENT CALIBRATION DATE	17
6.	MEAS	SUREMENT UNCERTAINTY	18
7.	TEST	RESULT	19
	7.1.	Summary	19
	7.2.	6dB Bandwidth Measurement	20
	7.2.1.	Test Limit	20
	7.2.2.	Test Procedure used	20
	7.2.3.	Test Setting	20
	7.2.4.	Test Setup	20
	7.2.5.	Test Result	21
	7.3.	Output Power Measurement	33

7.3.1.	Test Limit	33
7.3.2.	Test Procedure Used	33
7.3.3.	Test Setting	
7.3.4.	Test Setup	
7.3.5.	Test Result of Output Power	34
7.4.	Power Spectral Density Measurement	
7.4.1.	Test Limit	
7.4.2.	Test Procedure Used	37
7.4.3.	Test Setting	37
7.4.4.	Test Setup	
7.4.5.	Test Result	39
7.5.	Conducted Band Edge and Out-of-Band Emissions	50
7.5.1.	Test Limit	50
7.5.2.	Test Procedure Used	50
7.5.3.	Test Settitng	50
7.5.4.	Test Setup	51
7.5.5.	Test Result	52
7.6.	Radiated Spurious Emission Measurement	74
7.6.1.	Test Limit	74
7.6.2.	Test Procedure Used	74
7.6.3.	Test Setting	74
7.6.4.	Test Setup	76
7.6.5.	Test Result	78
7.7.	Radiated Restricted Band Edge Measurement	
7.7.1.	Test Result	108
7.8.	AC Conducted Emissions Measurement	172
7.8.1.	Test Limit	172
7.8.2.	Test Setup	172
7.8.3.	Test Result	173
CONC	CLUSION	175

8.

Applicant:	Calix Inc.		
Applicant Address:	1035 N. McDowell Blvd Petaluma, CA94954 U.S.A		
Manufacturer:	Calix Inc.		
Manufacturer Address:	1035 N. McDowell Blvd Petaluma, CA94954 U.S.A		
Test Site:	MRT Technology (Suzhou) Co., Ltd		
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong		
	Economic Development Zone, Suzhou, China		
MRT Registration No.:	809388		
FCC Rule Part(s):	Part 15.247		
Model No.:	844G-2, 854G-2		
FCC ID:	2ABLK-8X4G-2V2		
Test Device Serial No.:	N/A Droduction Pre-Production Engineering		
FCC Classification:	Digital Transmission System (DTS)		

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 809388) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-4179, G-814, C-4664, T-2206) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules.

Iac-MRA	American Association for Laboratory Accreditation
	Accredited Laboratory
MRT	TECHNOLOGY (SUZHOU) CO., LTD.
	Suzhou, China for technical competence in the field of
	Electrical Testing
the competence of test	credital in accordance with the recognized International Standard ISO IEC. 17025-2005 General requirements for ing and calibration kaloratorias. This accordination derivantines isolatical competence for a defined scope and the laboratory quality imagement system (refer to joint SO-JAC-JAF Communique data data Sananzy 2009).
	Presented this 17th day of Jame 2014.
	Ple Mag- Predad & CEV Predad & CEV Contractor North Valid to August 31, 2016
For the	nan n which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	WIFI dual band 4 GE LAN GPON HGU		
Model No.	844G-2, 854G-2		
Frequency Range	802.11b/g/n-HT20: 2412 ~ 2462 MHz		
	802.11n-HT40: 2422 ~ 2452 MHz		
Maximum Output Power	802.11b: 20.4dBm		
	802.11g: 20.12dBm		
	802.11n-HT20: 20.43dBm		
	802.11n-HT40: 19.87dBm		
Type of Modulation	802.11b: DSSS		
	802.11g/n: OFDM		

2.2. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.207
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- ANSI C63.10-2013

Note:

- 1. All the test items were verified and recorded according to the standards and without any deviation during the test.
- 2. FCC permits the use of the 1.5 meter table as an alternative in ANSI C63.10-2013 through inquiry tracking number 198796.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B recorded in a separate report.

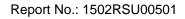
2.3. Working Frequencies

Channel List for 802.11b/g/n-HT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz
04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz
10	2457 MHz	11	2462 MHz	N/A	N/A

Channel List for 802.11n-HT40

Channel	Frequency	Channel	Frequency	Channel	Frequency
03	2422 MHz	04	2427 MHz	05	2432 MHz
06	2437 MHz	07	2442 MHz	08	2447 MHz
09	2452 MHz	N/A	N/A	N/A	N/A


2.4. Description of Available Antennas

Antenna Type	Frequency Band (GHz)	T _x Paths	Directional Gain (dBi)
PCB Antenna	2.4	2	1.90

Antenna	Frequency	T _x Paths	Directional Gain (dBi)		
Туре	Band (GHz)		Beam Forming	CDD	
	5.2	4	8.04	8.04	
PCB Antenna	5.3	4	7.78	7.78	
	5.6	4	8.38	8.38	
	5.8	4	8.70	8.70	

Note:

- 1. Transmit at 2.4GHz support two antennas, and support four antennas at 5GHz transmit. There are different antenna gains between each antenna.
- 2. The EUT working on Beam Forming mode, and the Beam Forming support 802.11n/ac, not include 802.11a, and 802.11a working on CDD mode.
- 3. Correlated signals include, but are not limited to, signals transmitted in any of the following modes:
 - Any transmit Beam Forming mode, whether fixed or adaptive (e.g., phased array modes, closed loop MIMO modes, Transmitter Adaptive Antenna modes, Maximum Ratio Transmission (MRT) modes, and Statistical Eigen Beam Forming (EBF) modes).
- 4. Unequal antenna gains, with equal transmit powers. For antenna gains given by $G_1, G_2, ..., G_N$ dBi
 - transmit signals are correlated, then
 - Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/N_{ANT}] dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]$

2.5. Description of Antenna RF Port

		RF Port					
Test Mode	Software Control Port						
2.4GHz T _X	Ant 0	Ant 1					
Test Mode		Software Control Port					
5GHz T _x	Ant 0	Ant 1	Ant 2	Ant 3			
Ant3 () Ant2 () Ant1 () Ant0 ()	SG Antenna Connector	2.4G Anta Connecto					

2.6. Test Mode

Test Mode	Mode 1: Transmit by 802.11b
	Mode 2: Transmit by 802.11g
	Mode 3: Transmit by 802.11n-HT20
	Mode 4: Transmit by 802.11n-HT40

2.7. Test Software

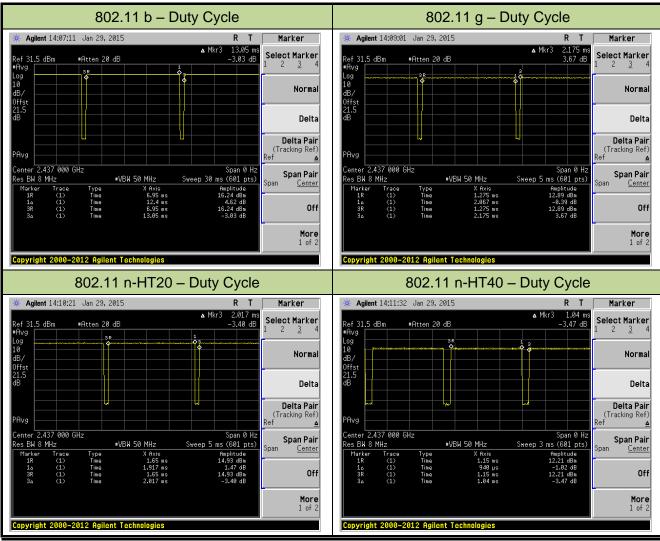
The test utility software used during testing was "MTool_2.0.07".

Final Power Parameter Value of the test software.

