

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED Test Report

Prepared for: Garmin International, Inc.

Address:

1200 E. 151st Street Olathe, Kansas, 66062, USA

Product:

A04448

Test Report No:

R20230808-00-E7A

Approved by:

Lane

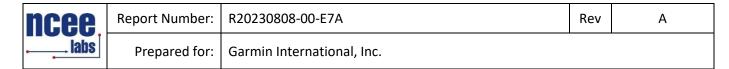
Fox Lane, EMC Test Engineer

DATE:

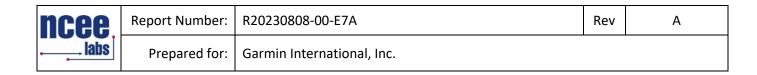
September 29, 2023

Total Pages:

47


The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

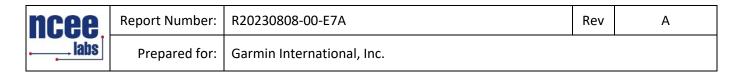

REVISION PAGE

Rev. No.	Date	Description
		Issued by FLane
0	28 September 2023	Reviewed by KVepuri
		Prepared by ESchmidt/FLane
A	29 September 2023	Corrected Customer information Page 5 - FL

CONTENTS

Revi	sion Pag	ge	. 2
1.0	Sum	nmary of test results	.4
2.0	EUT	Description	.5
	2.1	Equipment under test	.5
	2.2	Description of test modes	.5
	2.3	Description of support units	.5
3.0	Lab	oratory and General Test Description	.6
	3.1	Laboratory description	.6
	3.2	Test personnel	.6
	3.3	Test equipment	.7
	3.4	General Test Procedure and Setup for Radio Measuremnts	.8
4.0	Ros	ults	9
	ILC3		
	4.1	Output Power	
			10
	4.1	Output Power	10 11
	4.1 4.2	Output Power	10 11 12
	4.1 4.2 4.3	Output Power Bandwidth Duty Cycle	10 11 12 13
	4.1 4.2 4.3 4.4	Output Power	10 11 12 13 18
	4.1 4.2 4.3 4.4 4.5	Output Power Bandwidth Duty Cycle Radiated emissions Conducted Spurious Emissions	10 11 12 13 18 21
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Output Power	10 11 12 13 18 21 23
Арр	4.1 4.2 4.3 4.4 4.5 4.6 4.7 endix A	Output Power Bandwidth Duty Cycle Radiated emissions Conducted Spurious Emissions Band edges Conducted AC Mains Emissions	10 11 12 13 18 21 23 26
Арр Арр	4.1 4.2 4.3 4.4 4.5 4.6 4.7 endix A endix B	Output Power	10 11 12 13 18 21 23 26 28

1.0 SUMMARY OF TEST RESULTS


The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section:

FCC Part 15.247

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 3

APPLIED STANDARDS AND REGULATIONS						
Standard Section	Test Type	Result				
FCC Part 15.35 RSS Gen, Issue 5, Section 6.10	Duty Cycle	Pass				
FCC Part 15.247(b)(1) RSS-247 Issue 3 Section 5.1(b)	Peak output power	Pass				
FCC Part 15.247(a)(1) RSS-247 Issue 3 Section 5.1 (b)	Bandwidth	Pass				
FCC Part 15.247(a)(1)(iii) RSS-247 Issue 3 Section 5.1(d)	Frequency Hopping System	Pass				
FCC Part 15.209 RSS-Gen Issue 5, Section 7.3	Receiver Radiated Emissions	Pass				
FCC Part 15.209 (restricted bands), 15.247 (unrestricted) RSS-247 Issue 3 Section 5.5, RSS-Gen Issue 5, Section 8.9	Transmitter Radiated Emissions	Pass				
FCC Part 15.209, 15.247(d) RSS-247 Issue 3 Section 5.5	Band Edge Measurement	Pass				
FCC Part 15.207 RSS-Gen Issue 5, Section 8.8	Conducted Emissions	Pass				

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary and Operating Condition:

EUT	A04448
FCC ID	IPH-04448
IC	1792A-04448
EUT Received	24 August 2023
EUT Tested	28 August 2023 - 14 September 2023
Serial No.	3451928865 (Radiated Measurements) 3451928680 (Radiated Measurements) 3451928690 (Conducted Measurements)
Operating Band	2400 – 2483.5 MHz
Device Type	□ GMSK □ GFSK ⊠ BT BR □ BT EDR 2MB □ BT EDR 3MB □ 802.11x
Power Supply / Voltage	Internal Battery / 5VDC Charger: Garmin (Phi Hong) Model: AQ27A-59CFA GPN: 362-00118-00 (Representative Power Supply)

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The operating range of the EUT is dependent on the device type found in section 2.1:

For BTBR Transmissions:				
Channel Frequency				
Low	2402 MHz			
Mid	2440 MHz			
High	2480 MHz			

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequencies and designations.

