

Band edge

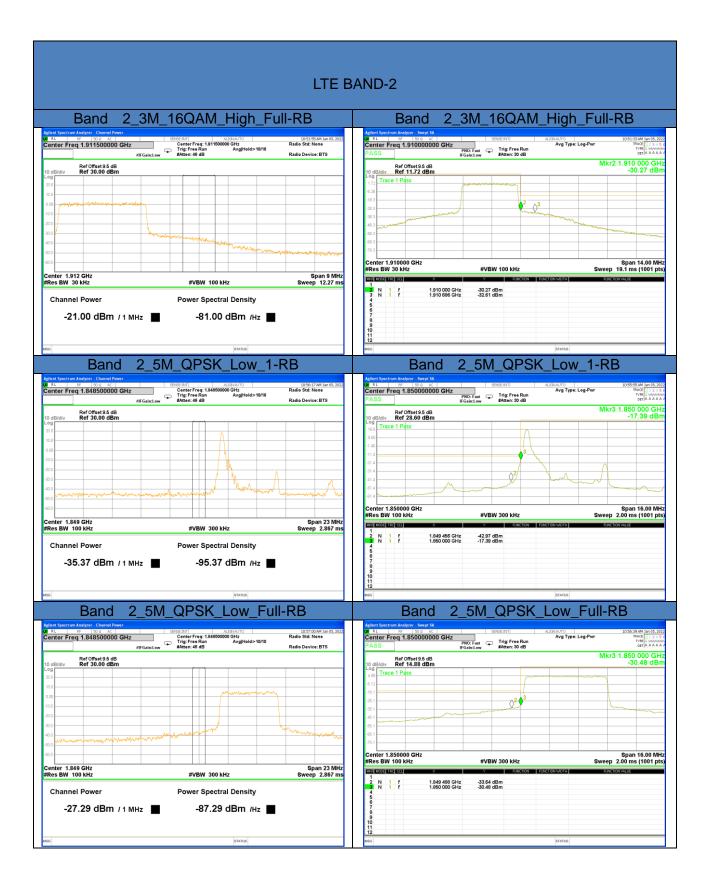
LTE BAND-2 Band 2_3M_QPSK_Low_Full-RB Band 2_3M_QPSK_Low_Full-RB RL RF 50 AC SENSERT enter Freq 1.848500000 GHz Center Freq: 1.848 #IFGain:Low #IEGain:Low Avg Type: Log-Pwr 10:43:49 AM Ja Radio Std: None nter Freq 1.850000000 GHz 000 GHz Avg|Hold>10/10 PNO: Fast Trig: Free Run DET A A A A Radio Device: BTS Mkr3 1.850 000 GH Ref Offset 9.5 dB Ref 12.23 dBm Ref Offset 9.5 dB Ref 30.00 dBm -33.48 dB $\langle \rangle^2$ Span 14.00 MHz Sweep 19.1 ms (1001 pts) Center 1.850000 GHz #Res BW 30 kHz #VBW 100 kHz Span 9 MHz Sweep 12.27 ms Center 1.849 GHz #Res BW 30 kHz #VBW 100 kHz 1 2 N 1 f 3 N 1 f 1.849 454 GHz 1.850 000 GHz -37.21 dBm -33.48 dBm Channel Power Power Spectral Density -25.29 dBm / 1 MHz -85.29 dBm /Hz 🔳 2_3M_QPSK_High_1-RB 2_3M_QPSK_High_1-RB Band Band Center Freq 1.911500000 GHz
 . DENSE:INT]
 ALIGNAUTO

