# Logitech Antenna Under Test (AUT) Report

Model Name: CU0028

**Equipment Type:** Type-C Receiver

Manufacturer: Logitech Technology (Suzhou) Co., Ltd

Test Location: Suzhou, China No.3 Song Shan Road, New District

Tested by: <u>Jarod Hua</u>

**Report Date:** <u>2024.11.26</u>

# **Report Release History**

| Report version    | Description      | Date Issued |  |
|-------------------|------------------|-------------|--|
| CU0028 AUT Report | Original release | 2024/11/26  |  |

# **Table of Contents**

| 1. | 1. EUT Antenna Information                       |    |  |
|----|--------------------------------------------------|----|--|
| 2. | Measured Values and Calculation of Antenna Gains | 3  |  |
| 3. | Conducted Power Measurement                      | 4  |  |
|    | 3.1 Test Setup                                   | 4  |  |
|    | 3.2 Test Instruments                             | 4  |  |
|    | 3.3 Test Procedure                               | 4  |  |
|    | 3.4 Test Result of RF conducted Power            | 4  |  |
| 4. | 2D Radiation Pattern Measurement                 | 6  |  |
|    | 4.1 Test Location                                | 6  |  |
|    | 4.2 Description of the anechoic chamber          | 6  |  |
|    | 4.3 Test Instruments                             | 6  |  |
|    | 4.4 Test Procedure                               | 7  |  |
|    | 4.5 Test Setup photos                            | 8  |  |
|    | 4.6 2D Pattern Test Plot                         | 10 |  |

## 1. EUT Antenna Information

1) Antenna Material: Copper-Nickel-Zinc Alloy

2) Antenna Type: Stamped Metal Sheet Antenna

3) Antenna Dimension: 9.9 x 3.94 x 3.05 mm

4) Operating Frequency: 2.4 GHz - 2.4835 GHz

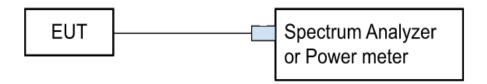
5) Input Impedance: 50 Ω

6) Standing-Wave Ratio: 2:1

# 2. Measured Values and Calculation of Antenna Gains

Measure peak horizontal/vertical EIRP on each x-y, y-z, x-z plane. The highest measured values will be used to calculate the antenna peak gain.

Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)


with Laptop\_Razer Blade 14"\_right side USB-C port\_Screen vertical(90°) @ Logitech SEG FAC Laptop Razer Blade 14" Model No.: RZ09-0508

| ·         | X-Y Plane $φ$ =0~360°, $θ$ =90° | Plane                          | X-Z Plane<br>φ=0°, θ=0~360°   |                                | Y-Z Plane $\phi$ =90 $^{\circ}$ , $\theta$ =0~360 $^{\circ}$ |                                | May Dook                  | Conducted      | Antenna               |
|-----------|---------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------------------------------------|--------------------------------|---------------------------|----------------|-----------------------|
| Frequency | Ver.<br>Peak<br>EIRP<br>(dBm)   | Hori.<br>Peak<br>EIRP<br>(dBm) | Ver.<br>Peak<br>EIRP<br>(dBm) | Hori.<br>Peak<br>EIRP<br>(dBm) | Ver.<br>Peak<br>EIRP<br>(dBm)                                | Hori.<br>Peak<br>EIRP<br>(dBm) | Max Peak<br>EIRP<br>(dBm) | Power<br>(dBm) | Peak<br>Gain<br>(dBi) |
| 2402      | 2.11                            | 6.57                           | 1.04                          | 7.30                           | 4.10                                                         | 7.33                           | 7.33                      | 6.887          | 0.4                   |
| 2440      | 3.37                            | 7.56                           | 1.06                          | 6.51                           | 5.10                                                         | 8.25                           | 8.25                      | 7.028          | 1.2                   |
| 2480      | 3.46                            | 8.28                           | 2.40                          | 7.09                           | 5.70                                                         | 8.54                           | 8.54                      | 6.922          | 1.6                   |

Test Date: <u>2024.11.26</u>

## 3. Conducted Power Measurement

## 3.1 Test Setup



## 3.2 Test Instruments

| Description                   | Model No.                | Serial No. | Last Calibration |
|-------------------------------|--------------------------|------------|------------------|
| Spectrum Analyzer<br>Keysight | N9020B                   | MY60110508 | 2024.7.15        |
| RF signal cable<br>Woken      | Huber+suhner<br>10844497 | 276        | 2024.1.28        |

Note: The calibration interval of the above test instruments is <u>12</u> months

## 3.3 Test Procedure

A spectrum analyzer or Power meter was used to perform output power measurement, setting the detector to average and configuring EUT continuously transmitting power(100% duty cycle).