2.3 DESCRIPTION OF SUPPORT UNITS

None

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs)					
4740 Discovery Drive					
Lincoln, NE 68521					
A2LA Certificate Number:	1953.01				
FCC Accredited Test Site Designation No:	US1060				
Industry Canada Test Site Registration No:	4294A-1				
NCC CAB Identification No:	US0177				

Environmental conditions varied slightly throughout the tests:

Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

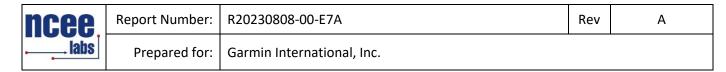
3.2 TEST PERSONNEL

3.2						
No.	PERSONNEL	TITLE	ROLE			
1	Fox Lane	Test Engineer	Review/Testing and Report			
2	Blake Winter	Test Engineer	Testing			
3	Ethan Schmidt	Test Technician	Testing and Report			
4	Karthik Vepuri	Test Engineer	Review/Testing			

Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

А


3.3 TEST EQUIPMENT

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)	N9038A	MY59050109	July 17, 2023	July 17, 2025
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	July 17, 2023	July 17, 2025
Keysight EXA Signal Analyzer	N9010A	MY56070862	July 18, 2023	July 17, 2025
SunAR RF Motion	JB1	A091418	July 27, 2023	July 26, 2024
ETS-Lindgren Red Horn Antenna	3115	218576	July 31, 2023	July 30, 2024
EMCO Horn Antenna	3116	2576	July 31, 2023	July 30, 2024
Com-Power LISN, Single Phase	LI-220C	20070017	July 17, 2023	July 17, 2025
Agilent Preamp*	87405A	3950M00669	June 5, 2023	June 5, 2025
Rohde & Schwarz Preamplifier*	TS-PR18	3545700803	June 5, 2023	June 5, 2025
Trilithic High Pass Filter*	6HC330	23042	June 5, 2023	June 5, 2025
RF Cable (antenna to 10m chamber bulkhead)	FSCM 64639	01E3872	June 5, 2023	June 5, 2025
RF Cable (10m chamber bulkhead to control room bulkhead)	FSCM 64639	01E3874	June 5, 2023	June 5, 2025
RF Cable (control room bulkhead to test receiver)	FSCM 64639	01F1206	June 5, 2023	June 5, 2025
N connector bulkhead (10m chamber)	PE9128	NCEEBH1	June 5, 2023	June 5, 2025
N connector bulkhead (control room)	PE9128	NCEEBH2	June 5, 2023	June 5, 2025
TDK Emissions Lab Software	V11.25	700307	NA	NA
ETS – Lindgren- VSWR on 10m Chamber	10m Semi- anechoic chamber- VSWR	4740 Discovery Drive	July 30, 2020	July 30, 2024
NCEE Labs-NSA on 10m Chamber	10m Semi- anechoic chamber- NSA	NCEE-001	May 25, 2022	May 25, 2025

*Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

Conducted ⊠

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Figure 1 - Bandwidth Measurements Test Setup

Radiated 🛛

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

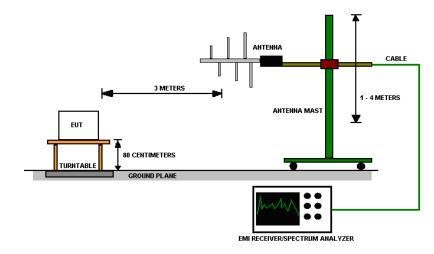


Figure 2 - Radiated Emissions Test Setup

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

4.0 RESULTS

DSS Radio Measurements								
CHANNEL	Transmitter	Occupied Bandwidth (kHz)	20 dB Bandwidth (kHz)	AVERAGE OUTPUT POWER (dBm)	AVERAGE OUTPUT POWER (mW)	RESULT	No. of Hopping Channels 79	ON Time (μs) 372.00
Low	Continuous	966.23	1120.00	11.640	14.588	PASS	Channel	Time of
Mid	Continuous	930.97	1123.00	9.990	9.977	PASS	Separation (MHz)	Occupancy (ms)
High	Continuous	929.93	1122.00	9.730	9.397	PASS	1.00	119.04
Occupied Ba	Power Limit = 12 andwidth = N/A; paration Limit: > 2		Time of Occu occupancy= Period of Tin	upancy Limit < 0.4s upancy = ON Time 0.000372*32*10 (S ne of Occupancy =	* # of transmis See Figure 11	in appendix (C) =0.11904s	of
			Unrestri	cted Band-Edge	1			
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Relative Highest out of band level (dBuV)	Relative Fundamental (dBuV)	Delta (dB)	Min Delta (dB)	Re	sult
Low	Continuous	2400.00	71.56	118.06	46.50	30.0	PA	SS
Low	Hopping	2400.00	68.64	117.83	49.19	30.0	PA	SS
High	Continuous	2483.50	56.78	116.26	59.47	30.0	PASS	
High	Hopping	2483.50	51.44	117.27	65.84	30.0	PASS	
			Peak Rest	ricted Band-Edge	•			
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Measurement Type	Limit* (dBuV/m @ 3m)	Margin	Res	sult
Low	Continuous	2390.00	50.74	Peak	73.98	23.24	PA	SS
High	Continuous	2483.50	51.54	Peak	73.98	22.45	PA	SS
*Limit shown	is the peak limit	taken from FCC Par	t 15.209					
			Average Re	stricted Band-Edg	ge			
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)**	Measurement Type	Limit (dBuV/m @ 3m)*	Margin	Result	
Low	Continuous	2390.00	39.65	Average	53.98	14.33	PA	SS
High	Continuous	2483.50	40.76	Average	53.98	13.22	PA	
	*Limit shown is the average limit taken from FCC Part 15.209 See Sec 4.3 for more information on DCCF							

4.1 OUTPUT POWER

Test Method:

All the radio measurements were performed using section 11.9.2.2.4 from ANSI C63.10.