 Center Freq: 1.911500000 GHz

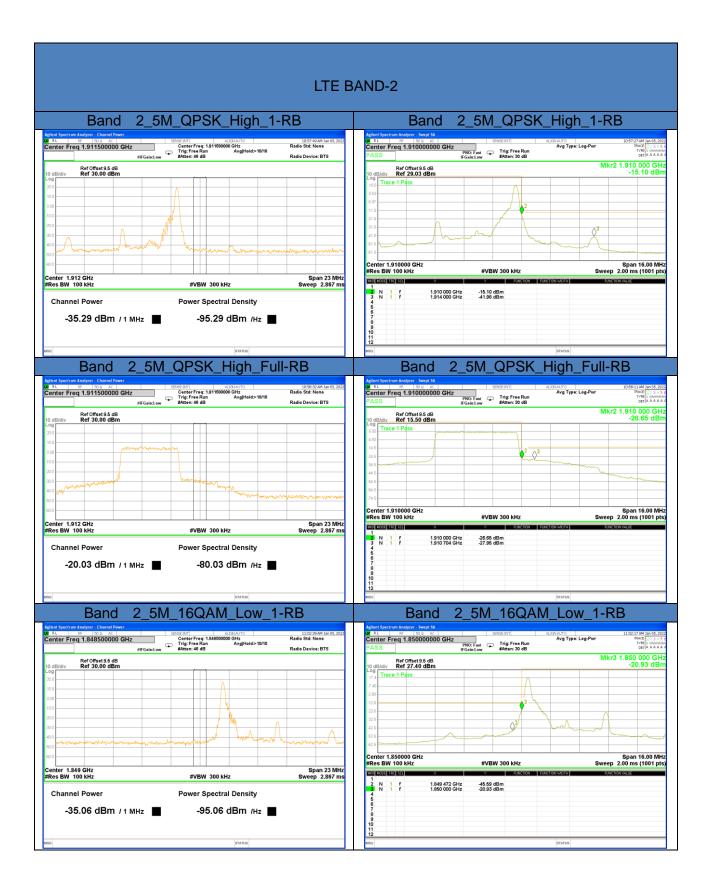
 Trig: Free Run
 Avg|Hold>10/10

 #Atten: 46 dB
 10:44:37 AM Jan 05, Radio Std: None enter Freq 1.910000000 GHz Avg Type: Log-Pwr PNO: Fast Trig: Free Run #Atten: 30 dB Radio Device: BTS Mkr2 1.910 000 GH -18.38 dBn Ref Offset 9.5 dB Ref 25.26 dBm Ref Offset 9.5 dB Ref 30.00 dBm Trace 1 0 Span 14.00 MH Sweep 19.1 ms (1001 pts Center 1.910000 GHz #Res BW 30 kHz #VBW 100 kHz Center 1.912 GHz #Res BW 30 kHz Span 9 MH Sweep 12.27 m #VBW 100 kHz 2 N 1 f 3 N 1 f 1.910 000 GHz 1.912 268 GHz -18.38 dBm -43.95 dBm Channel Power Power Spectral Density -35.35 dBm / 1 мнг 🔳 -95.35 dBm /Hz Band 2_3M_QPSK_High_Full-RB Band 2_3M_QPSK_High_Full-RB
 SENSEIRIT
 ALIGNAUTO

 Center Freq: 1.911500000 GHz
 Trig: Free Run


 Trig: Free Run
 Avg|Hold>10/10

 Low
 #Atten: 46 dB
 10:45:21 AM Jan 05, Radio Std: None enter Freq 1.910000000 GHz Avg Type: Log-Pwr enter Freq 1.911500000 GHz PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB TYPE A WWWW DET A A A A Radio Device: BTS Mkr2 1.910 084 GH -29.04 dBn Ref Offset 9.5 dB Ref 30.00 dBm Ref Offset 9.5 dB Ref 12.80 dBm 2^2 Center 1.910000 GHz #Res BW 30 kHz Span 14.00 MHz Sweep 19.1 ms (1001 pts #VBW 100 kHz Span 9 MH Sweep 12.27 m Center 1.912 GHz #Res BW 30 kHz #VBW 100 kHz 2 N 1 f 3 N 1 f 1.910 084 GHz 1.910 602 GHz -29.04 dBm -31.03 dBm Channel Power Power Spectral Density -19.31 dBm / 1 мнг 🔳 -79.31 dBm /Hz