## 3.4 Test Result of RF conducted Power

| Frequency | Conducted Power (dBm) |  |  |
|-----------|-----------------------|--|--|
| 2402      | 6.887                 |  |  |
| 2440      | 7.028                 |  |  |
| 2480      | 6.922                 |  |  |

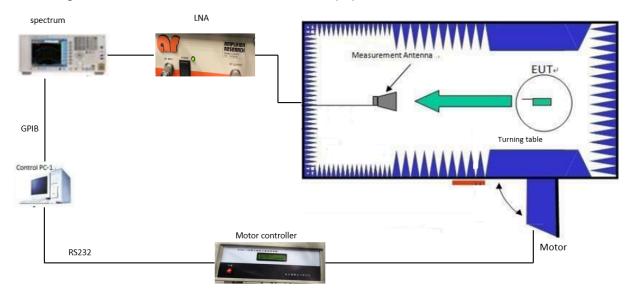
Test Date: <u>2024.05.21</u>

## 4. 2D Radiation Pattern Measurement

## 4.1 Test Location

2D radiation pattern measurement in Logitech China SZ 2.4GHz FAC anechoic chamber.

## 4.2 Description of the anechoic chamber


Chamber specification

Length: 5.0m Width: 2.8m Height: 2.8m

Turntable height: 1.4m

Measurement antenna height: 1.4m

## Block diagram to show the chamber and test equipment.



## 4.3 Test Instruments

| Description                   | Model No. | Serial No. | Last Calibration |
|-------------------------------|-----------|------------|------------------|
| Spectrum Analyzer<br>Keysight | N9010A    | MY49061163 | 2024.7.15        |

| Horn Antenna<br>ETS  | BBHA 9120<br>D(1201)               | D69250          | 2024.01.28 |
|----------------------|------------------------------------|-----------------|------------|
| RF signal cable      | SUCOFLEX104                        | SN293270/4      | 2024.01.28 |
| Software             | FAC-Radio<br>Measurement<br>System | Version 1.1.0.7 | N/A        |
| Turntable controller | BJ3AC-100                          | N/A             | 2024.01.28 |
| LNA                  | LN1G11                             | 321282          | 2024.01.28 |

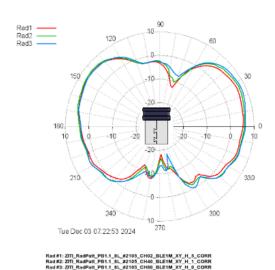
Note: The calibration interval of the above test instruments is <u>12</u> months

### 4.4 Test Procedure

- i. Connect the EUT to Spectrum Analyzer and record the power setting of EUT and the measured conducted power.
- ii. Fasten the EUT in the center of the turntable, record the coordinates and take pictures.
- iii. Configuring EUT continuously transmitting power(100% duty cycle).
- iv. Make sure the transmit signal is stable and at the maximum RF power level.
- v. Setup the channel power function by spectrum analyzer.
- vi. Read the channel power level on the spectrum analyzer and record in the following positions.
  - 1. The turntable is then stepped between 0 to 360 degrees along the horizontal plane in 15-degree increments.
  - 2. Data is recorded using the spectrum analyzer for both theta and phi polarizations at each position.
- vii. Rotate the EUT with 90 degrees and repeat step f.1 and step f.2 until all 3 planes(X-Y,X-Z,Y-Z) were measured.
- viii. According to substitution techniques, a substitution horn antenna is substituted for EUT at the same position and the signal generator exports the CW signal to the substitution antenna via a TX cable. Rotated the turntable and moved the receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a value of spectrum reading equal to "Raw Value" gotten from step vii. Record the power level of S.G.

$$EIRP = P_{SigGen} + G_T - L_C$$

where:


P<sub>SigGen</sub> = power setting of the signal generator that produces the same received power reading as the DUT, in dBm;

 $G_T$  = gain of the substitute antenna, in dBd (ERP) or dBi (EIRP);  $L_C$  = signal loss in the cable connecting the signal generator to the substitute antenna, in dB

ix. Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)

## 4.6 2D Pattern Test Plot

#### X-Y Plane: Horizontal



[imgfile: tmp/\_gnuplot20241203-2905-hc81a7-0.png]

#### Radiation pattern #1:

#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH02\_BLE1M\_XY\_H\_5\_CORR

Average power = -0.20 dBm Front average power = 1.90 dBm (From 0 deg to 180 deg)