Limits of power measurements: For FCC Part 15.247 Device:

The maximum allowed peak output power is 125mW.

Test procedures:

Details can be found in section 3.4 of this report. See section 4.3 for Duty cycle used.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the output power plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. The measurements are listed in the tables below.
- 4. Compiled values can be found in the Results section, 4.0.

А

Prepared for: Garmin International, Inc.

4.2 BANDWIDTH

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of bandwidth measurements:

For FCC Part 15.247 Device:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

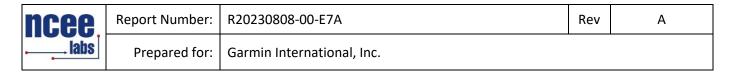
No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.


Test results:

Pass

Comments:

1. All the bandwidth plots can be found in Appendix C.

2. All the measurements were found to be compliant.

4.3 DUTY CYCLE

Test Method:

Manufacture declares worst case duty cycle for the transmitters in this report will be 80%

DCCF (For Emissions) = 20*log(.8) = -1.94dB

4.4 RADIATED EMISSIONS

Test Method:

ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (μV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 * log * Emission level (µV/m).

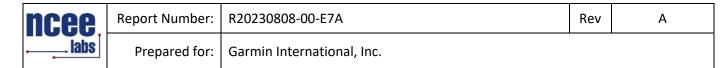
3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

4. The EUT was tested for spurious emissions while running off of battery power and external USB power. The worse-case emissions were produced while running off of USB power, so results from this mode are presented.

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.


c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

Test setup:

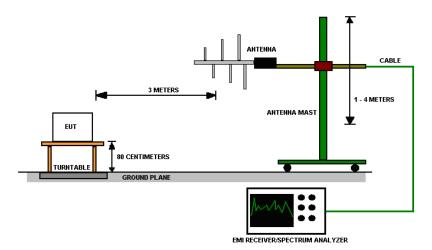
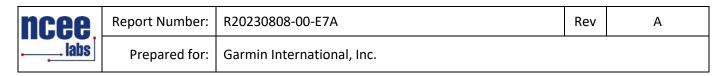


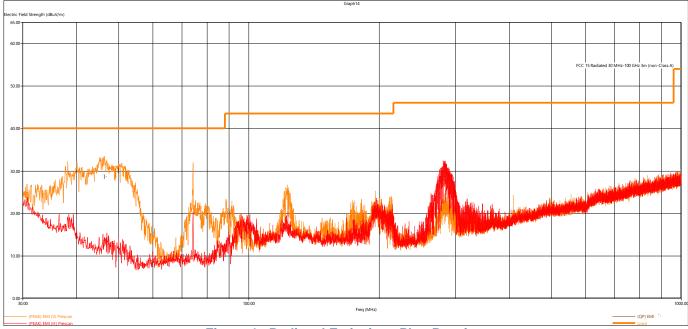
Figure 3 - Radiated Emissions Test Setup

NOTE:

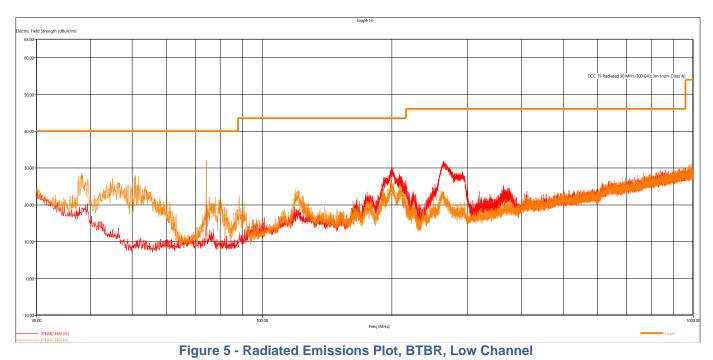
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.


2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:


No deviation.

EUT operating conditions


Details can be found in section 2.1 of this report.

Test results:

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission Level.
- 5. Emissions were found to be at least 10dB below limit line and were not reported.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 16 of 47

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

Quasi-Peak Measurements, BTBR								
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
283.217520	27.69	46.02	18.33	104.14	278.50	Н		Rx
46.266000	28.49	40.00	11.51	104.38	67.50	V		Rx

The EUT was maximized in all 3 orthogonal axes. The worst-case is shown in the plot and table above. All other measurements were found to be at least 6 dB Below the limit.

	Peak Measurements, BTBR									
Frequency Level Limit Margin Height Angle Pol Channel Modula						Modulation				
MHz	dBµV/m	dBµV/m	dB	cm.	deg.					
7206.522000	60.38	N/A	N/A	559.91	100.00	Н	Low	BTBR		
7320.180000	60.48	73.98	13.50	214.00	207.25	V	Mid	BTBR		
7439.370000	59.92	73.98	14.06	120.32	103.75	Н	High	BTBR		
All other emission	ons found to	he at least f	SdB below	limit line						

All other emissions found to be at least 6dB below limit line

Average	Measurements, BTBR	
---------	--------------------	--

				J	,					
Frequency	Level	DCCF	Corrected Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dB	dBµV/m	dBµV/m	dB	cm.	deg.			
7206.522000	54.25	-1.94	52.31	N/A	N/A	559.91	100.00	Н	Low	BTBR
7320.180000	55.07	-1.94	53.13	53.98	0.85	214.00	207.25	V	Mid	BTBR
7439.370000	54.63	-1.94	52.69	53.98	1.29	120.32	103.75	Н	High	BTBR
Corrected Level	Corrected Level = Level + DCCF									

Test Method:

ANSI C63.10-2013, Section 6.7

Limits of spurious emissions:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Test procedures:

The highest emissions level was measured and recorded. All spurious measurements were evaluated to 20dB below the fundamental. More details can be found in section 3.4 of this report.

