FCC Test Report Report No.: RFBERD-WTW-P23010334-1 FCC ID: 2AFZZPIPA Test Model: 23031MPADC Received Date: Dec. 28, 2022 **Test Date:** Mar. 10 ~ Mar. 13, 2023 **Issued Date:** Apr. 17, 2023 Applicant: Xiaomi Communications Co., Ltd. Address: #019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085 Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan FCC Registration / 788550 / TW0003 **Designation Number:** This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. # **Table of Contents** | Re | ease Control Record | 3 | | |----|--|---------------------------------|--| | 1 | Certificate of Conformity4 | | | | 2 | Summary of Test Results | 5 | | | | 2.1 Measurement Uncertainty | | | | 3 | General Information | 6 | | | | 3.1 General Description of EUT | 7
7
8
8 | | | 4 | est Types and Results | 9 | | | | 1.1 Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement 4.1.2 Test Instruments 4.1.3 Test Procedures 4.1.4 Deviation from Test Standard 4.1.5 Test Setup 4.1.6 EUT Operating Conditions 4.1.7 Test Results 4.2 Conducted Emission Measurement 4.2.1 Limits of Conducted Emission Measurement 4.2.2 Test Instruments 4.2.3 Test Procedures 4.2.4 Deviation from Test Standard 4.2.5 Test Setup 4.2.6 EUT Operating Conditions | 9 10 11 11 12 13 21 21 21 23 23 | | | | 4.2.7 Test Results | | | | 5 | Pictures of Test Arrangements | . 26 | | | Αį | endix – Information of the Testing Laboratories | . 27 | | # **Release Control Record** | Issue No. | Description | Date Issued | |------------------------|------------------|---------------| | RFBERD-WTW-P23010334-1 | Original Release | Apr. 17, 2023 | # 1 Certificate of Conformity **Product:** Stylus for Tablet **Brand:** Xiaomi Test Model: 23031MPADC Sample Status: Engineering Sample Applicant: Xiaomi Communications Co., Ltd. **Test Date:** Mar. 10 ~ Mar. 13, 2023 Standards: 47 CFR FCC Part 15, Subpart C (Section 15.209) ANSI C63.10: 2013 The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report. | Prepared by : | Girna Wu | , Date: | Apr. 17, 2023 | | |---------------|-----------------------|---------|---------------|--| | _ | Gina Liu / Specialist | | | | | Approved by : | Jeremy Lin | Date: | Apr 17 2023 | | # 2 Summary of Test Results | 47 CFR FCC Part 15, Subpart C (Section 15.209) | | | | | |--|-------------------------|----------------|---|--| | FCC Clause | Test Item | Result Remarks | | | | 15.207 | Conducted emission test | Pass | Meet the requirement of limit. Minimum passing margin is -15.95 dB at 0.16535 MHz. | | | 15.209 | Radiated emission test | Pass | Meet the requirement of limit. Minimum passing margin is -9.7 dB at 35.82 MHz and 105.67 MHz. | | Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. # 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |------------------------------------|--------------------|--------------------------------| | Conducted Emissions at mains ports | 150 kHz ~ 30 MHz | 2.79 dB | | | 9 kHz ~ 30 MHz | 3.04 dB | | Radiated Emissions up to 1 GHz | 30 MHz ~ 200 MHz | 2.93 dB | | | 200 MHz ~ 1000 MHz | 2.95 dB | ### 2.2 Modification Record There were no modifications required for compliance. # 3 General Information # 3.1 General Description of EUT | Product | Stylus for Tablet | |---------------------|--------------------| | Brand | Xiaomi | | Test Model | 23031MPADC | | Status of EUT | Engineering Sample | | Power Supply Rating | Refer to note | | Operating Frequency | 145 kHz | | Field Strength | -4.60 dBµV/m | | Antenna Connector | N/A | | Accessory Device | Refer to note | | Data Cable Supplied | N/A | # Note: 1. The EUT uses following accessories. | Battery | Battery | | | | |---------------------------|---------|--|--|--| | Brand Model Specification | | | | | | UTL | U56260 | Power Rating : Charging to Li-ion Battery(internal circuit): 3.7 VDC, 40mAh,0.148Wh, 203Wh/L | | | 2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual. ## 3.2 Description of Test Modes 1 channel is provided to this EUT: | Channel | Frequency (kHz) | |---------|-----------------| | 1 | 145 | # 3.2.1 Test Mode Applicability and Tested Channel Detail | EUT Configure | Applic | able To | Description | |---------------|--------------|---------|-------------| | Mode | RE<1G | PLC | Description | | - | \checkmark | V | - | Where **RE<1G:** Radiated Emission below 1 GHz PLC: Power Line Conducted Emission NOTE: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-axis. ### Radiated Emission Test (Below 1 GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure Mode | Available Channel | Tested Channel | |--------------------|-------------------|----------------| | - | 1 | 1 | #### **Power Line Conducted Emission Test:** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | 2 · · · · · · · · · · · · · · · · · · · | | | | | |---|-------------------|----------------|--|--| | EUT Configure Mode | Available Channel | Tested Channel | | | | - | 1 | 1 | | | #### **Test Condition:** | Applicable To | Environmental Conditions | Input Power | Tested By | |---------------|--------------------------|-------------|--------------| | RE | 21 deg. C, 68 % RH | 3.7 Vdc | Thomas Cheng | | PLC | 21.8 deg. C, 63 % RH | 3.7 Vdc | Thomas Cheng | # 3.3 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|------------------|--------|--------------------------|------------|--------|-----------------------| | Α | WGP Panel Tablet | Xiaomi | M82-P01-CN-
AS1-10243 | NA | NA | Supplied by applicant | | В | Adapter | APPLE | A1385 | NA | NA | Provided by Lab | | ID | Cable Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores
(Qty.) | Remarks | |----|--------------------|------|------------|-----------------------|-----------------|-----------------| | 1 | type-c to type-a | 1 | 1 | у | 0 | Provided by Lab | # 3.3.1 Configuration of System under Test # 3.4 General Description of Applied Standards The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards: # FCC Part 15, Subpart C (15.209) ANSI C63.10-2013 All test items have been performed and recorded as per the above standards. # 4 Test Types and Results # 4.1 Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement | Frequencies
(MHz) | Field Strength (microvolts/meter) | Measurement Distance
(meters) | |----------------------|-----------------------------------|----------------------------------| | 0.009 ~ 0.490 | 2400/F (kHz) | 300 | | 0.490 ~ 1.705 | 24000/F (kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | ### NOTE: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$. - 3. For frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation. # 4.1.2 Test Instruments | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |---|-----------------------|-------------------------------|------------|------------| | Test Receiver
Agilent | N9038A | MY55420137 | 2022/04/27 | 2023/04/26 | | Spectrum Analyzer
Agilent | N9010A | MY52220207 | 2023/01/03 | 2024/01/02 | | Spectrum Analyzer
ROHDE & SCHWARZ | FSU43 | 101261 | 2022/04/11 | 2023/04/10 | | HORN Antenna
SCHWARZBECK | BBHA 9120D | 9120D-969 | 2022/11/13 | 2023/11/12 | | BILOG Antenna