Test Mode	Test Frequency	Power Parameter Value			
	(MHz)	Ant 0	Ant 1		
	2412	19.0			
802.11b	2437	19.0	Not Support		
	2462	19.0			
	2412	17.0			
802.11g	2437	19.0	Not Support		
	2462	17.0			
	2412	16.0	16.0		
802.11n-HT20	2437	16.0	16.0		
	2462	16.0	16.0		
	2422	15.0	16.0		
802.11n-HT40	2437	16.0	16.0		
	2452	15.0	16.0		

Power Parameter Value for $2T_{\boldsymbol{X}}$

Test Mode	Test Frequency (MHz)	Power Parameter Value	
	2412	16.0	
802.11n-HT20	2437	16.0	
	2462	15.5	
	2422	15.0	
802.11n-HT40	2437	16.0	
	2452	14.5	


2.8. Device Capabilities

This device contains the following capabilities:

2.4GHz WLAN (DTS) & 5GHz WLAN (UNII).

Note: 2.4GHz WLAN (DTS) operation is possible in 20MHz, and 40MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of KDB 558074 D01v03r02. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Test Mode	Duty Cycle		
802.11b	95.0%		
802.11g	95.0%		
802.11n-HT20	95.0%		
802.11n-HT40	90.4%		

FCC ID: 2ABLK-8X4G-2V2

2.9. Test Configuration

The **WIFI dual band 4 GE LAN GPON HGU FCC ID: 2ABLK-8X4G-2V2** was tested per the guidance of KDB 558074 D01v03r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.10. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.11. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 558074 D01v03r02 were used in the measurement of the **WIFI dual band 4 GE LAN GPON HGU FCC ID**:

2ABLK-8X4G-2V2.

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

Line conducted emissions test results are shown in Section 7.8.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of **WIFI dual band 4 GE LAN GPON HGU** is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The **WIFI dual band 4 GE LAN GPON HGU FCC ID: 2ABLK-8X4G-2V2** unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	101209	1 year	2015/11/07
Two-Line V-Network	R&S	ENV216	101683	1 year	2015/11/07
Two-Line V-Network	R&S	ENV216	101684	1 year	2015/11/07
Temperature/ Meter Humidity	Anymetre	TH101B	SR2-01	1 year	2015/11/14

Radiated Emission

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2015/10/09
EMI Test Receiver	R&S	ESR7	101209	1 year	2015/11/07
Preamplifier	MRT	AP18G40	S-001	1 year	2015/10/06
Preamplifier	MRT	AP01G18	S-001	1 year	2015/12/13
Loop Antenna	Schwarzbeck	FMZB1519	1519-041	1 year	2015/11/08
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2015/11/08
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1167	1 year	2015/11/08
Broadband Horn Antenna	Schwarzbeck	BBHA9170	9170-549	1 year	2016/01/05
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2015/11/14

Conducted Test Equipment

Instrument	Manufacturer	Туре No.	Serial No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	N9020A	MY52090106	1 year	2015/04/23
USB Wideband Power Sensor	Boonton	55006	8911	1 year	2015/10/15
Temperature/Humidity Meter	Anymetre	TH101B	TR3-01	1 year	2015/11/14

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
150kHz~30MHz: 3.46dB
Radiated Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
9kHz ~ 1GHz: 4.18dB
1GHz ~ 25GHz: 4.76dB

7. TEST RESULT

7.1. Summary

Product Name:	WIFI dual band 4 GE LAN GPON HGU
FCC ID:	2ABLK-8X4G-2V2
FCC Classification:	Digital Transmission System (DTS)
Data Rate(s) Tested:	<u>1Mbps ~ 11Mbps (b);</u>
	<u>6Mbps ~ 54Mbps (g);</u>
	<u>6.5/7.2Mbps ~ 130/144.4Mbps (n-HT20);</u>
	<u> 13.5/15Mbps ~ 270/300Mbps (n-HT40)</u>

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	6dB Bandwidth	≥ 500kHz	Conducted	Pass	Section 7.2
15.247(b)(3)	Output Power	≤ 30dBm		Pass	Section 7.3
15.247(e)	Power Spectral Density	≤ 8dBm/3kHz		Pass	Section 7.4
15.247(d)	Band Edge / Out-of-Band Emissions	≥ 30dBc(Average)		Pass	Section 7.5
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.6 & 7.7
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.8

Notes:

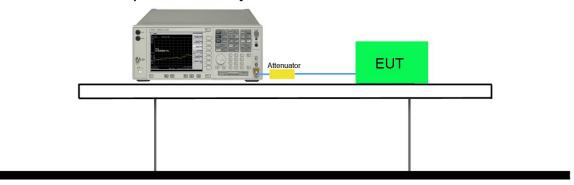
- All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

7.2. 6dB Bandwidth Measurement

7.2.1. Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

7.2.2. Test Procedure used


KDB 558074 D01v03r02 - Section 8.2 Option 2

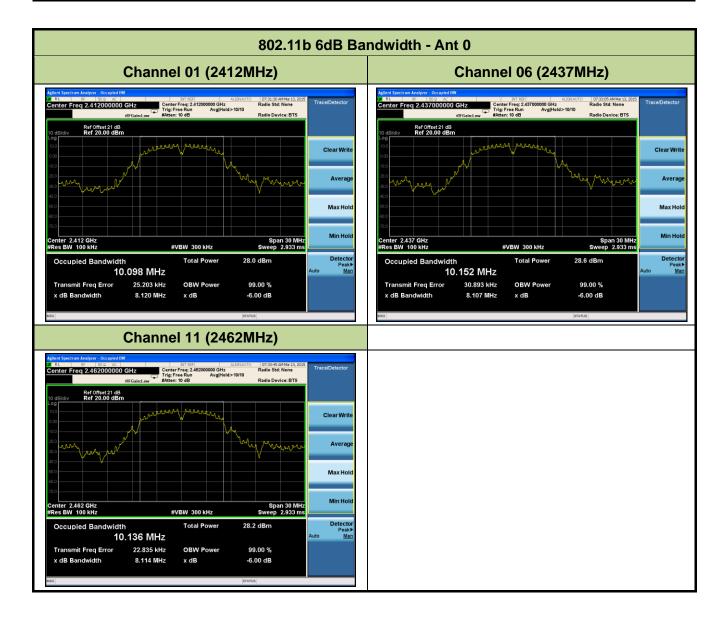
7.2.3. Test Setting

- The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. Set RBW = 100 kHz
- 3. VBW \geq 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize

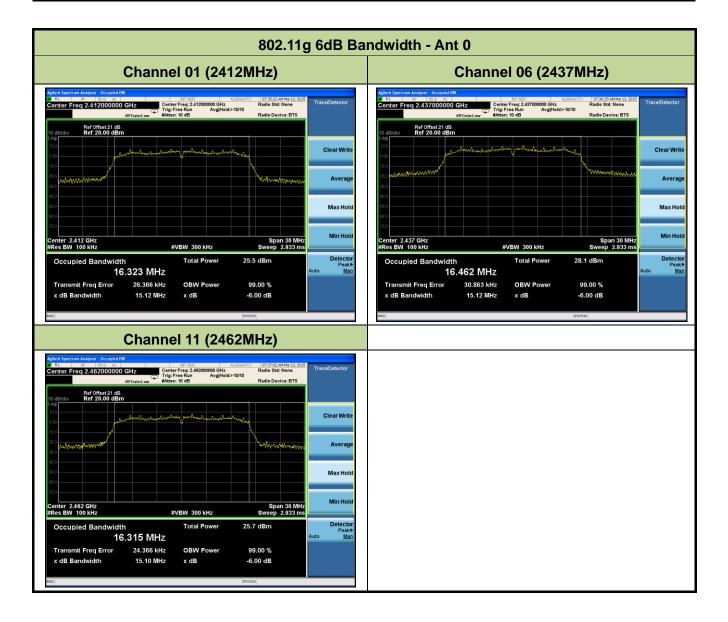
7.2.4. Test Setup

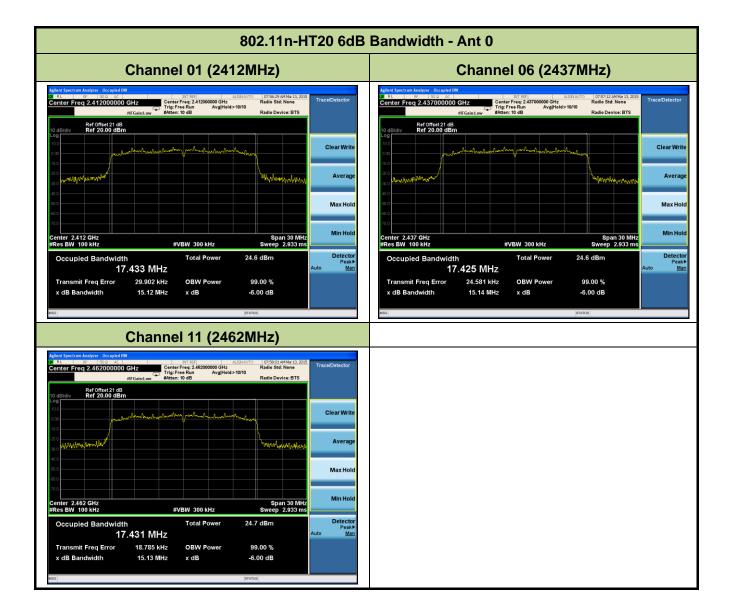
Spectrum Analyzer

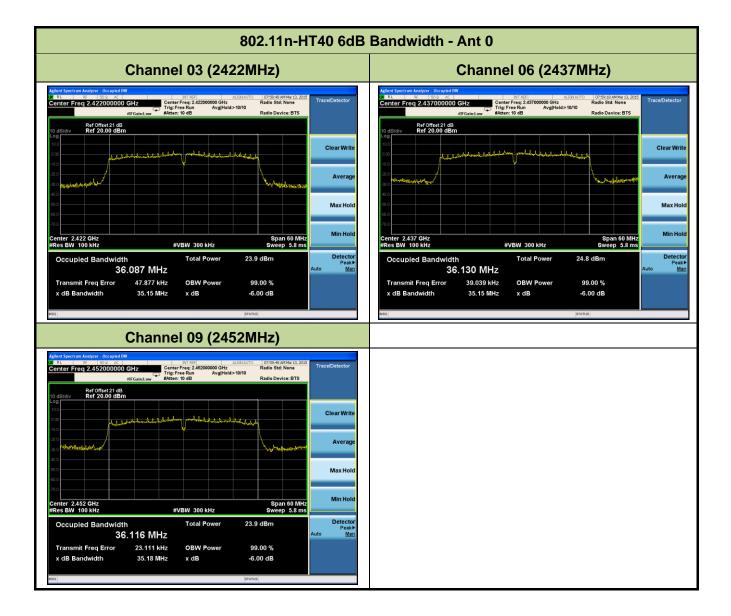
7.2.5. Test Result

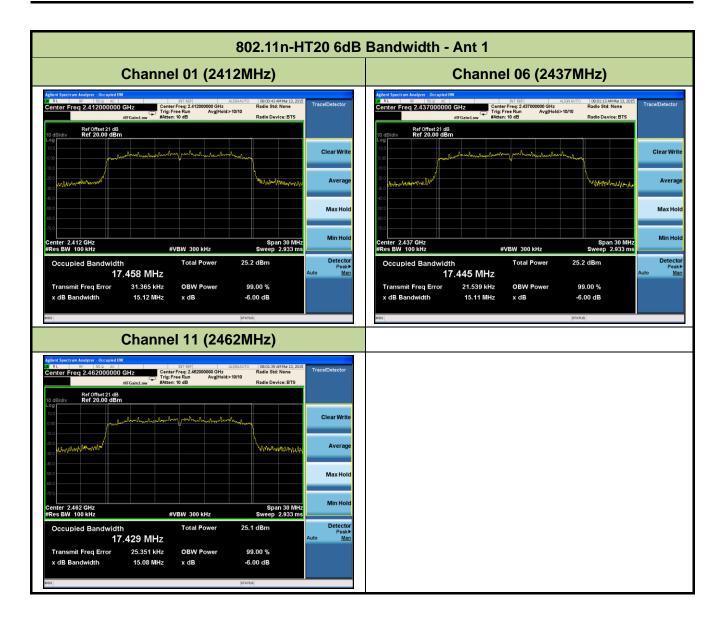

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Result		
Ant 0								
802.11b	1	01	2412	8.12	≥0.5	Pass		
802.11b	1	06	2437	8.11	≥0.5	Pass		
802.11b	1	11	2462	8.11	≥0.5	Pass		
802.11g	6	01	2412	15.12	≥0.5	Pass		
802.11g	6	06	2437	15.12	≥0.5	Pass		
802.11g	6	11	2462	15.10	≥0.5	Pass		
802.11n-HT20	6.5	01	2412	15.12	≥0.5	Pass		
802.11n-HT20	6.5	06	2437	15.14	≥0.5	Pass		
802.11n-HT20	6.5	11	2462	15.13	≥0.5	Pass		
802.11n-HT40	13.5	03	2422	35.15	≥0.5	Pass		
802.11n-HT40	13.5	06	2437	35.15	≥0.5	Pass		
802.11n-HT40	13.5	09	2452	35.18	≥0.5	Pass		
Ant 1								
802.11n-HT20	6.5	01	2412	15.12	≥0.5	Pass		
802.11n-HT20	6.5	06	2437	15.11	≥0.5	Pass		
802.11n-HT20	6.5	11	2462	15.08	≥0.5	Pass		
802.11n-HT40	13.5	03	2422	35.15	≥0.5	Pass		
802.11n-HT40	13.5	06	2437	35.17	≥0.5	Pass		
802.11n-HT40	13.5	09	2452	35.35	≥0.5	Pass		

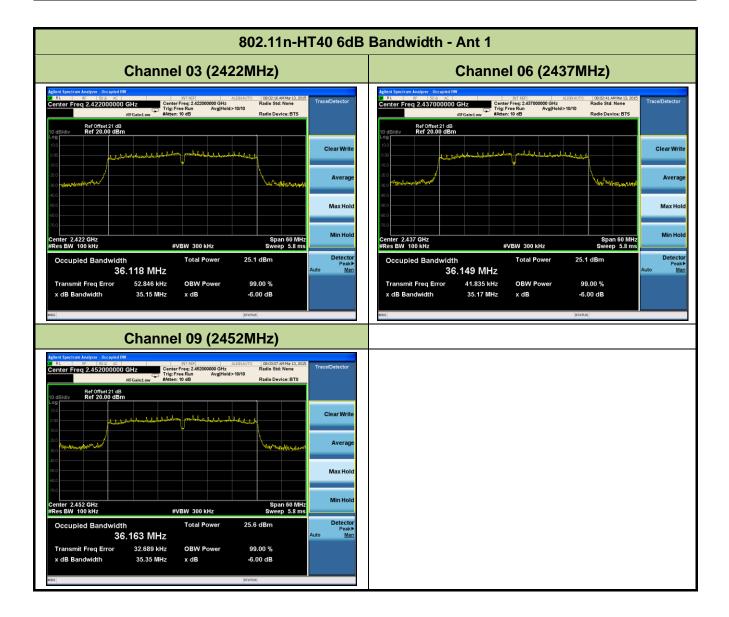
Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Result		
Ant 0 / Ant 0 + 1								
802.11n-HT20	6.5	01	2412	15.12	≥0.5	Pass		
802.11n-HT20	6.5	06	2437	15.11	≥0.5	Pass		
802.11n-HT20	6.5	11	2462	15.12	≥0.5	Pass		
802.11n-HT40	13.5	03	2422	35.18	≥0.5	Pass		
802.11n-HT40	13.5	06	2437	35.45	≥0.5	Pass		
802.11n-HT40	13.5	09	2452	35.45	≥0.5	Pass		
Ant 1 / Ant 0 + 1	1							
802.11n-HT20	6.5	01	2412	15.33	≥0.5	Pass		
802.11n-HT20	6.5	06	2437	15.13	≥0.5	Pass		
802.11n-HT20	6.5	11	2462	15.12	≥0.5	Pass		
802.11n-HT40	13.5	03	2422	35.15	≥0.5	Pass		
802.11n-HT40	13.5	06	2437	36.09	≥0.5	Pass		
802.11n-HT40	13.5	09	2452	36.44	≥0.5	Pass		