Min power = -18.06 dBm @ -87.00 deg Max power = 6.57 dBm @ 141.00 deg

#### Radiation pattern #2:

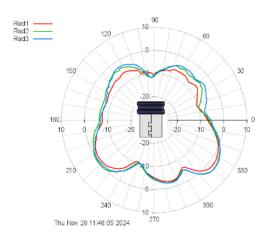
#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH40\_BLE1M\_XY\_H\_1\_CORR

Average power = **0.50 dBm**Front average power = **2.57 dBm** (From 0 deg to 180 deg)

Min power = -16.29 dBm @ -87.00 deg Max power = 7.56 dBm @ 27.00 deg

Delta max power = 0.99 dBm Delta average power = 0.70 dBm Delta front average power = 0.67 dBm

#### Radiation pattern #3:


#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH80\_BLE1M\_XY\_H\_0\_CORR

Average power = **0.82 dBm** Front average power = **2.95 dBm** (From 0 deg to 180 deg)

Min power = -17.81 dBm @ -75.00 deg Max power = 8.28 dBm @ 24.00 deg

Delta max power = 1.71 dBm Delta average power = 1.02 dBm Delta front average power = 1.05 dBm

#### X-Y Plane: Vertical



[imgfile: tmp/\_gnuplot20241128-9344-sxu6v5-0.png]

#### Radiation pattern #1:

#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH02\_BLE1M\_XY\_V\_0\_CORR

Average power = -5.78 dBm

Front average power = -7.87 dBm (From 0 deg to 180 deg)

Min power = -10.82 dBm @ -111.00 degMax power = 2.11 dBm @ -36.00 deg

#### Radiation pattern #2:

#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH40\_BLE1M\_XY\_V\_0\_CORR

Average power = -4.63 dBm

Front average power = -6.57 dBm (From 0 deg to 180 deg)

Min power = -11.90 dBm @ 93.00 deg Max power = 3.37 dBm @ -39.00 deg

Delta max power = 1.26 dBm

Delta average power = 1.15 dBm

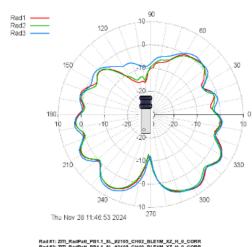
Delta front average power = 1.30 dBm

#### Radiation pattern #3:

#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH80\_BLE1M\_XY\_V\_0\_CORR

Average power = -4.46 dBm

Front average power = -6.07 dBm (From 0 deg to 180 deg)


Min power = -11.67 dBm @ 93.00 deg

Max power = 3.46 dBm @ -39.00 deg

Delta max power = 1.35 dBm

Delta average power = 1.32 dBm Delta front average power = 1.80 dBm

#### X-Z Plane: Horizontal



Rad #3: ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH80\_BLE1M\_XZ\_H\_0\_CORF

[imgfile: tmp/ gnuplot20241128-9343-r4po88-0.png]

#### Radiation pattern #1:

#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH02\_BLE1M\_XZ\_H\_0\_CORR

Average power = -1.19 dBmFront average power = -4.75 dBm (From 0 deg to 180 deg)

Min power = **-16.13 dBm** @ 99.00 deg Max power = **7.30 dBm** @ -57.00 deg

#### Radiation pattern #2:

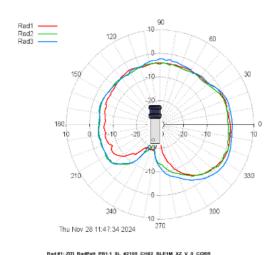
#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH40\_BLE1M\_XZ\_H\_0\_CORR

Average power = -1.29 dBm Front average power = -4.53 dBm (From 0 deg to 180 deg)

Min power = -15.24 dBm @ 99.00 deg Max power = 6.51 dBm @ -60.00 deg

Delta max power = -0.79 dBm
Delta average power = -0.10 dBm
Delta front average power = 0.22 dBm

#### Radiation pattern #3:


#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH80\_BLE1M\_XZ\_H\_0\_CORR

Average power = 0.07 dBmFront average power = -2.54 dBm (From 0 deg to 180 deg)

Min power = -12.08 dBm @ -90.00 deg Max power = 7.09 dBm @ -57.00 deg

Delta max power = -0.21 dBm Delta average power = 1.26 dBm Delta front average power = 2.21 dBm

#### X-Z Plane: Vertical



[imgfile: tmp/\_gnuplot20241128-9343-qop5j4-0.png]