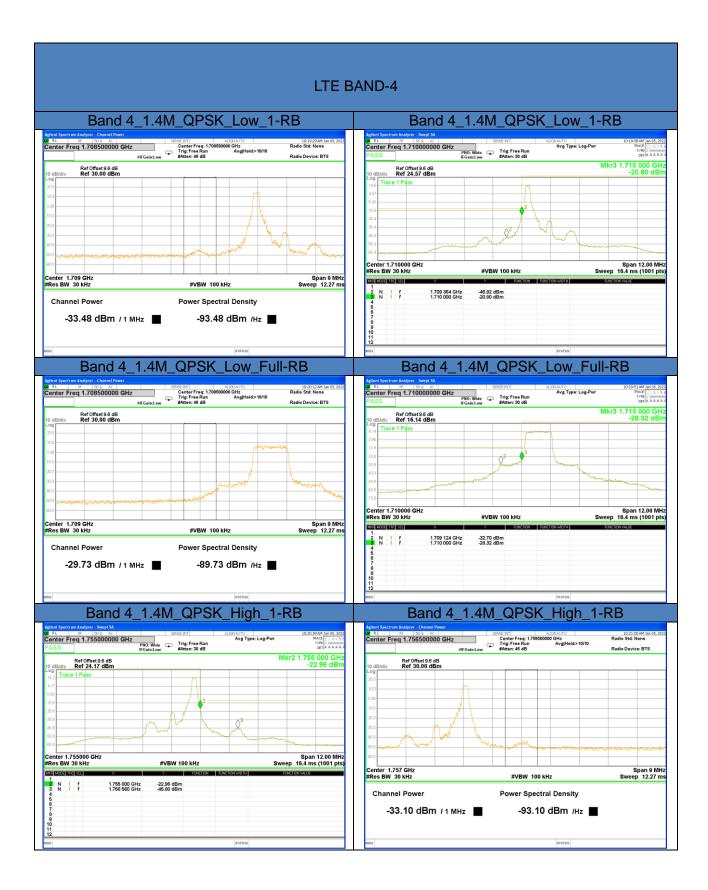
LTE B	AND-2
Band 2_10M_QPSK_Low_1-RB	Band 2_10M_QPSK_Low_1-RB
Algent Spectrum Analyzer Solo Acc. SOLO Acc.<	Agent Spectrum Analyzer, Swept SA SPICE 3011 AL327A/TO 1100-35.001 M AL W 100 AC SPICE 3011 AL327A/TO 1100-35.001 Contert Freq 1.850000000 GHz SPICE 3011 Trig Free Run Avg Type: Leg Puer PACC SVICE 3011 PASS FEGLINATION Trig Free Run Vector 3018 Vector 3018 Vector 3018
Ref Offset 9.5 dB 10 dB/div Ref 30.00 dBm	Ref Offset 9.5 dB Mkr3 1.850 00 GHz 10 dB/dv Ref 28.21 dBm -25.69 dBm 0.40 Trace 1 Paiss -21.00 mm -21.00 mm
100	
200 manufacture manufacture of Manual survey of the	
Center 1.849 GHz Span 23 MHz	Center 1.85000 GHz Span 20.00 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.53 ms (100 1pt) D02 Her State x v Anktion Faxtionwork
#Res BW 100 kHz #VBW 300 kHz Sweep 2.867 ms Channel Power Power Spectral Density	1 2 N 1 f 1.84189 CHz 46.85 dBm N 1 f 1.860 00 CHz -26.69 dBm
-35.54 dBm / 1 мнг 🔳 -95.54 dBm /нг 🔳	6 9 9 10 11 11
NSG STATUS	11 12 150
Band 2_10M_QPSK_Low_Full-RB	Band 2_10M_QPSK_Low_Full-RB
It Im	B N P S0 % A S0 %
Ref Offset 8.5 dB 10 dB/dW Ref 30.80 dBm Log 200	Ref Offset 9.5 dB Mkr3 1.850 00 GHz 10 dBldW ra6 11.30 dBm -36,60 dBm 1 x Trace 1 Pass -39 -39
	125 125 125 125 125 125 125 125 125 125
100	40.6
ده المعالم المع Res BW 100 kHz علام المعالم الم المعالم المعالم	Center 1.85000 GHz Span 20.00 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.53 ms (1001 pts) mg/most ingt agat x x acation within acation within
Channel Power Power Spectral Density	2 N 1 f 1849 30 GHz 38.48 dBm A N 1 f 1860 00 GHz 36.60 dBm 6
-29.79 dBm / 1 мнz 🔳 -89.79 dBm /нz 🔳	6 7 9 19 11 12
NSS FTATUS	MSG STATUS
Band 2_10M_QPSK_High_1-RB	Band 2_10M_QPSK_High_1-RB
Center Freq 1.910000000 GHz Trig: Free Run Avg Type: Leg-Pwr TBACE [2: 3: 5: 5] PASS IFG-Sinit.avw #Atten: 30 dB CET A A A A A	Center Freq 1.911500000 GHz Center Freq 1.911500000 GHz Radio Std: None Freq 1.911500000 GHz Trig: Free Stun Avg Held>10/10 Radio Std: None #EfGaincl.ew ##ten: 45 dB Radio Device: BTS
10 dB/div Ref 29.32 dBm21.08 dBm 103 Trace 1 Páss // ///////////////////////////////	Ref 076et 8 ≤ dB Log μ 200 μ
1922 A000 107 22 2 407	
007 Center 1.91000 GHz Span 20.00 MHz	200 / have made have have a second se
#Res BW 100 kHz #VBW 300 kHz Sweep 2.53 ms (1001 pts) Dog toxicit rest soci x y sociation	Center 1.912 CHz Span 23 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.867 ms
N 1 f 191000 GHz -21.08 dBm 3 N 1 f 1.910 84 GHz -45.79 dBm 4 5 5 5 5	Channel Power Power Spectral Density
5 7 8 9 10 11 12	-35.00 dBm / 1 мнz 🔳 -95.00 dBm /нz 🔳
12 NG 5	asa status