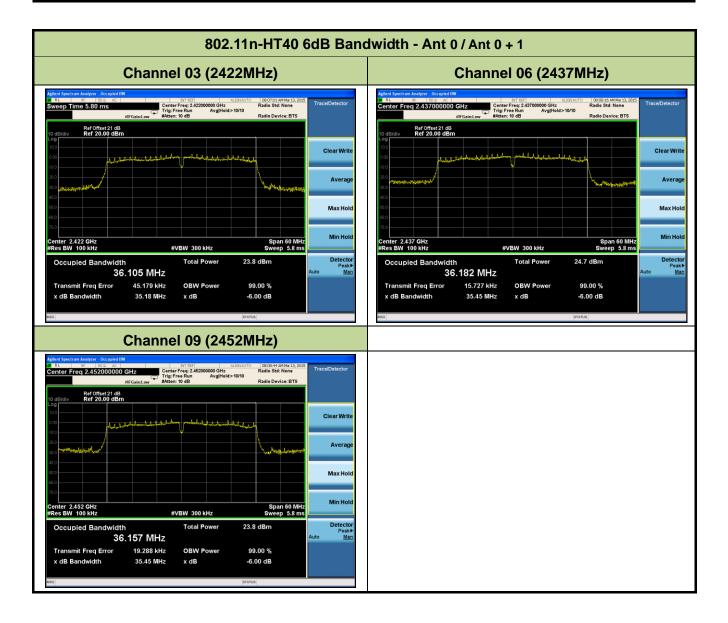




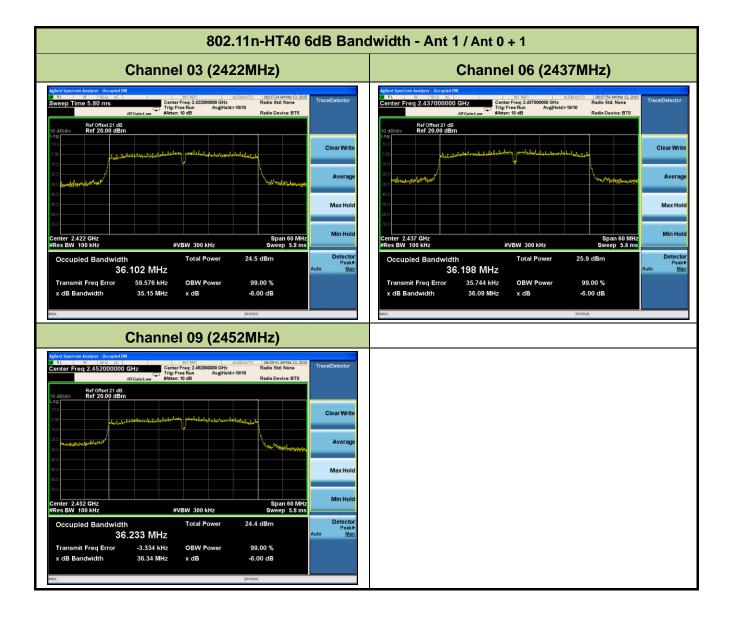








Channel 01 (2412MHz)	Channel 06 (2437MHz)				
Init Systems Analyses Ref. (182) ADJANITO (200452 MMrs 1), 2015 Init Systems Center Freq: 2412000000 GHz Radio Std: None Trace/Detect Init Freq: 2412000000 GHz Center Freq: 2412000000 GHz Radio Std: None Trace/Detect Init Freq: 241200000 GHz If Genter Freq: 24100000 GHz Radio Device: BTS Radio Device: BTS	Center Freq Zets/U00000 GHZ				
dildiv Ref 20.00 dBm	10 dB/div Ref 20.00 dBm Log 10 dB/div Ref 20.00 dBm Clog 100 Clear Wr				
	age age fully many market Avera				
	010				
الله المحمد ا وقالات المحمد ف	old Center 2.437 GHz Span 30 MHz #VBW 300 kHz Sweep 2.933 ms				
Transmit Freq Error 31.555 kHz OBW Power 99.00 %	Instruction 17.431 MHz Auto Mato Transmit Freq Error 17.851 kHz OBW Power 99.00 % x dB Bandwidth 15.11 MHz x dB -6.00 dB				
Transmit Freq Error 31.555 kHz OBW Power 99.00 % x dB Bandwidth 15.12 MHz x dB -6.00 dB D (ptanta)	Transmit Freq Error 17.851 kHz OBW Power 99.00 % x dB Bandwidth 15.11 MHz x dB -6.00 dB				
Transmit Freq Error 31.555 kHz OBW Power 99.00 % x dB Bandwidth 15.12 MHz x dB -6.00 dB	Transmit Freq Error 17.851 kHz OBW Power 99.00 % x dB Bandwidth 15.11 MHz x dB -6.00 dB				
Transmit Freq Error 31.555 kHz OBW Power 99.00 % x dB Bandwidth 15.12 MHz x dB -6.00 dB image: constraint of the state o	Transmit Freq Error 17.851 kHz OBW Power 99.00 % x dB Bandwidth 15.11 MHz x dB -6.00 dB				
Transmit Freq Error 31.555 kHz OBW Power 99.00 % x dB Bandwidth 15.12 MHz x dB -6.00 dB istatus istatus istatus Channel 11 (2462MHz) istatus end Sectors Analyzer - Occupied IW istatus No istatus inter Freq 2.462000000 GHz Generative a 462000000 GHz enter Freq 2.462000000 GHz Argibieldo 10/10 efficient.ov Argibieldo 10/10	Transmit Freq Error 17.851 kHz OBW Power 99.00 % x dB Bandwidth 15.11 MHz x dB -6.00 dB				
Transmit Freq Error 31.555 kHz OBW Power 99.00 %, x dB Bandwidth 15.12 MHz x dB -6.00 dB	Transmit Freq Error 17.851 kHz OBW Power 99.00 % x dB Bandwidth 15.11 MHz x dB -6.00 dB				
Transmit Freq Error 31.555 kHz OBW Power 99.00 % x dB Bandwidth 15.12 MHz x dB -6.00 dB	Transmit Freq Error 17.851 kHz OBW Power 99.00 % x dB Bandwidth 15.11 MHz x dB -6.00 dB				
Transmit Freq Error 31.555 kHz OBW Power 99.00 %, x dB Bandwidth 15.12 MHz x dB 6.00 dB	Transmit Freq Error 17.851 kHz OBW Power 99.00 % x dB Bandwidth 15.11 MHz x dB -6.00 dB				



