Report No: C180509Z11-RP1_MPE

FCC ID: GPO113360

Date of Issue: June 26, 2018

MPE Report

Exposure category: General population/uncontrolled environment

EUT Type: Production Unit Device Type: Mobile Device

Refer Standard: KDB 447498 D01 General RF Exposure Guidance v06

FCC Part 2 §2.1091

1. Evaluation method

Systems operating under the provisions of FCC 47 CFR section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as mobile device whereby a distance of 0.2m normally can be maintained between the user and the device, and below RF Permissible Exposure limit shall comply with.

In accordance with KDB447498D01 for Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modeled or measured field strengths or power density, is ≤ 1.0. The MPE ratio of each antenna is determined at the minimum test separation distance required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to MPE limit, at the test frequency. Either the maximum peak or spatially averaged results from measurements or numerical simulations may be used to determine the MPE ratios. Spatial averaging does not apply when MPE is estimated using simple calculations based on far-field plane-wave equivalent conditions. The antenna installation and operating requirements for the host device must meet the minimum test separation distances required by all antennas, in both standalone and simultaneous transmission operations, to satisfy compliance.

2. Limits for General Population/Uncontrolled Exposure

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

3. Calculation Method

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4\pi R^2$

Where: S=power density

Compliance Certification Services (Shenzhen) Inc.

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator R=distance to the center of radiation of the antenna

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the maximum gain of the used 0dBi for BT, the RF power density can be obtained.

Internal Identification Antenna type and antenna number		Operate frequency band	Maximum antenna gain	
	Antenna 0	Internal Antenna	2400 – 2500 MHz	0 dBi
	Antenna 1	Internal Antenna	2400 – 2500 MHz	0 dBi

4. Estimation Result

4.1 Conducted Power Results

Bluetooth

Mode	Channel	Frequency(MHz)	Peak Conducted Output Power (dBm)
	00	2402	-1.11
GFSK	39	2441	-1.06
	78	2480	-1.42
	00	2402	-1.26
$\pi/4$ DQPSK	39	2441	0.23
	78	2480	-0.07

Test Mode	Channel	Frequency (MHz)	Field Strength of Fundamental (dBuV/m)
	1	2420	87.93
2.4GHz	2	2443	88.37
	3	2465	87.78

4.2 Manufacturing tolerance

Bluetooth

GFSK					
Frequency (MHz)	2402	2441	2480		
Maximum Output Power(dBm)	-1.00	-1.00	-1.00		

$\pi/4$ DQPSK						
Frequency (MHz)	2402	2441	2480			
Maximum Output Power(dBm)	-1.00	0.00	0.00			

Compliance Certification Services (Shenzhen) Inc.

Report No: C180509Z11-RP1_MPE

FCC ID: GPO113360

Date of Issue: June 26, 2018

4.3 Measurement Results

4.3.1 Standalone MPE

Antenna 0

Bluetooth

	Mode	Outpu (dBm)	t power (mW)	Antenna Gain (dBi)	Antenna Gain (linear)	Duty Cycle	MPE (mW/cm ²)	MPE Limits (mW/cm ²)
ŀ	GFSK	0	1.0000	0	1.0000	100%	0.0002	1.0000
Ī	π/4DQPSK	1.0000	1.2589	0	1.0000	100%	0.0003	1.0000

Remark:

- 1. Maximum power including tune-up tolerance;
- 2. MPE use distance is 20cm from manufacturer declaration of user manual.

Antenna 1

According to KDB 412172 D01 Determining ERP and EIRP format;

eirp =
$$p_t x g_t = (E x d)^2 / 30$$

Where:

 p_t = transmitter output power in watts,

 g_t = numeric gain of the transmitting antenna (unitless),

E = electric field strength in V/m,

d = measurement distance in meters (m).

EIRP = 88.37 dBuV/m = 0.2601 mW = -6.86 dBm

Madulation Type	EIRP Outp	out power	Duty	MPE	MPE Limits
Modulation Type	dBm	mW	Cycle	(mW/cm^2)	(mW/cm^2)
GFSK	-6.86	0.2601	100%	0.0001	1.0000

4.3.2 Simultaneous Transmission MPE

The sample support one BT modular and 2.4GHz modular, they supports difference antenna, need consider simultaneous transmission;

Maximum Simultaneous transmission MPE Ratio for BT and 2.4GHz

Maximum MPE	Maximum MPE	∇ MDE	Limit	Results	
$Ratio_{BT}$	Ratio _{2.4G}	\sum MPE _{ratios}	Lillit	Results	
0.0003	0.0001	< 0.1	1.0	PASS	

Compliance Certification Services (Shenzhen) Inc.

Remark:

- 1. Output power including tune-up tolerance;
- 2. MPE evaluate distance is 20cm from user manual provide by manufacturer;

5. Conclusion

The measurement results comply with the FCC Limit per 47 CFR 2.1091 for the uncontrolled RF Exposure of mobile device.

----- END OF REPORT-----