Deviations from test standard:

None

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Rev

Rev

А

Prepared for: Garmin International, Inc.

eak Table		IFGain							M	re1 000	9.61 MI
	(GHz) dBm	ΔLimit 1 (dB)	10 dB/div	Pef 1().00 dBi	m			141		234 dB
							Ţ				
			0.00								
			-10.0								
			-20.0								-20.00 c
			-20.0								
			-30.0								
			-40.0								
			-50.0								
			-60.0								<u> </u>
·											. 1
				an bir i samanı bir sina Albana da samanı bir sina			utioni, istrato nationalistan	ditectual and		and the set of the set in the difference of the set	In set of the set of the
				n a la ser se un dississivitati	from three of						
			-80.0								

Figure 6 - Radiated Emissions Plot, BTBR, 30M – 1G

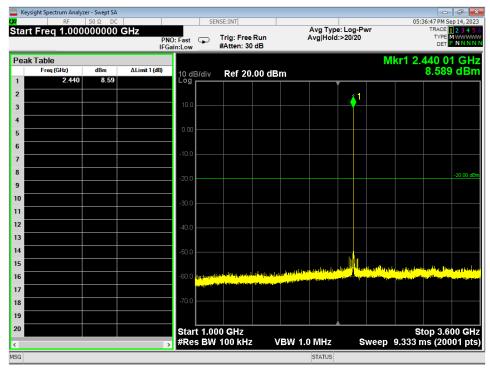


Figure 7 - Radiated Emissions Plot, BTBR, 1G – 3.6G

А

Rev

Prepared for: Garmin International, Inc.

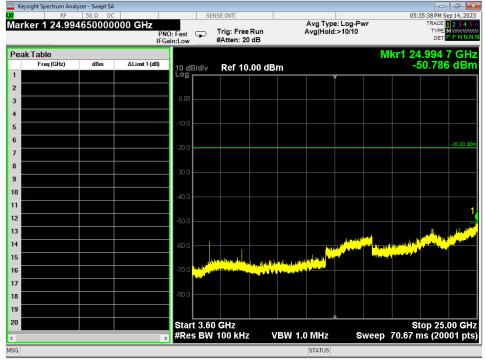


Figure 8 - Radiated Emissions Plot, BTBR, 3.6G – 25G

A

Prepared for: Garmin International, Inc.

4.6 BAND EDGES

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10. Restricted band edges are using Sec 6.10.5.

Limits of band-edge measurements:

For FCC Part 15.247 Device:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

1. All the band edge plots can be found in Appendix C.

- 2. If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 3. The restricted band edge compliance is shown by comparing to the general limit defined in Part 15.209. The limit shown in the graph accounts for the antenna gain of the device.

4.7 CONDUCTED AC MAINS EMISSIONS

Test Method:

ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56	56 to 46			
0.5-5	56	46			
5-30	60 50				

Notes:

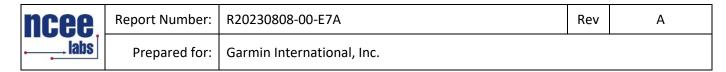
1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.


Deviation from the test standard:

No deviation

EUT operating conditions:

Details can be found in section 2.1 of this report.

Rev

Test Results:



Figure 10 - Conducted Emissions Plot, Neutral, TX

PASS

og

			J KITZ								.000
	Res	BW	9 kHz		VBW	90 kHz	#Dwell Tim	ie 50 ms (4	dBµV		
	_										
	SIG	TRC	FREQ	QPD AMPTD	AVG AMPTD	EAVG AMPTD	QPD LL1 Δ	AVG LL2 Δ	EAVG LL2 Δ	COMPOSITE AMP	COR
	1 [2	150.00 kHz	52.003 dBµV	25.706 dBµV	25.581 dBµV	-13.997 dB	-30.294 dB	-30.419 dB	9.824 dB	9
	2	1	172.50 kHz	51.949 dBµV	26.468 dBµV	26.966 dBµV	-12.890 dB	-28.371 dB	-27.873 dB	9.839 dB	9
	3	1	834.00 kHz	29.925 dBµV	9.9165 dBµV	9.9542 dBµV	-26.075 dB	-36.084 dB	-36.046 dB	9.890 dB	9
	4	1	1.1580 MHz	18.750 dBµV	7.2945 dBµV	7.8794 dBµV	-37.250 dB	-38.705 dB	-38.121 dB	9.935 dB	9
	5	1	1.2885 MHz	17.628 dBµV	10.053 dBµV	10.172 dBµV	-38.372 dB	-35.947 dB	-35.828 dB	9.956 dB	9
Ŀ	¢	· · · · · · · · · · · · · · · · · · ·									
Ν	ISG							STATUS			
	_										

Figure 12 - Conducted Emissions Plot, Neutral, IDLE

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain AV = Averaging Factor (if applicable)

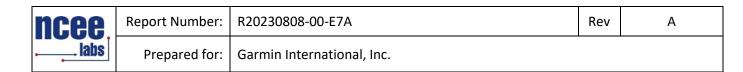
Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by taking the 20*log(Ton/100) where Ton is the maximum transmission time in any 100ms window.


ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

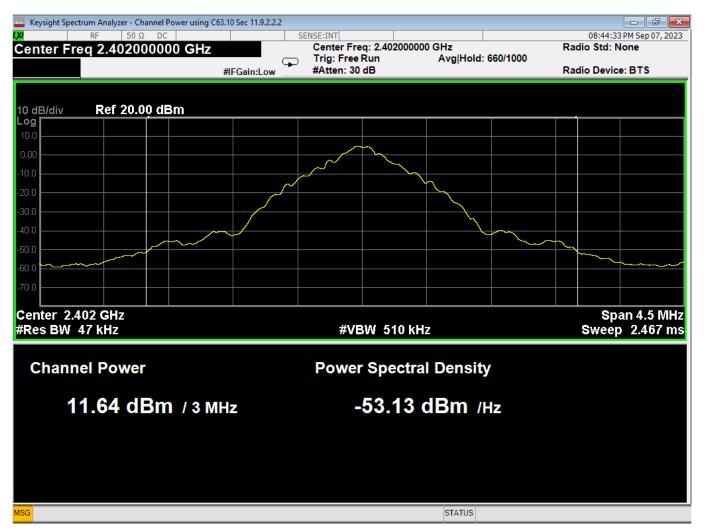
EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation.

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30 Power (watts) = $10^{Power} (dBm)/10$] / 1000Voltage (dB μ V) = Power (dBm) + 107 (for 50Ω measurement systems) Field Strength (V/m) = 10^{Field} Strength (dB μ V/m) / 20] / 10^{6} Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3):

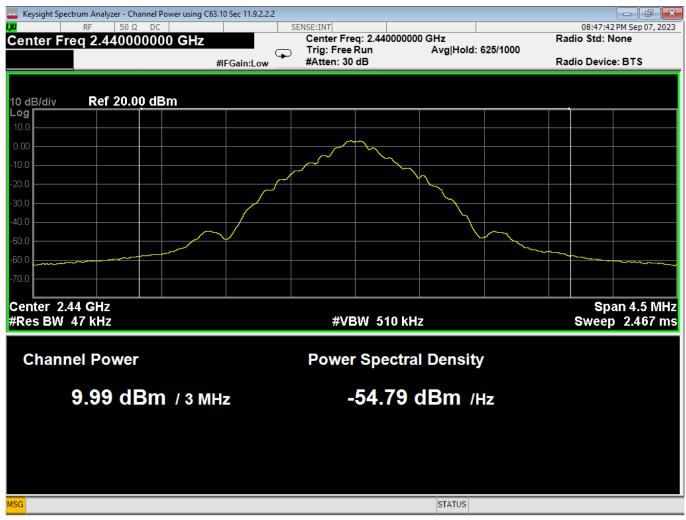
 $EIRP = [FS(V/m) \times d^2]/30 = FS [0.3]$ for d = 3 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$ $10log(10^9)$ is the conversion from micro to milli

APPENDIX B - MEASUREMENT UNCERTAINTY


Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	±4.31
Radiated Emissions, 3m	1GHz - 18GHz	±5.08
Emissions limits, conducted	150kHz – 30MHz	±3.03

Expanded uncertainty values are calculated to a confidence level of 95%.


ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

APPENDIX C – GRAPHS AND TABLES

01 Average Power, Low Channel, BTBR

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

02 Average Power, Mid Channel, BTBR

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

Keysight Spectrum Analyzer - Channel	-								
Center Freq 2.4800000		SENSE:INT Center Freq: 2.48000000	0 GHz	08:50:43 PM Sep 07, 2023 Radio Std: None					
		Trig: Free Run Avg Hold: 499/1000							
10 dB/div Ref 20.00 d	Bm								
Log 10.0									
0.00									
-10.0									
-20.0	~		\sim						
-30.0									
-30.0									
-50.0									
-60.0									
-70.0									
-70.0									
Center 2.48 GHz #Res BW 47 kHz		#VBW_510 kH	z	Span 4.5 MHz Sweep 2.467 ms					
Channel Power		Power Spectra	l Density						
9.73 dBn	n / 3 MHz	-55.04 (
мsg i)File <state a<="" ant_ble="" td=""><td colspan="9">G JFile <state 1-5%="" ant_ble="" avg="" obw_11.9.2.2.state="" power_change="" rbw="" to=""> STATUS</state></td></state>	G JFile <state 1-5%="" ant_ble="" avg="" obw_11.9.2.2.state="" power_change="" rbw="" to=""> STATUS</state>								

03 Average Power, High Channel, BTBR

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

Keysight Spect	trum Analyzer - BW (using C63.10 Se	c 11.8.1							
LXI I	RF 50 Ω	DC		SENSE:INT	·				09:13:	00 PM Sep 07, 2023
x dB -20.0)0 dB				er Freq: 2.402000				Radio Std:	None
					Free Run n: 20 dB		Avg Hold:>	10/10	Radio Devi	an BTS
			#IFGain:Low	#Atte	n: 20 aB				Radio Devi	Ce: DTS
10 dB/div	Ref 20.00) dBm								
Log										
10.0						_				
0.00										
-10.0						<u> </u>				
							n n n n n n n n n n n n n n n n n n n			
-20.0										
-30.0		~~~~	hand			_		Jan Martin		
-40.0		and a start and a start							Marrie a	
-50.0	mm								- Marchan March	mmm
-60.0						+				
-70.0						_				
Center 2.4										Span 4 MHz
#Res BW	100 kHz				VBW 1 MHz				S	weep 1 ms
Occurs	ied Band	width		Tot	al Power		17.7 dl	Bm		
Occup	leu Ballu			100			iiiii a			
		971	.81 kHz							
Transm	nit Freq Erro	or	-1.860 kHz	% o	f OBW Powe	er	99.00) %		
x dB Ba	andwidth		1.120 MHz	x d	в		-20.00	dB		
MSG							STATUS			