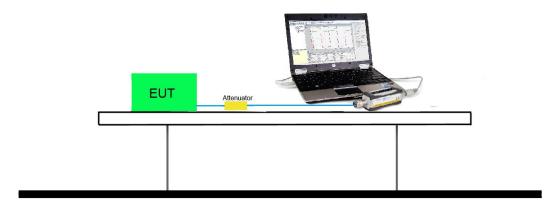
Cha	annel 01 (2412	MHz)		Channel 06 (2437MHz)				
ent Spectrum Analyzer - Occupied BW RL RF SOD AC Inter Freq 2.412000000 GHz #IFGaincl.or	DNT REF ALIGN. Center Freq:2.41200000 GHz Trig: Freq Run Avg Hold>10/1 #Atten: 10 dB	AUTO 08:04:03 AMMar 13, 2015 Radio Std: None 0 Radio Device: BTS	Center Freq 2.437000000	INT REF	ALISY AUTO 08:05:29 AM Mar 13, 2015 Radio Std: None d>10/10 Radio Device: BTS	Trace/Detector		
Bildivi Ref Offset 21 dB Ref 20.00 dBm	And and the provident and the	Share Clear	Ref Offset 21 dB Log 10 dB/div Ref 20.00 dBm 100 dB/div Ref 20.00 dBm	وسالمان وعالمت المتعم ومتعمل معارم وعالمان والمعام المعالم	when	Clear Writ		
wanna wanna		When Wether	-10.0 -00.0 -00.0		Whatmburne	Avera		
		Max	x Hold 40.0			Max Ho		
nter 2.412 GHz es BW 100 kHz	#VBW 300 kHz	Span 30 MHz Sweep 2.933 ms	n Hold Center 2.437 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 30 MHz Sweep 2.933 ms	Min Ho		
17.466 Transmit Freq Error 20.3 x dB Bandwidth 15.3	31 kHz OBW Power 3 MHz x dB	99.00 % -6.00 dB	Occupied Bandwidth Man Man Transmit Freq Error x dB Bandwidth max_rFile <picture_png> save</picture_png>	.480 MHz 16.605 kHz OBW Power 15.13 MHz x dB	99.00 % -6.00 dB status			
17.466 Transmit Freq Error 20.3 x dB Bandwidth 15.3 Char en Spectrum Andyrer, Dougled DV	MHz 31 kHz OBW Power 3 MHz x dB 2 annel 11 (2462 Contre res 24000000 (b) 2000	99.00 % -6.00 dB stratus SMHz) 2007 00055 MM 12 200 Ballo Str Nore Trace/Dete	Man Transmit Freq Error x dB Bandwidth tto J-File <picture png=""> save</picture>	16.605 kHz OBW Power 15.13 MHz x dB	99.00 % -6.00 dB			
17.466 Transmit Freq Error 20.3 x dB Bandwidth 15.3 Chai	MHz 31 kHz OBW Power 3 MHz x dB annel 11 (2462 C 10 KHZ A 40000 GHz C 10 KHZ C 1	99.00 % -6.00 dB stratus SMHz) 2007 00055 MM 12.000 Ballo Str. None Trace/Dete	Man Transmit Freq Error x dB Bandwidth tto J-File <picture png=""> save</picture>	16.605 kHz OBW Power 15.13 MHz x dB	99.00 % -6.00 dB	Peas uuto Mi		
17.466 Transmit Freq Error 20.33 t dB Bandwidth 15.3 Chat Reference 2.462000000 GHz Ref Order 21.46 Ref Order	MHz 31 kHz OBW Power 3 MHz x dB annel 11 (2462 C 10 KHZ A 40000 GHz C 10 KHZ C 1	99.00 % -6.00 dB STATUS STATUS STATUS STATUS STATUS STATUS STATUS STATUS Tracel Dets Radio Device: BTS I Tracel Dets	Man Transmit Freq Error x dB Bandwidth tto J-File <picture png=""> save</picture>	16.605 kHz OBW Power 15.13 MHz x dB	99.00 % -6.00 dB			
17.466 Transmit Freq Error 20.33 k dB Bandwidth 15.3 Chaa state of the second s	MHz 31 kHz OBW Power 31 kHz X dB 21 kHz X	99.00 % -6.00 dB granus SMHZ) TracelDete Radio Series: BTS 	transmit Freq Error x dB Bandwidth wol_J-File <picture_png> save</picture_png>	16.605 kHz OBW Power 15.13 MHz x dB	99.00 % -6.00 dB			
17.466	MHz 31 kHz OBW Power 31 kHz X dB 21 kHz X	99.00 % -6.00 dB Auto gmmum -5.00 dB	Main 17 Transmit Freq Error x dB Bandwidth una U, Flie <picture_png> save</picture_png>	16.605 kHz OBW Power 15.13 MHz x dB	99.00 % -6.00 dB			
17.466 Transmit Freq Error 20.3 x dB Bandwidth 15.3 Char	MHz 31 kHz OBW Power 31 kHz X dB 21 kHz X	99.00 % -6.00 dB	Man 17 Transmit Freq Error x dB Bandwidth wa J.Flie <picture png=""> save</picture>	16.605 kHz OBW Power 15.13 MHz x dB	99.00 % -6.00 dB			
Transmit Freq Error 20.3 x dB Bandwidth 15.3	MHz 31 kHz OBW Power 33 MHz x dB annel 11 (2462 ConterFree24600000 GHz Tig:FreeRom ArgHeid>101 ConterFree24600000 GHz Tig:FreeRom ArgHeid>101 ConterFree2460000 GHz 400 Very Market 100 Very Market 100 Very Market 100 Total Power 100	99.00 % -6.00 dB	transmit Freq Error x dB Bandwidth vici U/File <picture png=""> save</picture>	16.605 kHz OBW Power 15.13 MHz x dB	99.00 % -6.00 dB			

7.3. Output Power Measurement

7.3.1. Test Limit

The maximum out power shall be less 1 Watt (30dBm).

7.3.2. Test Procedure Used


KDB 558074 D01v03r02 - Section 9.2.3.2 AVGPM-G Average Power Method

7.3.3. Test Setting

Average Power Measurement

Average power measurements were perform only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

7.3.4. Test Setup

7.3.5. Test Result of Output Power

Power output test was verified over all data rates of each mode shown as below, and then choose the maximum power output (yellow marker) for final test of each channel.

MCS Index		Data Rate (Mbps)						
for 802.11n	Ντχ	802.11b	802.11g	20MHz Ba	Indwidth	40MHz Bandwidth		
101 002.1111		602.TTD	602.TTg	800ns GI	400ns GI	800ns GI	400ns GI	
0	1	1	6	6.5	7.2	13.5	15.0	
1	1	2	9	13.0	14.4	27.0	30.0	
2	1	5.5	12	19.5	21.7	40.5	45.0	
3	1	11	18	26.0	28.9	54.0	60.0	
4	1		24	39.0	43.3	81.0	90.0	
5	1		36	52.0	57.8	108.0	120.0	
6	1		48	58.5	65.0	121.5	135.0	
7	1		54	65.0	72.2	135.0	150.0	
8	2			13.0	14.4	27.0	30.0	
9	2			26.0	28.9	54.0	60.0	
10	2			39.0	43.3	81.0	90.0	
11	2			52.0	57.8	108.0	120.0	
12	2			78.0	86.7	162.0	180.0	
13	2			104.0	115.6	216.0	240.0	
14	2			117.0	130.0	243.0	270.0	
15	2			130.0	144.0	270.0	300.0	

Output power at various data rates for Ant 0:

Test Mode	Bandwidth (MHz)	Channel No.	Frequency (MHz)	Data Rate (Mbps)	Average Power (dBm)
				1	20.16
802.11b	20	6	2437	5.5	19.97
				11	19.53
				6	20.12
802.11g	20	6	2437	24	19.72
				54	19.38
	20	6	2437	6.5	17.04
				7.2	16.98
000 44.5				52	16.69
802.11n				57.8	16.65
				130	16.16
				144	16.11
	40	6	2437	13.5	16.74
				15	16.70
				108	16.27
802.11n				120	16.22
				270	15.84
				300	15.80