SCHWARZBECK | VULB 9168 | 9168-472 | 2022/10/21 | 2023/10/20 | | Fixed Attenuator WOKEN | MDCS18N-10 | MDCS18N-10-01 | 2022/04/05 | 2023/04/04 | | Loop Antenna
TESEQ | HLA 6121 | 45745 | 2022/07/27 | 2023/07/26 | | Preamplifier
EMCI | EMC 330H | 980112 | 2022/10/01 | 2023/09/30 | | Preamplifier
EMCI | EMC 012645 | 980115 | 2022/10/01 | 2023/09/30 | | RF Coaxial Cable
EMCI | EMC104-SM-SM-
8000 | 171005 | 2022/10/01 | 2023/09/30 | | RF Coaxial Cable
HUBER+SUHNNER | SUCOFLEX 104 | EMC104-SM-SM-
1000(140807) | 2022/10/01 | 2023/09/30 | | RF Coaxial Cable
WOKEN | 8D-FB | Cable-Ch10-01 | 2022/09/15 | 2023/09/14 | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | | Software
BV ADT | E3
6.120103 | NA | NA | NA | | Antenna Tower
MF | MFA-440H | NA | NA | NA | | Turn Table
MF | MFT-201SS | NA | NA | NA | | Antenna Tower &Turn Table
Controller
MF | MF-7802 | NA | NA | NA | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. 2. The test was performed in HwaYa Chamber 10. #### 4.1.3 Test Procedures #### For Radiated Emission below 30 MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz-90 kHz, 110 kHz-490 kHz) set to average and peak detect function. #### Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz. - 2. There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar. #### For Radiated Emission above 30 MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak or peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. ### Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP), Average detection (AV) or Peak detection (PK) at frequency below 1 GHz. - 2. All modes of operation were investigated and the worst-case emissions are reported. # 4.1.4 Deviation from Test Standard No deviation. 4.1.5 Test Setup <Radiated Emission below 30 MHz> For the actual test configuration, please refer to the attached file (Test Setup Photo). # 4.1.6 EUT Operating Conditions Set the EUT under transmission condition continuously at specific channel frequency. # 4.1.7 Test Results | Test Mode | Transmit mode | | | |-----------------|-----------------|--------------------------|---------| | Channel | CH 1 | Detector Function | Average | | Frequency Range | 9 kHz ~ 490 kHz | & Bandwidth | Peak | | | Antenna Polarity : Parallel | | | | | | | | | | | | |----|-----------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--|--| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | | | | 1 | 0.145 | -4.00 PK | 44.40 | -48.40 | 1.00 | 190 | 56.30 | -60.30 | | | | | | 2 | 0.145 | -4.60 AV | 24.40 | -29.00 | 1.00 | 190 | 55.70 | -60.30 | | | | | | 3 | 0.290 | -6.50 PK | 38.40 | -44.90 | 1.00 | 220 | 53.50 | -60.00 | | | | | | 4 | 0.290 | -7.40 AV | 18.40 | -25.80 | 1.00 | 220 | 52.60 | -60.00 | | | | | # Remarks: - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. The test distance for below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters. Distance factor@3m = 40*log(3/300) = -80dB | Test Mode | Transmit mode | | | |-----------------|-----------------|--------------------------|---------| | Channel | CH 1 | Detector Function | Average | | Frequency Range | 9 kHz ~ 490 kHz | & Bandwidth | Peak | | | Antenna Polarity : Perpendicular | | | | | | | | | | | | |----|----------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--|--| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | | | | 1 | 0.145 | -8.20 PK | 44.40 | -52.60 | 1.00 | 78 | 52.10 | -60.30 | | | | | | 2 | 0.145 | -8.80 AV | 24.40 | -33.20 | 1.00 | 78 | 51.50 | -60.30 | | | | | | 3 | 0.290 | -8.10 PK | 38.40 | -46.50 | 1.00 | 96 | 51.90 | -60.00 | | | | | | 4 | 0.290 | -9.80 AV | 18.40 | -28.20 | 1.00 | 96 | 50.20 | -60.00 | | | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. The test distance for below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters. Distance factor@3m = 40*log(3/300) = -80dB | Test Mode | Transmit mode | | | |-----------------|-----------------|--------------------------|---------| | Channel | CH 1 | Detector Function | Average | | Frequency Range | 9 kHz ~ 490 kHz | & Bandwidth | Peak | | | Antenna Polarity : Ground-parallel | | | | | | | | | | | | |----|------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--|--| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | | | | 1 | 0.145 | -10.00 PK | 44.40 | -54.40 | 1.00 | 358 | 50.30 | -60.30 | | | | | | 2 | 0.145 | -10.60 AV | 24.40 | -35.00 | 1.00 | 358 | 49.70 | -60.30 | | | | | | 3 | 0.290 | -9.90 PK | 38.40 | -48.30 | 1.00 | 344 | 50.10 | -60.00 | | | | | | 4 | 0.290 | -10.90 AV | 18.40 | -29.30 | 1.00 | 344 | 49.10 | -60.00 | | | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. The test distance for below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters. Distance factor@3m = 40*log(3/300) = -80dB | Test Mode | Transmit mode | | | |-----------------|------------------|--------------------------|------------| | Channel | CH 1 | Detector Function | Ougai Baak | | Frequency Range | 490 kHz ~ 30 MHz | & Bandwidth | Quasi-Peak | | | Antenna Polarity : Parallel | | | | | | | | | | | | |----|-----------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--|--| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | | | | 1 | 2.950 | -3.70 QP | 29.50 | -33.20 | 1.00 | 30 | 16.10 | -19.80 | | | | | | 2 | 7.540 | -5.40 QP | 29.50 | -34.90 | 1.00 | 116 | 13.70 | -19.10 | | | | | | 3 | 13.740 | -6.40 QP | 29.50 | -35.90 | 1.00 | 330 | 11.80 | -18.20 | | | | | | 4 | 17.550 | -6.50 QP | 29.50 | -36.00 | 1.00 | 229 | 11.60 | -18.10 | | | | | | 5 | 24.630 | -6.50 QP | 29.50 | -36.00 | 1.00 | 212 | 11.60 | -18.10 | | | | | | 6 | 27.480 | -7.30 QP | 29.50 | -36.80 | 1.00 | 298 | 10.80 | -18.10 | | | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. The test distance for $0.49 \sim 30 \text{MHz}$ is 3m, extrapolate the measured field strength to a distance of 30 meters. Distance factor@3m = 40*log(3/30) = -40dB | Test Mode | Transmit mode | | | | |-----------------|------------------|--------------------------|------------|--| | Channel | CH 1 | Detector Function | Ougoi Book | | | Frequency Range | 490 kHz ~ 30 MHz | & Bandwidth | Quasi-Peak | | | | Antenna Polarity : Perpendicular | | | | | | | | | |----|----------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | 1 | 3.430 | -5.70 QP | 29.50 | -35.20 | 1.00 | 18 | 14.20 | -19.90 | | | 2 | 8.620 | -6.30 QP | 29.50 | -35.80 | 1.00 | 287 | 12.40 | -18.70 | | | 3 | 13.770 | -5.40 QP | 29.50 | -34.90 | 1.00 | 116 | 12.80 | -18.20 | | | 4 | 19.170 | -6.50 QP | 29.50 | -36.00 | 1.00 | 8 | 11.60 | -18.10 | | | 5 | 24.330 | -4.90 QP | 29.50 | -34.40 | 1.00 | 18 | 13.20 | -18.10 | | | 6 | 27.450 | -6.80 QP | 29.50 | -36.30 | 1.00 | 3 | 11.30 | -18.10 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 6. The test distance for 0.49 ~ 30MHz is 3m, extrapolate the measured field strength to a distance of 30 meters. Distance factor@3m = 40*log(3/30) = -40dB | Test Mode | Transmit mode | | | | |-----------------|------------------|--------------------------|-------------|--| | Channel | CH 1 | Detector Function | Oversi Bank | | | Frequency Range | 490 kHz ~ 30 MHz | & Bandwidth | Quasi-Peak | | | | Antenna Polarity : Ground-parallel | | | | | | | | | |----|------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | 1 | 3.730 | -5.80 QP | 29.50 | -35.30 | 1.00 | 2 | 14.10 | -19.90 | | | 2 | 10.780 | -6.20 QP | 29.50 | -35.70 | 1.00 | 341 | 12.00 | -18.20 | | | 3 | 14.460 | -4.90 QP | 29.50 | -34.40 | 1.00 | 345 | 13.30 | -18.20 | | | 4 | 19.980 | -5.20 QP | 29.50 | -34.70 | 1.00 | 180 | 12.90 | -18.10 | | | 5 | 23.490 | -5.80 QP | 29.50 | -35.30 | 1.00 | 11 | 12.30 | -18.10 | | | 6 | 28.470 | -6.70 QP | 29.50 | -36.20 | 1.00 | 334 | 11.40 | -18.10 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 6. The test distance for $0.49 \sim 30 \text{MHz}$ is 3m, extrapolate the measured field strength to a distance of 30 meters. Distance factor@3m = 40*log(3/30) = -40dB | Channel | CH 1 | Detector Function | Quasi-Peak (QP) | |-----------------|--------------|-------------------|-----------------| | Frequency Range | 30MHz ~ 1GHz | Detector Function | Quasi-reak (Qr) | | | Antenna Polarity & Test Distance : Horizontal at 3 m | | | | | | | | | |----|--|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | 1 | 30.00 | 24.2 QP | 40.0 | -15.8 | 2.00 H | 288 | 36.9 | -12.7 | | | 2 | 48.43 | 22.6 QP | 40.0 | -17.4 | 1.00 H | 17 | 34.8 | -12.2 | | | 3 | 168.72 | 23.2 QP | 43.5 | -20.3 | 1.00 H | 307 | 36.1 | -12.9 | | | 4 | 413.19 | 20.4 QP | 46.0 | -25.6 | 1.50 H | 18 | 29.6 | -9.2 | | | 5 | 731.38 | 25.9 QP | 46.0 | -20.1 | 1.00 H | 18 | 28.8 | -2.9 | | | 6 | 920.55 | 29.0 QP | 46.0 | -17.0 | 1.50 H | 16 | 29.8 | -0.8 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. | Channel | CH 1 | Detector Function | Oversi Bask (OB) | | |-----------------|--------------|-------------------|------------------|--| | Frequency Range | 30MHz ~ 1GHz | Detector Function | Quasi-Peak (QP) | | | | Antenna Polarity & Test Distance : Vertical at 3 m | | | | | | | | | |----|--|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | 1 | 35.82 | 30.3 QP | 40.0 | -9.7 | 1.50 V | 149 | 43.1 | -12.8 | | | 2 | 105.67 | 33.8 QP | 43.5 | -9.7 | 2.00 V | 2 | 49.6 | -15.8 | | | 3 | 299.69 | 18.0 QP | 46.0 | -28.0 | 1.00 V | 350 | 29.8 | -11.8 | | | 4 | 479.16 | 21.9 QP | 46.0 | -24.1 | 1.50 V | 326 | 29.3 | -7.4 | | | 5 | 583.93 | 24.2 QP | 46.0 | -21.8 | 1.00 V | 47 | 29.9 | -5.7 | | | 6 | 878.84 | 28.7 QP | 46.0 | -17.3 | 2.00 V | 11 | 29.9 | -1.2 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. ### 4.2 Conducted Emission Measurement ### 4.2.1 Limits of Conducted Emission Measurement | Francisco (MIII-) | Conducted Limit (dBuV) | | | | | |-------------------|------------------------|---------|--|--|--| | Frequency (MHz) | Quasi-Peak | Average | | | | | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | | | | 0.50 - 5.0 | 56 | 46 | | | | | 5.0 - 30.0 | 60 | 50 | | | | ### Note: - 1. The lower limit shall apply at the transition frequencies. - 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz. - 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above. ### 4.2.2 Test Instruments | Description & Manufacturer | Model No. | Serial No. | Date of Calibration | Due Date of Calibration | |---|--------------------------|----------------|---------------------|-------------------------| | Test Receiver
ROHDE & SCHWARZ | ESR3 | 102412 | 2022/12/21 | 2023/12/20 | | RF signal cable (with
10dB PAD)
Woken | 5D-FB | Cable-cond2-01 | 2022/09/03 | 2023/09/02 | | LISN/AMN
ROHDE & SCHWARZ
(EUT) | ESH2-Z5 | 100100 | 2023/03/07 | 2024/03/06 | | LISN/AMN
ROHDE & SCHWARZ
(Peripheral) | ESH3-Z5 | 100312 | 2022/09/22 | 2023/09/21 | | Software
ADT | BV ADT_Cond_