04 OBW-20dB, Low Channel, BTBR

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

trum Analyzer - BW u	using C63.10 Se	ec 11.8.1								
RF 50 Ω	DC		S	SENSE:INT				09:16	03 PM Sep 07, 2023	
00 dB								Radio Std:	None	
		#IFGain:Low	Trig: Free Run Avg Hold:>10/10 #Atten: 20 dB					Radio Device: BTS		
Ref 20.00	dBm									
							~ _			
							home			
1	www							Munhor		
man									man	
44 GHz									Span 4 MHz	
100 kHz				VB	N 1 MHz			5	Sweep 1ms	
oied Bandy	width			Total P	ower	15.9 d	IBm			
		52 VU-								
	370	.52 KHZ								
nit Freq Erro	or	-2.777 kHz		% of O	BW Power	99.0	0 %			
andwidth		1.123 MHz		x dB		-20.00) dB			
	Ref 20.00 Ref 20.00	Ref 20.00 dBm	Ref 20.00 dBm Ref 20.00 dBm	Ref 20.00 dBm #IFGain:Low Ref 20.00 dBm	RF 50 Ω DC SENSE:INT O dB Center Free #IFGain:Low Center Free Ref 20.00 dBm Image: Center Free #Atten: 20 Image: Center Free #Atten: 20 Ref 20.00 dBm Image: Center Free #Atten: 20 Image: Center Free #Atten: 20	RF 50 Ω DC SENSE:INT O Center Freq: 2.440000000 Trig: Free Run #IFGain:Low #Atten: 20 dB Ref 20.00 dBm Image: Construction of the second of t	RF 50 Ω DC SENSE:INT O dB #IFGain:Low Center Freq: 2.44000000 GHz Ref 20.00 dBm #Atten: 20 dB Ref 20.00 dBm #Atten: 20 dB AvglHold: #Atten: 20 dB Ref 20.00 dBm #Atten: 20 dB VBW 1 MHz VBW 1 MHz Ioo kHz VBW 1 MHz ied Bandwidth Total Power 15.9 c 970.52 kHz % of OBW Power 99.0	RF 50 Ω DC SENSE:INT D0 dB #FGain:Low Center Freq: 2.44000000 GHz #FGain:Low #FGain:Low #Atten: 20 dB Ref 20.00 dBm	NF 50 0 DC SENSE:INT 09:16 10 dB Center Freq: 2.44000000 GHz Avg Hold:>10/10 Radio Std: #IFGain:Low #IFGain:Low #Atten: 20 dB Avg Hold:>10/10 Radio Std: Ref 20.00 dBm	

05 OBW-20dB, Mid Channel, BTBR

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

	n Analyzer - BW using	C63.10 Sec 11.8.1									
LXI R	RF 50 Ω DC			SE	NSE:INT					09:16:	31 PM Sep 07, 2023
Center Freq	2.4800000	00 GHz				q: 2.48000000				Radio Std:	None
			FGain:Low	₽	Trig: Free #Atten: 20		Avg H	old:>1	0/10	Radio Devi	ce: BTS
10 dB/div	Ref 20.00 dl	2 mg									
	Rei 20.00 ut	5111					_				
10.0											
0.00				ممر							
-10.0							1				
-20.0								~			
-20.0			www.					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
-30.0	mmmm	- Manal							Water and and a second		
-40.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							· · · · ·	how	
a souther	munt										mmm
-50.0											
-60.0							_				
-70.0											
10.0											
Center 2.48	GHz							I			Span 4 MHz
#Res BW 10				VBW 1 MHz						weep 1 ms	
Occupie	d Bandwi	dth			Total P	ower	15.	8 dE	m		
		972.22	kHz								
Transmit	Freq Error	-3.4	45 kHz		% of O	BW Power	9	9.00	%		
x dB Band	dB Bandwidth 1.122 MHz				x dB		-20	-20.00 dB			
MCC							CTAT	10			
MSG							STATU	15			

06 OBW-20dB, High Channel, BTBR

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

Keysight Spe				C63.10 Sec 11.13.2							- F
arkor 1	RF	50 Ω	AC 7864 GHz		SENSE:	INT		Avg Type	: Log-Pwr		7 PM Sep 07, 2 RACE 1 2 3 4
arker i	2.40	199951	7004 GHZ	PNO: Fast IFGain:Low		g: Free Ru tten: 30 dE		Avg Hold:		-	
dB/div	Pof	126.99 (MI	kr1 2.401	999 GI 056 dBj
	Kel	120.99 (лони					FL1 2.4000 GH	z 61		
17											
07										λ	
									+/	1	
							3∆1				
′.0 								5	~	- brown	
`.0 							\sim	n man			m
0.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- Y -			
7.0											
art 2.39						5411_			- -	Stop 2.4	05004 G
Res BW	100 K	HZ		V	BW 1.0	IVIHZ			Swee	o 1.000 m	s (1001 p
R MODE TR	RC SCL		× 2.401 999 G	۱ ۱۱۹۰۰ ۱۹۹۵	′ 56 dBuV	FUNCTI	DN FUNCT	ION WIDTH	F	UNCTION VALUE	
	f	(Δ)	-2.636 N	Hz (Δ) -40	6.495 dB						
<u>N</u> 1	f	(Δ)	2.399 367 G	Hz (Δ) 71.5	60 dBµV						
3											
											3