Test Result of Average Output Power

Test Mode	Data Rate	Channel	Freq.	Ant 0	Ant 1	Total	Limit	Result
	(Mbps)	No.	(MHz)	Average	Average	Average	(dBm)	
				Power	Power	Power		
				(dBm)	(dBm)	(dBm)		
Ant 0								
11b	1	1	2412	19.99		19.99	≤30	Pass
11b	1	6	2437	20.16		20.16	≤30	Pass
11b	1	11	2462	20.74		20.74	≤30	Pass
11g	6	1	2412	17.69		17.69	≤30	Pass
11g	6	6	2437	20.12		20.12	≤30	Pass
11g	6	11	2462	18.19		18.19	≤30	Pass
11n-HT20	6.5	1	2412	16.76		16.76	≤30	Pass
11n-HT20	6.5	6	2437	17.04		17.04	≤30	Pass
11n-HT20	6.5	11	2462	16.96		16.96	≤30	Pass
11n-HT40	13.5	3	2422	15.87		15.87	≤30	Pass
11n-HT40	13.5	6	2437	16.74		16.74	≤30	Pass
11n-HT40	13.5	9	2452	15.88		15.88	≤30	Pass
Ant 1								
11n-HT20	6.5	1	2412		17.39	17.39	≤30	Pass
11n-HT20	6.5	6	2437		17.51	17.51	≤30	Pass
11n-HT20	6.5	11	2462		17.25	17.25	≤30	Pass
11n-HT40	13.5	3	2422		17.05	17.05	≤30	Pass
11n-HT40	13.5	6	2437		17.28	17.28	≤30	Pass
11n-HT40	13.5	9	2452		17.15	17.15	≤30	Pass
Ant 0 + 1								
11n-HT20	6.5	1	2412	17.09	17.41	20.26	≤30	Pass
11n-HT20	6.5	6	2437	17.37	17.47	20.43	≤30	Pass
11n-HT20	6.5	11	2462	17.22	16.78	20.02	≤30	Pass
11n-HT40	13.5	3	2422	15.88	16.35	19.13	≤30	Pass
11n-HT40	13.5	6	2437	16.66	17.05	19.87	≤30	Pass
11n-HT40	13.5	9	2452	15.38	15.68	18.54	≤30	Pass

Note: Total Average Power (dBm) = $10^{\text{Note: Total Average Power /10)}} + 10^{(\text{Ant 1 Average Power /10)}}$ (dBm).

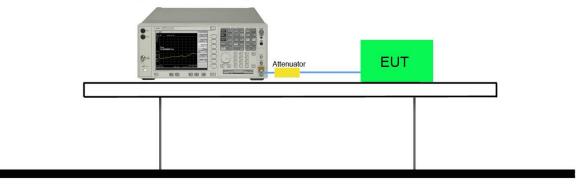
7.4. Power Spectral Density Measurement

7.4.1. Test Limit

The maximum permissible power spectral density is 8dBm in any 3 kHz band.

7.4.2. Test Procedure Used

KDB 558074 D01v03r02 - Section 10.5 Method AVGPSD

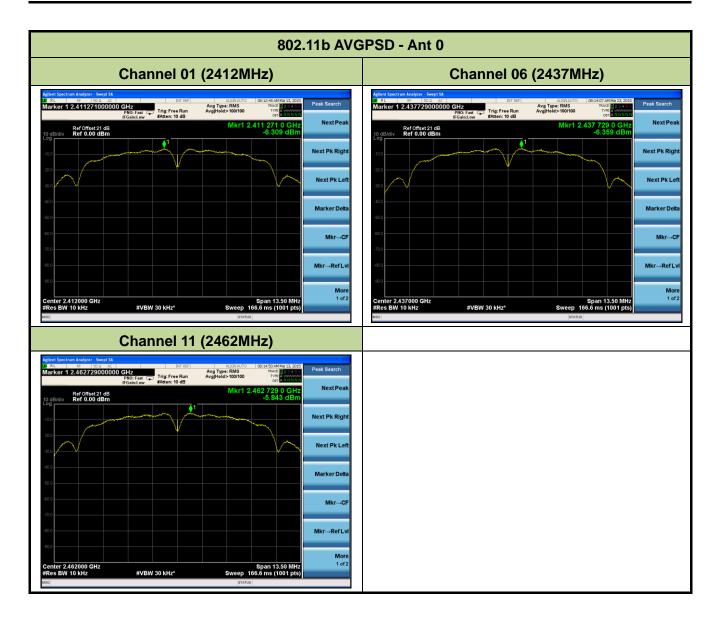

7.4.3. Test Setting

- 1. Measure the duty cycle (x) of the transmitter output signal
- 2. Set instrument center frequency to DTS channel center frequency.
- 3. Set span to at least 1.5 times the OBW.
- 4. RBW = 10kHz
- 5. VBW = 30kHz
- 6. Detector = RMS
- 7. Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- 8. Sweep time = auto couple
- 9. Don't use sweep triggering. Allow sweep to "free run".
- 10. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time.
- 13. Add Constant Factor = $10^{10}(3kHz / 10kHz) = -5.23$