LTE BAND-2 Band 2_15M_QPSK_Low_Full-RB Band 2_15M_QPSK_Low_Full-RB enter Freq 1.850000000 GHz Freq 1.850000000 GHz PRO: Fast FGain:Lew FGain:Lew FfGain:Lew 11:21:19 AM Jan 05, 2 Radio Std: None AUTO Avg Type: Log-Pwr ter Freq 1.848500000 GHz #FGainLaw #FGainLaw DET A A A Radio Device: BTS Mkr3 1.849 88 GH -33.31 dBn Ref Offset 9.5 dB Ref 30.00 dBm Ref Offset 9.5 dB Ref 14.39 dBm Trace 1 $\langle \rangle^2 \sqrt[3]{3}$ Center 1.85000 GHz #Res BW 300 kHz Span 30.00 MH Sweep 1.00 ms (1001 pts #VBW 1.0 MHz Center 1.849 GHz #Res BW 300 kHz Span 42 MH Sweep 1 m #VBW 1 MHz 1 2 N 1 f 3 N 1 f 1.848 83 GHz 1.849 88 GHz -35.43 dBm -33.31 dBm Channel Power Power Spectral Density -30.09 dBm / 1 MHz 📕 -90.09 dBm /Hz 🔳 2_15M_QPSK_High_1-RB Band 2_15M_QPSK_High_1-RB Band Center Freq 1.911500000 GHz ALISNAUTO
Center Freq: 1.911500000 GHz
Trig: Free Run Avg[Hold>10/10
#Atten: 46 dB RL NF SU A AC Enter Freq 1.910000000 GHz PR0: Fast FGain:Low FGain:Low FGain:Low 11:22:02 AM Jan 05, Radio Std: None AUTO Avg Type: Log-Pwr Radio Device: BTS Mkr2 1.910 00 GH -18.94 dBn Ref Offset 9.5 dB Ref 29.50 dBm Trace 1 Pass Ref Offset 9.5 dB Ref 30.00 dBm A \ Center 1.91000 GHz #Res BW 300 kHz Span 30.00 MH Sweep 1.00 ms (1001 pts #VBW 1.0 MHz Span 42 MHz Sweep 1 ms Center 1.912 GHz #Res BW 300 kHz #VBW 1 MHz 2 N 1 f 3 N 1 f 1.910 00 GHz 1.910 72 GHz -18.94 dBm -39.58 dBm Channel Power Power Spectral Density -35.69 dBm / 1 мнг 🔳 -95.69 dBm /Hz Band 2_15M_QPSK_High_Full-RB Band 2_15M_QPSK_High_Full-RB enter Freq 1.910000000 GHz File Freq 1.910000000 GHz File Freq 1.910000000 GHz File Freq 1.910000000 GHZ File Freq 1.910000000 GHZ 11:22:46 AM Jan 05 Radio Std: None SENSE:INT ALIGNAUTO Center Freq: 1.911500000 GHz Trig: Free Run Avg|Hold>10/10 #Atten: 46 dB Avg Type: Log-Pwr enter Freq 1.911500000 GHz TYPE A WWWW DET A A A A Radio Device: BTS Mkr2 1.910 45 GH -29.36 dBn Ref Offset 9.5 dB Ref 30.00 dBm Ref Offset 9.5 dB Ref 15.26 dBm **♦**²3 Center 1.91000 GHz #Res BW 300 kHz Span 30.00 MHz Sweep 1.00 ms (1001 pts #VBW 1.0 MHz Span 42 MH Sweep 1 m Center 1.912 GHz #Res BW 300 kHz #VBW 1 MH; 1 2 N 1 f 3 N 1 f 1.910 45 GHz -29.36 dBm 1.910 90 GHz -29.75 dBm Channel Power Power Spectral Density -26.35 dBm / 1 мнг 🔳 -86.35 dBm /Hz