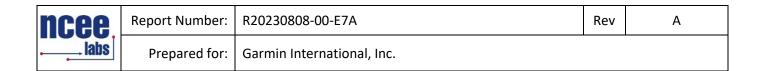
07 Lower Bandedge, Unrestricted, BTBR

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

Keysight Spectrum Analyzer - Unrestricted LBE using C6			
RF 50 Ω DC Narker 1 2.480036086120 GHz	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>1000/1000	08:52:38 PM Sep 07, 2023 TRACE 1 2 3 4 5 TYPE MA WWW DET P A N N N
0 dB/div Ref 126.99 dBµV		Mk	r1 2.480 036 GHz 116.255 dBµ\
-og 117			
97.0			
87.0	hann		
67.0 57.0 mh	nor Manu	harrow and the second s	Mm 3A1
47.0			
^{37.0} Start 2.475645 GHz			Stop 2.483500 GH
Res BW 100 kHz	VBW 1.0 MHz	Sweep	1.000 ms (1001 pts
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	z (Δ) 56.781 dBµV	FUNCTION WIDTH FU	NCTION VALUE
5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			
SG		STATUS	>

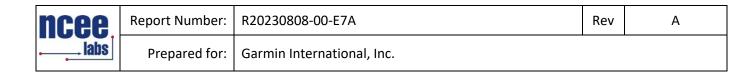
08 Higher Bandedge, Unrestricted, BTBR

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		


Keysight Spe	ectrum Analyzer - Restric	ted LBE using C63.10 S	ec 6.10.5					
XU T	RF 50 Ω		SENS	E:INT SOURCE OFF	\Lambda ALIGN OFF			AM Aug 28, 202
Marker 2 PASS	2.389780000 PREAMP	Р		ſrig: Free Run ŧAtten: 0 dB		be: RMS d:>1000/1000	T	ACE 1 2 3 4 5 YPE MA WWA DET P A N N N
10 dB/div	Ref Offset 32.9 Ref 84.94 dE						4 Wkr2 2.389 39.6) 67 GH 49 dBµ\
64.9 Trac	e 1 Pass e 2 Pass							
54.9 44.9 34.9	Marinallia Marinalainak	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	J.J., Ing., and and an age of the other states	4,046,	har ne falle fan de	~~	ง.ถภาษุณ _ี รใการรุงไปเหลือง	2
24.9 14.9 4.94								
5.06	30000 GHz						Stop 2.39	10000 GH
Res BW	1.0 MHz		#VBW :	50 MHz*		Swee		(1001 pt
IKR MODE TR	f	× 2.389 98 GHz 2.389 67 GHz	۲ 50.736 dBi 39.646 dBi		FUNCTION WIDTH	F	FUNCTION VALUE	
2 N 2 3 4 5 6 7		2.369 07 GHZ	<u>39.040 dB</u>					
8								
1								>

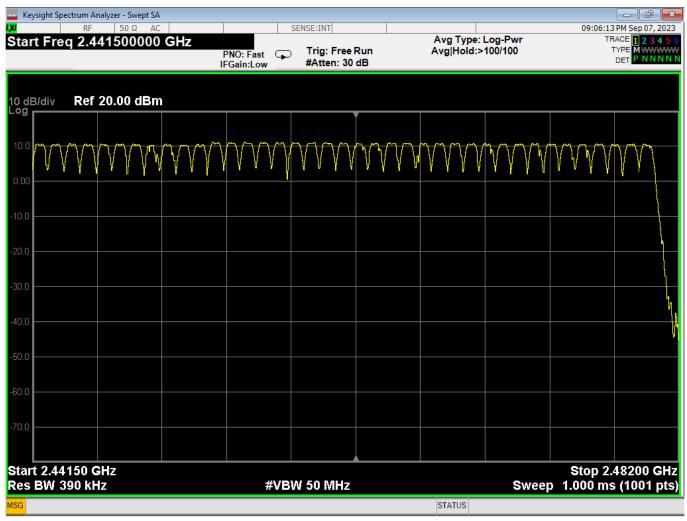

09 Lower Bandedge, Restricted, BTBR

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		


Keysight Spe	ectrum Analyzer - Restricted	HBE C63.10 Sec 6.10.5						- 6
XI T	RF 50 Ω DC		SENSE:I	NT SOURCE OFF	🛕 ALIGN OFF		10:35:23 AM Aug	
	2.4933340000		Frank Con Trie	g: Free Run	Avg Ty Avg Hol	be:RMS d:>1000/1000		
PASS	PREAMP	PNO: IFGain:		ten: 0 dB			DET P	ANNN
	Ref Offset 33.4 dE	1				Mkr	2 2.493 334 0	
10 dB/div _og r	Ref 85.39 dBµ						40.756 (dΒμ
Trac	e 1 Pass							
65.4	e 2 Pass							
55.4	1							
45.4	man management	mathing hellow many second and and	and the same of the second second	- waster	man 2 know	الدعيدي والمرار المرار والمحمد والمرار والمحمد والمرار	and the second state of the second	mentr
		· ·····						
35.4								
25.4								
15.4								
5.39								
4.61								
itart 2.48	3500 GHz			A	I		Stop 2.50000	0 GI
	1.0 MHz		VBW 50 I	/IHz*		Swee		01 pt
		<	Y	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
1 N 1 2 N 2	f 2.48	4 688 0 GHz 3 334 0 GHz	51.535 dBµV 40.756 dBµV					
3			40.700 000					
4 5								
6								
8								
9								
1								
G					STATUS			>
9					51A105			