#### Radiation pattern #1:

#### $ZITI\_RadPatt\_PB1.1\_8L\_\#2105\_CH02\_BLE1M\_XZ\_V\_0\_CORR$

Average power =  $-6.26 \ dBm$ Front average power =  $-3.79 \ dBm$  (From 0 deg to 180 deg)

Min power = -25.33 dBm @ -93.00 deg Max power = 1.04 dBm @ -24.00 deg

#### Radiation pattern #2:

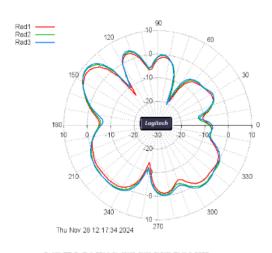
#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH40\_BLE1M\_XZ\_V\_0\_CORR

Average power = -5.03 dBm Front average power = -3.66 dBm (From 0 deg to 180 deg)

Min power = -20.99 dBm @ -108.00 deg Max power = 1.06 dBm @ -21.00 deg

Delta max power = 0.03 dBmDelta average power = 1.24 dBmDelta front average power = 0.12 dBm

#### Radiation pattern #3:


#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH80\_BLE1M\_XZ\_V\_0\_CORR

Average power =  $-4.32 \ dBm$ Front average power =  $-2.97 \ dBm$  (From 0 deg to 180 deg)

Min power = -23.44 dBm @ -108.00 deg Max power = 2.40 dBm @ -30.00 deg

Delta max power = 1.37 dBmDelta average power = 1.95 dBmDelta front average power = 0.82 dBm

#### Y-Z Plane: Horizontal



Rad #3; ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH80\_BLE1M\_ZY\_H\_0\_CORI

[imgfile: tmp/\_gnuplot20241128-9343-1bmlmqi-0.png]

#### Radiation pattern #1:

#### ZITI RadPatt PB1.1 8L #2105 CH02 BLE1M ZY H 0 CORR

Average power = -2.94 dBmFront average power = -3.38 dBm (From 0 deg to 180 deg)

Min power = -18.83 dBm @ 63.00 deg Max power = 7.33 dBm @ 144.00 deg

#### Radiation pattern #2:

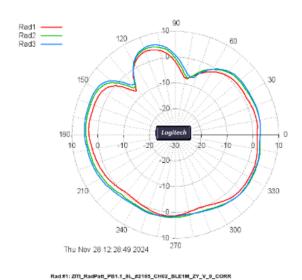
#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH40\_BLE1M\_ZY\_H\_0\_CORR

Average power = -2.31 dBm Front average power = -2.94 dBm (From 0 deg to 180 deg)

Min power = -18.26 dBm @ 66.00 deg Max power = 8.25 dBm @ 144.00 deg

Delta max power = 0.92 dBm Delta average power = 0.63 dBm Delta front average power = 0.44 dBm

#### Radiation pattern #3:


#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH80\_BLE1M\_ZY\_H\_0\_CORR

Average power =  $-2.18 \ dBm$ Front average power =  $-2.94 \ dBm$  (From 0 deg to 180 deg)

Min power = -20.64 dBm @ 66.00 deg Max power = 8.54 dBm @ 141.00 deg

Delta max power = 1.21 dBm Delta average power = 0.76 dBm Delta front average power = 0.43 dBm

#### Y-Z Plane: Vertical



[imgfile: tmp/ gnuplot20241128-9343-1xortbl-0.png]

#### Radiation pattern #1:

#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH02\_BLE1M\_ZY\_V\_0\_CORR

Average power = **0.83 dBm**Front average power = **0.11 dBm** (From 0 deg to 180 deg)

Min power = -7.91 dBm @ 78.00 deg Max power = 4.10 dBm @ 108.00 deg

#### Radiation pattern #2:

#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH40\_BLE1M\_ZY\_V\_0\_CORR

Average power = **2.02 dBm**Front average power = **1.31 dBm** (From 0 deg to 180 deg)

Min power = -7.51 dBm @ 78.00 deg Max power = 5.10 dBm @ 108.00 deg

Delta max power = 1.00 dBm Delta average power = 1.19 dBm Delta front average power = 1.19 dBm

#### Radiation pattern #3:

#### ZITI\_RadPatt\_PB1.1\_8L\_#2105\_CH80\_BLE1M\_ZY\_V\_0\_CORR

Average power = 2.36 dBm Front average power = 1.79 dBm (From 0 deg to 180 deg)

Min power = -6.89 dBm @ 72.00 deg Max power = 5.70 dBm @ 108.00 deg

Delta max power = 1.60 dBm Delta average power = 1.53 dBm Delta front average power = 1.68 dBm