7.4.4. Test Setup

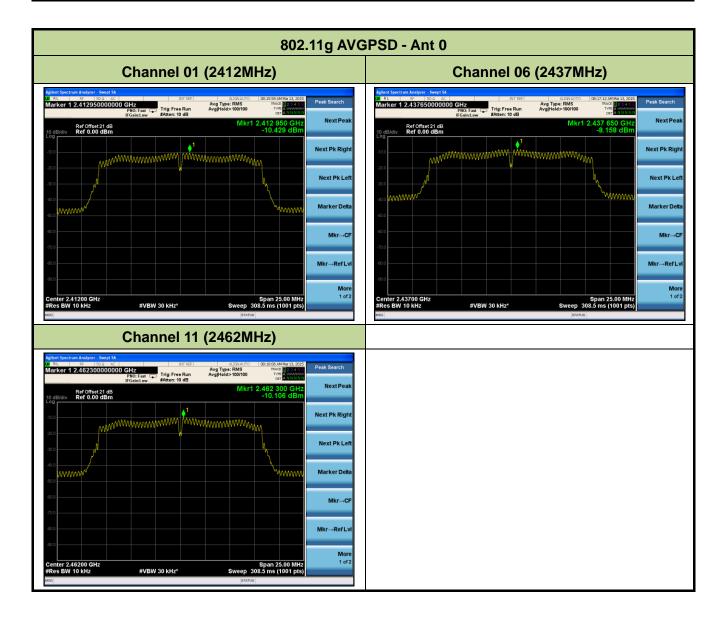
Spectrum Analyzer

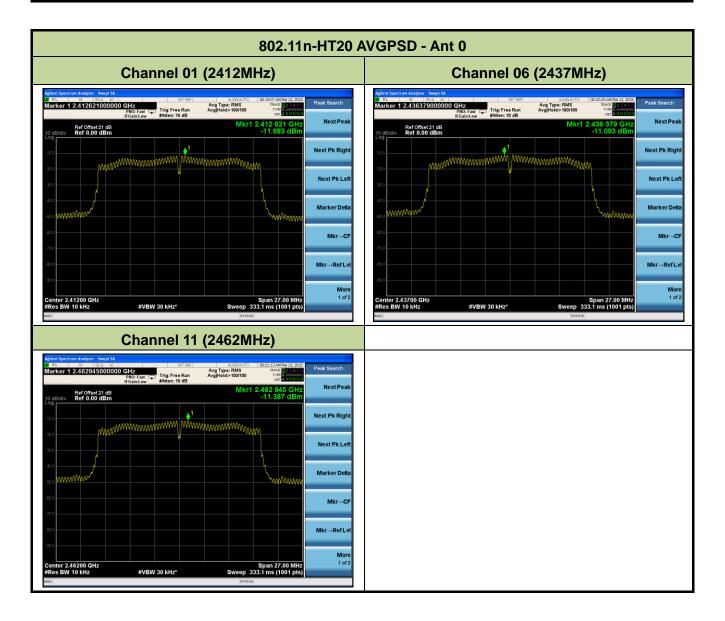
7.4.5. Test Result

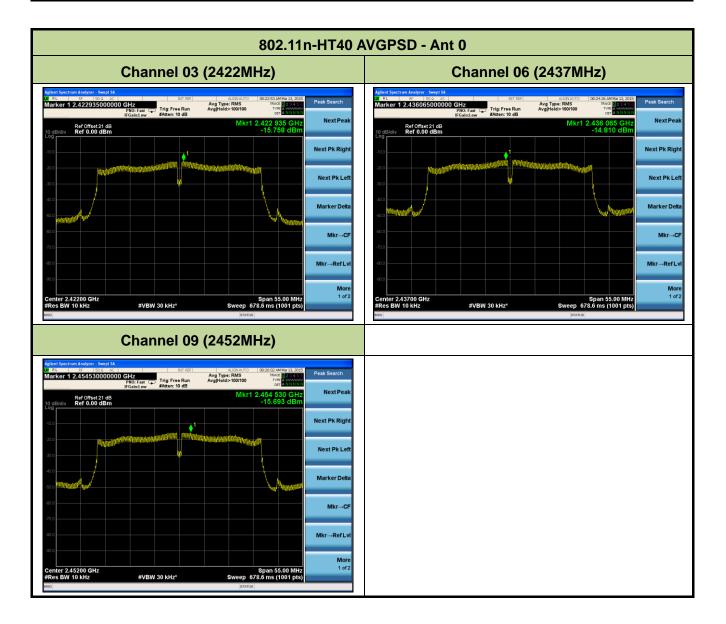

Test Mode	Data	Channel	Freq.	Ant 0	Ant 1	Duty	Constant	Total	Limit	Result
	Rate	No.	(MHz)	AVGPSD	AVGPSD	Cycle	Factor	AVGPSD	(dBm /	
	(Mbps)			(dBm /	(dBm /	(%)		(dBm /	3kHz)	
				10kHz)	10kHz)			3kHz)		
Ant 0										
11b	1	1	2412	-6.31		95.0	-5.23	-11.54	≤8.0	Pass
11b	1	6	2437	-6.36		95.0	-5.23	-11.59	≤8.0	Pass
11b	1	11	2462	-5.84		95.0	-5.23	-11.07	≤8.0	Pass
11g	6	1	2412	-10.43		95.0	-5.23	-15.66	≤8.0	Pass
11g	6	6	2437	-8.16		95.0	-5.23	-13.39	≤8.0	Pass
11g	6	11	2462	-10.11		95.0	-5.23	-15.34	≤8.0	Pass
11n-HT20	6.5	1	2412	-11.68		95.0	-5.23	-16.91	≤8.0	Pass
11n-HT20	6.5	6	2437	-11.09		95.0	-5.23	-16.32	≤8.0	Pass
11n-HT20	6.5	11	2462	-11.39		95.0	-5.23	-16.62	≤8.0	Pass
11n-HT40	13.5	3	2422	-15.76		90.4	-5.23	-20.99	≤8.0	Pass
11n-HT40	13.5	6	2437	-14.81		90.4	-5.23	-20.04	≤8.0	Pass
11n-HT40	13.5	9	2452	-15.69		90.4	-5.23	-20.92	≤8.0	Pass
Ant 1										
11n-HT20	6.5	1	2412		-10.90	95.0	-5.23	-16.13	≤8.0	Pass
11n-HT20	6.5	6	2437		-10.84	95.0	-5.23	-16.07	≤8.0	Pass
11n-HT20	6.5	11	2462		-10.81	95.0	-5.23	-16.04	≤8.0	Pass
11n-HT40	13.5	3	2422		-14.27	90.4	-5.23	-19.50	≤8.0	Pass
11n-HT40	13.5	6	2437		-14.52	90.4	-5.23	-19.75	≤8.0	Pass
11n-HT40	13.5	9	2452		-14.21	90.4	-5.23	-19.44	≤8.0	Pass
Ant 0 + 1										
11n-HT20	6.5	1	2412	-12.02	-11.24	95.0	-5.23	-13.83	≤8.0	Pass
11n-HT20	6.5	6	2437	-11.16	-11.02	95.0	-5.23	-13.31	≤8.0	Pass
11n-HT20	6.5	11	2462	-11.51	-11.67	95.0	-5.23	-13.81	≤8.0	Pass
11n-HT40	13.5	3	2422	-15.78	-15.26	90.4	-5.23	-17.73	≤8.0	Pass
11n-HT40	13.5	6	2437	-14.75	-14.33	90.4	-5.23	-16.75	≤8.0	Pass
11n-HT40	13.5	9	2452	-15.51	-16.22	90.4	-5.23	-18.07	≤8.0	Pass

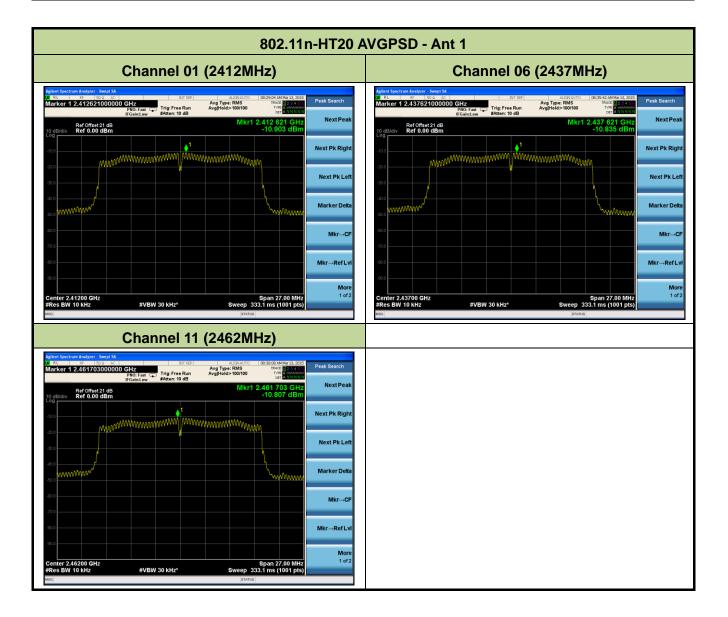
Note: When EUT duty cycle < 98%, the total AVGPSD = $10^{\text{(Ant 0 AVGPSD/10)}} + 10^{(\text{Ant 1 AVGPSD/10})} + 10^{(\text{Ant 1 AVGPSD/10})}$

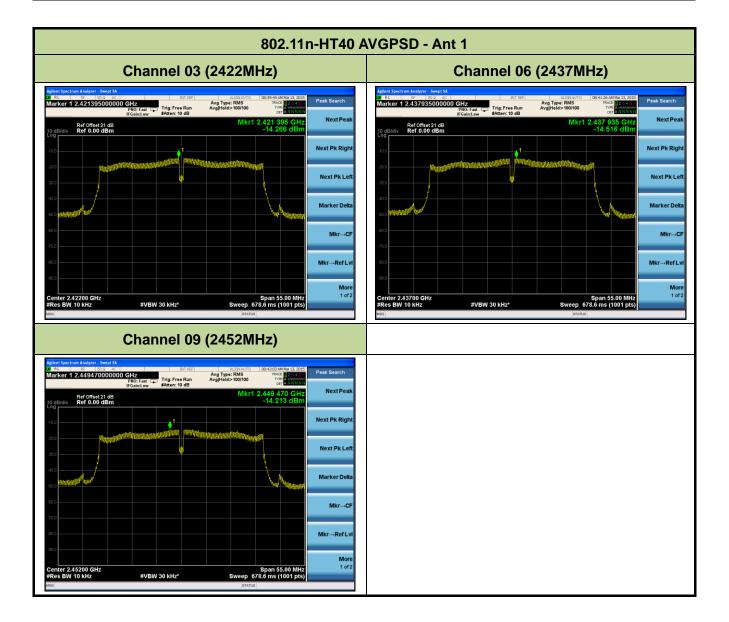
10*log(1/duty cycle) + Constant Factor.