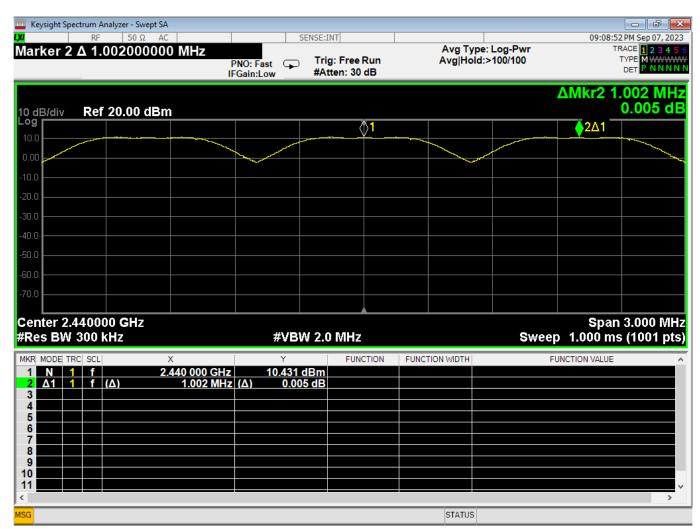

10 Higher Bandedge, Restricted, BTBR

11 Dwell Time, 3.16S (reported for better resolution)


12 Dwell Time, 31.6S

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

🔤 Keysight Spectrum Analyzer - Swept SA					
LXI RF 50 Ω AC		SENSE:INT	Avg Type:		9:05:21 PM Sep 07, 2023 TRACE 1 2 3 4 5 6
	PNO: Fast G	Trig: Free R #Atten: 30 d	un Avg Hold:>		
10 dB/div Ref 20.00 dBm					
Log		Ĭ			
	MM	WWW	<u>AAAAAAAA</u>	VVVVVV	
-10.0					
-20.0					
-30.0					
-40.0					
-50.0					
-60.0					
-70.0					
Start 2.40000 GHz Res BW 390 kHz	#VB	W 50 MHz		Steep 1.00	op 2.44150 GHz 0 ms (1001 pts)
MSG			STATUS		


13 Channel Count, 2400-2441.5M

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		


14 Channel Count, 2441.5-2482M

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

15 Frequency Separation

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

16 Higher Bandedge, Unrestricted, Hopping

ncee.	Report Number:	R20230808-00-E7A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

Keysight Spectrum Analyzer - Unrestricted LBE using C63 RF 50 Ω AC Marker 1 2.404843515840 GHz	PNO: Fast	Avg Type: Log-Pwr Avg Hold: 750/750	08:55:05 PM Sep 07, 2023 TRACE 1 2 3 4 5 6 TYPE M & WWWW DET P A NINN
10 dB/div Ref 126.99 dBµV	FGain:Low #Atten: 30 dB		r1 2.404 844 GHz 117.831 dBµV
117 107 97.0			My hor
87.0 77.0 67.0	3∆1	, M	
67.0 57.0 47.0	and more the		
37.0 Start 2.393221 GHz #Res BW 100 kHz	VBW 1.0 MHz	Sweet	Stop 2.407395 GHz 1.000 ms (1001 pts)
MKR MODE TRC SCL X 1 N 1 f 2.404 844 GH2 2 Δ1 1 f (Δ) -5.535 MH2 3 N 1 f 2.399 310 GH2	Y FUNCTION 2 117.831 dBμV 2 (Δ) -49.188 dB	-	JNCTION VALUE
4 2.000 010 0111 5 6 7 8			
9 10 11 <			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MSG		STATUS	

17 Lower Bandedge, Unrestricted, Hopping

Incee.	Report Number:	R20230808-00-E7A	Rev	А
	Prepared for:	Garmin International, Inc.		

Keysight Spectrum Analyzer - Swept SA RF 50 Ω AC	SENSE	TNIT		09:03:40 PM Sep 07, 202
larker 1 140.000 μs	PNO: Fast ↔→ Ti	rig: Free Run Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 1/1	TRACE 1 2 3 4 5 TYPE MWWW DET P NNNN
0 dB/div Ref 20.00 dBm				Mkr1 140.0 µ 6.128 dBr
10.0 0.00				
0.0				
			Han Walayah Malayah Marakaraka Sanakaraka Sanakaraka Sanakarakarakarakarakarakarakarakarakarak	-mllilarinologiklilaguralita, Miranaga
0.0				
enter 2.440000000 GHz es BW 3.0 MHz	#VBW 3.	.0 MHz	Swe	Span 0 H ep 1.000 ms (1001 pt
2 Δ1 1 t (Δ) 372	·0 μs 6.128 dBm .0 μs (Δ) -57.962 dB	1	CTION WIDTH	FUNCTION VALUE
3 4 5 6				
7				
0				
1 			STATUS	>

18 ON Time BTBR Hopping

Incee	Report Number:	R20230808-00-E7A	Rev	А
	Prepared for:	Garmin International, Inc.		

REPORT END