LTE BAND-2 Band 2_15M_16QAM_High_Full-RB Band 2_15M_16QAM_High_Full-RB enter Freq 1.910000000 GHz Freq 1.910000000 GHz FGainLow FGainLow FGainLow 11:28:33 AM Jan 05, Radio Std: None AUTO Avg Type: Log-Pwr Radio Device: BTS Mkr2 1.910 03 GH -31.19 dBn Ref Offset 9.5 dB Ref 30.00 dBm Ref Offset 9.5 dB Ref 14.35 dBm race 1 Pa 2²3 Center 1.91000 GHz #Res BW 300 kHz Span 30.00 MH Sweep 1.00 ms (1001 pts #VBW 1.0 MHz Span 42 MH Sweep 1 m Center 1.912 GHz #Res BW 300 kHz #VBW 1 MHz 2 N 1 f 3 N 1 f 1.910 03 GHz 1.910 66 GHz -31.19 dBm -31.79 dBm Channel Power Power Spectral Density -28.07 dBm / 1 MHz -88.07 dBm /Hz 🔳 Band 2_20M_QPSK_Low_1-RB 2_20M_QPSK_Low_1-RB Band Center Freq 1.848500000 GHz 1 00H00±1MT] ALIGNAUTO Center Freq: 1.848500000 GHz □ Trig: Free Run Avg|Held>10/10 #Atten: 46 dB RL NF SO A AC Enter Freq 1.850000000 GHz PRO: Fast FGain:Low FGain:Low FGain:Low 11:33:03 AM Jan 05, Radio Std: None Avg Type: Log-Pwr Radio Device: BTS Ref Offset 9.5 dB Ref 29.50 dBm Trace 1 Pass Mkr3 1.850 00 GH -26.91 dBr Ref Offset 9.5 dB Ref 30.00 dBm \mathcal{M} Center 1.85000 GHz #Res BW 300 kHz Span 40.00 MH Sweep 1.00 ms (1001 pts #VBW 1.0 MHz Span 42 MHz Sweep 1 ms Center 1.849 GHz #Res BW 300 kHz #VBW 1 MHz 1 2 N 1 f 3 N 1 f 1.849 40 GHz 1.850 00 GHz -43.23 dBm -26.91 dBm Channel Power Power Spectral Density -36.01 dBm / 1 мнг 🔳 -96.01 dBm /Hz Band 2_20M_QPSK_Low_Full-RB Band 2_20M_QPSK_Low_Full-RB enter Freq 1.850000000 GHz FRG: Freq 1.850000000 GHz FRG: Fast FGain.tew ALIGNAUTO Center Freq: 1.848500000 GHz Trig: Free Run Avg|Hold>10/10 Low #Atten: 46 dB 11:33:46 AM Jan 05 Radio Std: None Avg Type: Log-Pwr enter Freq 1.848500000 GHz TYPE A WWWW DET A A A A Radio Device: BTS Mkr3 1.850 00 GH -34.06 dBn Ref Offset 9.5 dB Ref 30.00 dBm Ref Offset 9.5 dB Ref 13.12 dBm $\Diamond \diamond$ Center 1.85000 GHz #Res BW 300 kHz Span 40.00 MHz Sweep 1.00 ms (1001 pts #VBW 1.0 MHz Span 42 MH Sweep 1 m Center 1.849 GHz #Res BW 300 kHz #VBW 1 MHz 1 2 N 1 f 3 N 1 f 1.849 32 GHz -34.91 dBm 1.850 00 GHz -34.06 dBm Channel Power Power Spectral Density -30.33 dBm / 1 мнг 🔳 -90.33 dBm /Hz