V7.3.7.4 | NA | NA | NA | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in HwaYa Shielded Room 2 (Conduction 2). - 3. The VCCI Site Registration No. is C-12047. # 4.2.3 Test Procedures - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. | C. | The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit – 20 dB) was not recorded. | | | | | | | |----|--|--|--|--|--|--|--| | NO | NOTE: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz - 30 MHz. | # 4.2.4 Deviation from Test Standard No deviation. # 4.2.5 Test Setup Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo). # 4.2.6 EUT Operating Conditions Same as 4.1.6. # 4.2.7 Test Results | Frequency Range | 150 kHz ~ 30 MHz | Detector Function & Resolution Bandwidth | Quasi-Peak (QP) /
Average (AV), 9kHz | |-----------------|------------------|--|---| | Tested by | Thomas Cheng | Environmental Conditions | 21.8°C, 63% RH | | Phase Of Power : Line (L) | | | | | | | | | | | |---------------------------|-----------|-------------------|----------------------|-------|-----------------------|-------|-----------------|-------|----------------|--------| | No | Frequency | Correction Factor | Reading Value (dBuV) | | Emission Level (dBuV) | | Limit
(dBuV) | | Margin
(dB) | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.16190 | 0.14 | 43.01 | 31.94 | 43.15 | 32.08 | 65.37 | 55.37 | -22.22 | -23.29 | | 2 | 0.23400 | 0.14 | 36.10 | 18.13 | 36.24 | 18.27 | 62.31 | 52.31 | -26.07 | -34.04 | | 3 | 0.31400 | 0.15 | 31.01 | 13.76 | 31.16 | 13.91 | 59.86 | 49.86 | -28.70 | -35.95 | | 4 | 0.73000 | 0.16 | 25.20 | 13.82 | 25.36 | 13.98 | 56.00 | 46.00 | -30.64 | -32.02 | | 5 | 1.52600 | 0.18 | 23.71 | 11.62 | 23.89 | 11.80 | 56.00 | 46.00 | -32.11 | -34.20 | | 6 | 6.56200 | 0.38 | 21.94 | 12.93 | 22.32 | 13.31 | 60.00 | 50.00 | -37.68 | -36.69 | # Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value | Frequency Range | 150 kHz ~ 30 MHz | RASOULTION | Quasi-Peak (QP) /
Average (AV), 9kHz | | | |-----------------|------------------|--------------------------|---|--|--| | Tested by | Thomas Cheng | Environmental Conditions | 21.8°C, 63% RH | | | | Phase Of Power : Neutral (N) | | | | | | | | | | | |------------------------------|-----------|-------------------|-------------------------|-------|-----------------------|-------|-----------------|-------|----------------|--------| | No | Frequency | Correction Factor | Reading Value
(dBuV) | | Emission Level (dBuV) | | Limit
(dBuV) | | Margin
(dB) | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.16535 | 0.17 | 49.07 | 38.15 | 49.24 | 38.32 | 65.19 | 55.19 | -15.95 | -16.87 | | 2 | 0.25000 | 0.18 | 41.66 | 27.80 | 41.84 | 27.98 | 61.76 | 51.76 | -19.92 | -23.78 | | 3 | 0.32976 | 0.18 | 34.81 | 19.80 | 34.99 | 19.98 | 59.46 | 49.46 | -24.47 | -29.48 | | 4 | 0.65000 | 0.19 | 24.56 | 14.35 | 24.75 | 14.54 | 56.00 | 46.00 | -31.25 | -31.46 | | 5 | 2.98600 | 0.26 | 20.73 | 12.61 | 20.99 | 12.87 | 56.00 | 46.00 | -35.01 | -33.13 | | 6 | 6.79400 | 0.38 | 18.72 | 10.29 | 19.10 | 10.67 | 60.00 | 50.00 | -40.90 | -39.33 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value | 5 Pictures of Test Arrangements | | | | | | | |---|--|--|--|--|--|--| | Please refer to the attached file (Test Setup Photo). | Report No.: RFBERD-WTW-P23010334-1 Page No. 26 / 27 Report Format Version: 6.1.1 # Appendix - Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025. Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323 If you have any comments, please feel free to contact us at the following: Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END ---