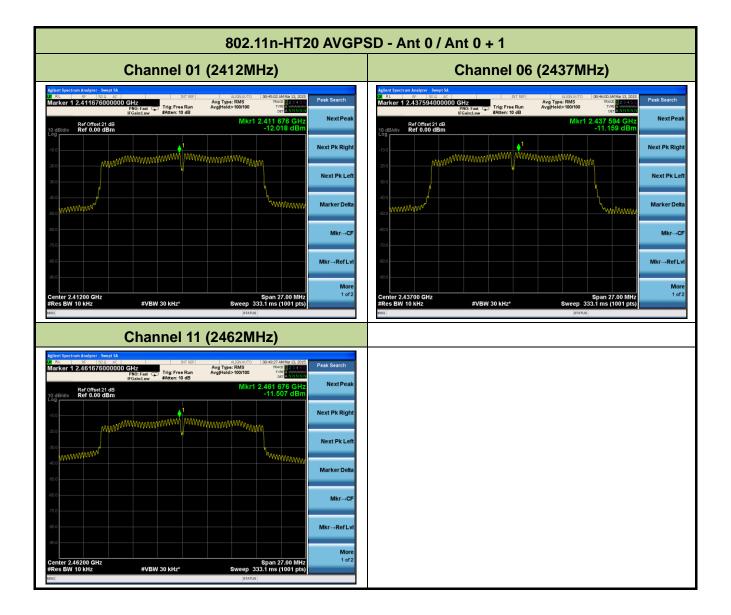


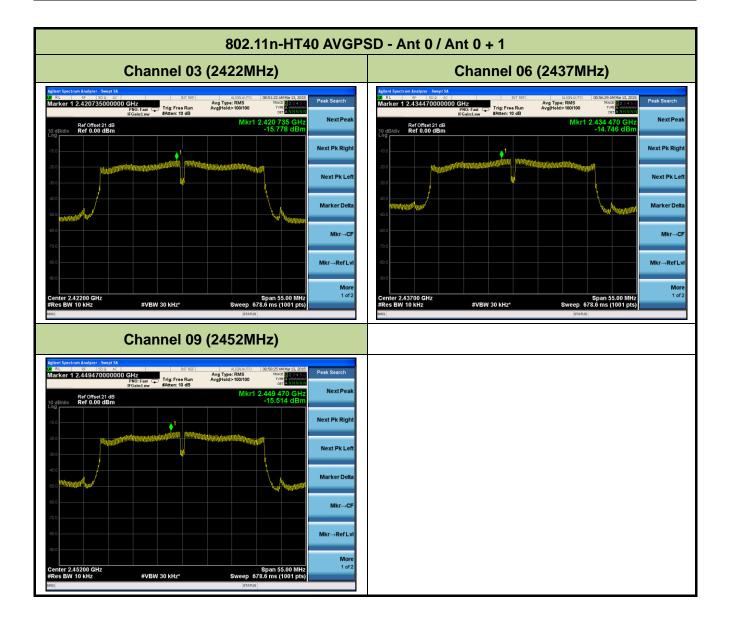


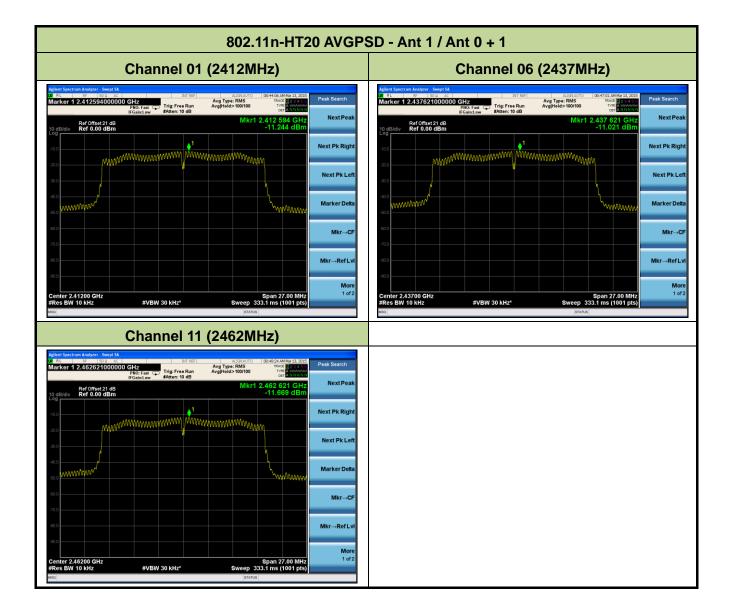


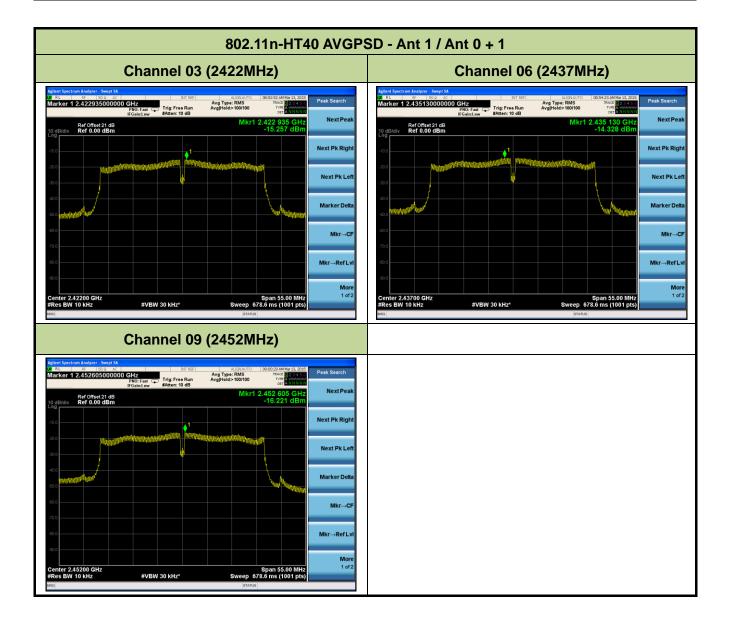












7.5. Conducted Band Edge and Out-of-Band Emissions

7.5.1. Test Limit

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure.

7.5.2. Test Procedure Used

KDB 558074 D01v03r02 - Section 11.2 & Section 11.3

7.5.3. Test Settitng

1. Reference level measurement

- (a) Set instrument center frequency to DTS channel center frequency
- (b) Set the span to \geq 1.5 times the DTS bandwidth
- (c) Set the RBW = 100 kHz
- (d) Set the VBW \geq 3 x RBW
- (e) Detector = peak
- (f) Sweep time = auto couple
- (g) Trace mode = max hold
- (h) Allow trace to fully stabilize

2. Emission level measurement

- (a) Set the center frequency and span to encompass frequency range to be measured
- (b) RBW = 100kHz
- (c) VBW = 300kHz
- (d) Detector = Peak
- (e) Trace mode = max hold
- (f) Sweep time = auto couple
- (g) The trace was allowed to stabilize