LTE BAND-2 Band 2_20M_QPSK_High_1-RB Band 2_20M_QPSK_High_1-RB enter Freq 1.910000000 GHz PRO: Fast IF Gain:Low #Atten: 30 dB 11:34:30 AM Jan 05, 2 Radio Std: None AUTO Avg Type: Log-Pwr ter Freq 1.911500000 GHz #FGainLaw #FGainLaw Radio Device: BTS Mkr2 1.910 00 GH -25.61 dBn Ref Offset 9.5 dB Ref 30.00 dBm Ref Offset 9.5 dB Ref 29.50 dBm Trace 1 Pa Center 1.91000 GHz #Res BW 300 kHz Span 40.00 MH Sweep 1.00 ms (1001 pts #VBW 1.0 MHz Span 42 MH Sweep 1 m Center 1.912 GHz #Res BW 300 kHz #VBW 1 MHz 2 N 1 f 3 N 1 f 1.910 00 GHz 1.910 68 GHz -25.61 dBm -40.68 dBm Channel Power Power Spectral Density -36.09 dBm / 1 MHz 📕 -96.09 dBm /Hz 🔳 Band 2_20M_QPSK_High_Full-RB 2_20M_QPSK_High_Full-RB Band Center Freq 1.911500000 GHz
 Scretc::IVTI
 ALIGNAUTO


 Center Freq: 1.911500000 GHz
 Trig: Free Run

 Avg|Held>10/10
 #Atten: 46 dB
 RL RF 50 R AC | Center Freq 1.910000000 GHz 11:35:14 AM Jan 05, Radio Std: None AVG Type: Log-Pwr PNO: Fast Trig: Free Run #Atten: 30 dB Radio Device: BTS Mkr2 1.910 00 GH -33.47 dBr Ref Offset 9.5 dB Ref 30.00 dBm Ref Offset 9.5 dB Ref 14.10 dBm Center 1.91000 GHz #Res BW 300 kHz Span 40.00 MHz Sweep 1.00 ms (1001 pts #VBW 1.0 MHz Span 42 MHz Sweep 1 ms Center 1.912 GHz #Res BW 300 kHz #VBW 1 MHz 2 N 1 f 3 N 1 f 1.910 00 GHz 1.910 60 GHz -33.47 dBm -34.04 dBm Channel Power Power Spectral Density -29.85 dBm / 1 мнг 🔳 -89.85 dBm /Hz Band 2_20M_16QAM_Low_1-RB Band 2_20M_16QAM_Low_1-RB SENSE:MT ALIGNAUTO Center Freq: 1.848500000 GHz Trig: Free Run Avg|Hold>10/10 #Atten: 46 dB 11:38:49 AM Jan 05, Radio Std: None enter Freq 1.850000000 GHz AVG Type: Log-Pwr enter Freq 1.848500000 GHz PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB TYPE A WWWW DET A A A A Radio Device: BTS Mkr3 1.850 00 GH -28.07 dBn Ref Offset 9.5 dB Ref 30.00 dBm Ref Offset 9.5 dB Ref 29.50 dBm Center 1.85000 GHz #Res BW 300 kHz Span 40.00 MHz Sweep 1.00 ms (1001 pts #VBW 1.0 MHz Span 42 MH Sweep 1 m Center 1.849 GHz #Res BW 300 kHz #VBW 1 MHz 1 2 N 1 f 3 N 1 f 1.849 48 GHz 1.850 00 GHz -42.88 dBm -28.07 dBm Channel Power Power Spectral Density -36.55 dBm / 1 мнг 🔳 -96.55 dBm /Hz 🔳

