TEST REPORT # KCTL Inc. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0042 Page (1) of (55) 1. Client • Name : HYUNDAI MOBIS CO., LTD. Address : 203, Teheran-ro, Gangnam-gu, Seoul, 06141, Korea Date of Receipt : 2019-09-20 2. Use of Report : Certification 3. Name of Product and Model : WIDE AVN / ATC31HYAN 4. Manufacturer and Country of Origin: Hyundai Mobis Co., Ltd. / Korea 5. FCC ID : TQ8-ATC31HYAN **6. Date of Test** : 2019-10-01 to 2019-10-31 7. Test Standards FCC Part 15 Subpart C, 15.247 8. Test Results : Refer to the test result in the test report Affirmation Name : MyeongJun Kwon (Signature) Technical Manager Name : Heesu Ahn (Signature) 2020-02-09 # KCTL Inc. As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Page (2) of (55) Report No.: KR20-SRF0042 Report revision history | cport revision mistory | | | |------------------------|----------------|---------| | Date | Revision | Page No | | 2020-02-09 | Initial report | - | This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KOLAS accreditation. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (3) of (55) # **CONTENTS** | 1. G | eneral information | 4 | |-------|---|----| | 2. D | evice information | 4 | | 2.1. | Simultaneously transmission condition | 5 | | 2.2. | Information about derivative model | 5 | | 2.3. | Frequency/channel operations | 5 | | 2.4. | Duty Cycle Correction Factor | 6 | | 3. Aı | ntenna requirement | 7 | | 4. Sı | ummary of tests | 8 | | 5. M | easurement uncertainty | 9 | | 6. M | easurement results explanation example | 10 | | 7. Te | est results | 11 | | 7.1. | Maximum peak output power | 11 | | 7.2. | Peak Power Spectral Density | 15 | | 7.3. | 6 dB Bandwidth (DTS Channel Bandwidth) & 99 % bandwidth | 19 | | 7.4. | Spurious Emission, Band Edge and Restricted bands | 25 | | 7.5. | Conducted Spurious Emission | 51 | | 8. M | easurement equipment | 55 | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (4) of (55) # General information Client : HYUNDAI MOBIS CO., LTD. Address : 203, Teheran-ro, Gangnam-gu, Seoul, 06141, Korea Manufacturer : Hyundai Mobis., Ltd. Address : 95, Sayang 2-Gil, Munbaek-Myeon, Jincheon-Gun, Chungcheongbuk-Do 27862 Korea Laboratory : KCTL Inc. Address : 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea Accreditations : FCC Site Designation No: KR0040, FCC Site Registration No: 687132 VCCI Registration No.: R-20080, G-20078, C-20059, T-20056 Industry Canada Registration No.: 8035A KOLAS No.: KT231 # 2. Device information Equipment under test : WIDE AVN Model : ATC31HYAN Derivative model : ATC31HCAN, ATC34HCAN Frequency range : 2 402 Mb ~ 2 480 Mb (Bluetooth(BDR/EDR)) 2 412 Mb ~ 2 462 Mb (802.11b/g/n_HT20) UNII-1: 5 180 Mb ~ 5 240 Mb (802.11a/n_HT20/ac_VHT20) UNII-1: 5 190 Mb ~ 5 230 Mb (802.11n_HT40/ac_VHT40) UNII-1: 5 210 Mb (802.11ac VHT80) UNII-2A: 5 260 Mb ~ 5 320 Mb (802.11a/n_HT20/ac_VHT20) UNII-2A: 5 270 Mb ~ 5 310 Mb (802.11n_HT40/ac_VHT40) UNII-2A: 5 290 Mb (802.11ac VHT80) UNII-2C: 5 500 Mb ~ 5 720 Mb (802.11a/n_HT20/ac_VHT20) UNII-2C: 5 510 Mb ~ 5 710 Mb (802.11n_HT40/ac_VHT40) UNII-2C: 5 530 Mb ~ 5 690 Mb (802.11ac_VHT80) UNII-3: 5 745 Mb ~ 5 825 Mb (802.11a/n_HT20/ac_VHT20) UNII-3: 5 755 Mb ~ 5 795 Mb (802.11n_HT40/ac_VHT40) UNII-3: 5 775 Mb (802.11ac VHT80) Modulation technique : Bluetooth(BDR/EDR)_ GFSK, π /4DQPSK, 8DPSK WIFI(802.11a/b/g/n20/n40/ac20/ac40/ac80)_DSSS, OFDM Number of channels : Bluetooth(BDR/EDR)_79ch 2.4 WIFI (802.11b/g/n_HT20)_11ch UNII-1: 4 ch (20 吨), 2 ch (40 吨), 1 ch (80 吨) UNII-2A: 4 ch (20 吨), 2 ch (40 吨), 1 ch (80 吨) UNII-2C: 9 ch (20 吨), 5 ch (40 吨), 2 ch (80 吨) UNII-3: 5 ch (20 吨), 2 ch (40 吨), 1 ch (80 吨) Power source : DC 14.4 V 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0042 Page (5) of (55) Antenna specification : WIFI/Bluetooth(BDR/EDR)_Pattern Antenna Antenna gain : 2.4 WIFI (802.11b/g/n_HT20) : -0.70 dBi $Bluetooth(BDR/EDR): 0.29 \ \mathrm{dBi}$ UNII-1: 3.51 dBi, UNII-2A: 3.12 dBi UNII-2C: 2.28 dBI, UNII-3: -0.84 dBi Software version : MQ4.USA.0000.V028.001.190821 Hardware version : MQ4.USA.STD_AVN_G5_WIDE.004.001 Test device serial No. : N/A Operation temperature : -20 °C ~ 70 °C # 2.1. Simultaneously transmission condition | Technology | Modulation | Test mode | Frequency (酏) | |--------------|------------|-----------|---------------| | WLAN 2.4 GHz | OFDM | 802.11g | 2 412 | | Bluetooth | GFSK | BDR | 2 441 | # 2.2. Information about derivative model The difference between basic model and derivative models is: The derivative models have a different product identification number. ATC31HCAN (96560 P4710), ATC34HCAN (96560 P4910) # 2.3. Frequency/channel operations This device contains the following capabilities: WIFI(2.4 \oplus z band 802.11b/g/n(HT20), 5 \oplus z band 802.11a/n(HT20/HT40)/ac(VHT/20/40/80)), Bluetooth(BDR/EDR) | Ch. | Frequency (Mb) | |-----|----------------| | 01 | 2 412 | | | | | 06 | 2 437 | | | | | 11 | 2 462 | Table 2.3.1. 802.11b/g/n HT20 mode 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (6) of (55) # 2.4. Duty Cycle Correction Factor ## -802.11b Note1): Period: 8.695 ms, On time: 8.601 ms Note2): DCCF = $10\log(1/x) = 10\log(1/0.989) = 0.05$ dB, x = 8.601/8.695 = 0.99 Note3): 802.11 b is a continuous transmission (duty cycle ≥ 98%) # -802.11g Note1): Period: 1.529 ms, On time: 1.417 ms Note2): DCCF = $10\log(1/x) = 10\log(1/0.93) = 0.33$ dB, x = 1.417/1.529 = 0.93 Note3): 802.11 g is a non-continuous transmission (duty cycle < 98%) 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (7) of (55) #### -802.11n HT20 Note1): Period: 1.437 ms, On time: 1.326 ms Note2) : DCCF = 10log(1/x) = 10log(1/0.92) = 0.35 dB, x = 1.326/1.437 = 0.92 Note3) : 802.11n HT20 is a non-continuous transmission (duty cycle < 98%) # 3. Antenna requirement Requirement of FCC part section 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. - The transmitter has permanently attached Pattern Antenna (internal antenna) on board. - The E.U.T Complies with the requirement of §15.203, §15.247. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (8) of (55) Summary of tests | - | | | | |---|--------------------------|-----------------------------|--------------| | | FCC Part section(s) | Parameter | Test results | | | 15.247(b)(3) | Maximum Peak Output Power | Pass | | | 15.247(e) | Peak Power Spectral Density | Pass | | | 15.247(a)(2) | 6 dB Channel Bandwidth | - Pass | | | - | Occupied Bandwidth | - Fass | | | 15.247(d),
15.205(a), | Spurious emission | Pass | | | 15.209(a),
15.209(a) | Band-edge, restricted band | Pass | | | 15.207(a) | Conducted Emissions | N/A(Note2) | | | | | | #### Notes: - 1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions. - 2. This test is not applicable because the EUT falls into the automotive device and it's not to be connected to the public utility(AC) power line. - 3. According to exploratory test no any obvious emission were detected from 9 klb to 30 Mlb. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788. - 4. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that X orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in X orientation - 5. The test procedure(s) in this report were performed in accordance as following. - ANSI C63.10-2013 - KDB 558074 D01 V05r02 - 6. The worst-case data rate were: 802.11b mode : 1Mbps 802.11g mode : 6Mbps 802.11n HT20 mode : MCS0 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (9) of (55) # Measurement uncertainty The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k=2 to indicated a 95 % level of confidence. The measurement data shown herein meets of exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance. | Parameter | Expanded uncertainty (±) | | | |------------------------------|--------------------------|----------------|--| | Conducted RF power | 1.76 dB | | | | Conducted spurious emissions | 4.03 dB | | | | Radiated spurious emissions | 9 kHz ~ 30 MHz: | 2.28 dB | | | | 30 MHz ~ 300 MHz | 4.98 dB | | | | 300 MHz ~ 1 000 MHz | 5.14 dB | | | | 1 GHz ~ 6 GHz | 6.70 dB | | | | Above 6 GHz | 6.60 dB | | | Conducted emissions | 9 kHz ~ 150 kHz | 3.66 dB | | | | 150 kHz ~ 30 MHz | 3.26 dB | | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (10) of (55) # 6. Measurement results explanation example The offset level is set in the spectrum analyzer to compensate the RF cable loss factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level. | Frequency (쌘) | Factor(dB) | Frequency (脸) | Factor(dB) | |---------------|------------|------------------------|------------| | 30 | 10.05 | 9 000 | 12.01 | | 50 | 10.09 | 10 000 | 12.13 | | 100 | 10.15 | 11 000 | 12.10 | | 200 | 10.26 | 12 000 | 12.32 | | 300 | 10.32 | 13 000 | 12.43 | | 400 | 10.39 | 14 000 | 12.55 | | 500 | 10.43 | 15 000 | 12.72 | | 600 | 10.47 | 16 000 | 12.39 | | 700 | 10.54 | 17 000 | 12.77 | | 800 | 10.59 | 18 000 | 12.88 | | 900 | 10.60 | 19 000 | 12.96 | | 1 000 | 10.64 | 20 000 | 13.11 | | 2 000 | 10.92 | 21 000 | 13.08 | | 3 000 | 11.12 | 22 000 | 13.17 | | 4 000 | 11.34 | 23 000 | 13.17 | | 5 000 | 11.51 | 24 000 | 13.33 | | 6 000 | 11.65 | 25 000 | 13.40 | | 7 000 | 11.71 | 26 000 | 13.48 | | 8 000 | 11.92 | 26 500 | 13.59 | ## Note. Offset(dB) = RF cable loss(dB) + Attenuator(dB) 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (11) of (55) | 7. Test resu
7.1. Maximur
Test setup | ults
n peak output բ | oower | | |--|-------------------------|------------|--------------| | EUT | | Attenuator | Power sensor | #### Limit According to §15.247(b)(3), For systems using digital modulation in the 902-928 Mb, 2 400-2 483.5 Mb, and 5 725-5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. According to §15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### **Test procedure** ANSI C63.10 - Section 11.9 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (12) of (55) #### Test settings #### General Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth (see ANSI C63.10 for measurement guidance). When using a spectrum analyzer or EMI receiver to perform these measurements, it shall be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW to set a bin-to-bin spacing of ≤ RBW/2 so that narrowband signals are not lost between frequency bins. If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level. The intent is to test at 100 % duty cycle; however a small reduction in duty cycle (to no lower than 98 %) is permitted, if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation. If continuous transmission (or at least 98 % duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level, with the transmit duration as long as possible, and the duty cycle as high as possible during which sweep triggering/signal gating techniques may be used to perform the measurement over the transmission duration. ## 11.9.1. Maximum peak conducted output power One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT. #### 11.9.1.1. RBW ≥ DTS bandwidth The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement: - a) Set the RBW ≥ DTS bandwidth. - b) Set VBW \geq [3 \times RBW]. - c) Set span \geq [3 \times RBW]. - d) Sweep time = auto couple. - e) Detector = peak. - f) Trace mode = max hold. - g) Allow trace to fully stabilize. - h) Use peak marker function to determine the peak amplitude level. #### 11.9.1.3. PKPM1 Peak power meter method The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (13) of (55) #### 11.9.2.3.1. Measurement using a power meter (PM) Method AVGPM is a measurement using an RF average power meter, as follows: - a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied: - 1) The EUT is configured to transmit continuously, or to transmit with a constant duty cycle. - 2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level. - 3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. - b) If the transmitter does not transmit continuously, measure the duty cycle, D, of the transmitter output signal as described in 11.6. - c) Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter. - d) Adjust the measurement in dBm by adding [10 log(1/D)], where D is the duty cycle #### Notes: A peak responding power sensor is used, where the power sensor system video bandwidth is greater than the occupied bandwidth of the EUT. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0042 Page (14) of (55) ## **Test results** | Toot made | Eroguepov/M/s) | Measured output power(dBm) | | Limit(dDm) | |-----------------|----------------|----------------------------|---------|------------| | Test mode | Frequency(쎈z) | Peak | Average | Limit(dBm) | | | 2 412 | 10.56 | 7.18 | | | 802.11b | 2 437 | 9.66 | 6.34 | 30.00 | | | 2 462 | 9.96 | 6.43 | | | 802.11g | 2 412 | 20.58 | 9.14 | | | | 2 437 | 19.78 | 8.12 | 30.00 | | | 2 462 | 19.98 | 8.24 | | | 802.11n
HT20 | 2 412 | 19.58 | 7.81 | | | | 2 437 | 18.98 | 7.23 | 30.00 | | | 2 462 | 19.68 | 7.32 | | #### Note: 1. Conducted Output power Calculation: Conducted Output power = Measured power(dB m) + DCCF (dB) 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (15) of (55) # 7.2. Peak Power Spectral Density | <u>Test setup</u> | _ | | | |-------------------|---|------------|-------------------| | EUT | | Attenuator | Spectrum analyzer | #### Limit According to §15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density. #### **Test procedure** ANSI C63.10-2013 - Section 11.10.2 #### **Test settings** # Method PKPSD (peak PSD) The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance: - 1) Set analyzer center frequency to DTS channel center frequency. - 2) Set the span to 1.5 times the DTS bandwidth. - 3) Set the RBW to: 3 kHz \leq RBW \leq 100 kHz. - 4) Set the VBW ≥ 3 x RBW. - 5) Detector = peak. - 6) Sweep time = auto couple. - 7) Trace mode = max hold. - 8) Allow trace to fully stabilize. - 9) Use the peak marker function to determine the maximum amplitude level within the RBW. - 10) If measured value exceeds limit, reduce RBW (no less than 3 klb) and repeat. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (16) of (55) #### **Test results** | Test mode | Frequency(酏) | Result(dBm) (RBW = 3 kHz) | Limit(dBm/ 3k批) | |--------------|--------------|---------------------------|-----------------| | | 2 412 | -14.11 | | | 802.11b | 2 437 | -15.28 | | | | 2 462 | -15.03 | | | | 2 412 | -14.41 | | | 802.11g | 2 437 | -15.10 | 8.00 | | | 2 462 | -14.69 | | | | 2 412 | -15.73 | | | 802.11n HT20 | 2 437 | -16.26 | | | | 2 462 | -15.93 | | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (17) of (55) 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (18) of (55) 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (19) of (55) # 7.3. 6 dB Bandwidth (DTS Channel Bandwidth) & 99 % bandwidth | <u>Test setup</u> | _ | | _ | | |-------------------|---|------------|---|-------------------| | EUT | | Attenuator | | Spectrum analyzer | # <u>Limit</u> According to §15.247(a)(2), For Systems using digital modulation techniques may operate in the 902–928 Mz, 2 400–2 483.5 Mz, and 5 725–5 850 Mz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. #### **Test procedure** ANSI C63.10-2013 - Section 11.8 # Test settings #### **DTS** bandwidth One of the following procedures may be used to determine the modulated DTS bandwidth. #### Option 1 - 1) Set RBW = 100 kHz. - 2) Set the video bandwidth (VBW) \geq 3 x RBW. - 3) Detector = Peak. - 4) Trace mode = max hold. - 5) Sweep = auto couple. - 6) Allow the trace to stabilize. - 7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. #### Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB , if the functionality described in 11.8.1 (i.e., RBW = 100 kHz , VBW \geq 3 \times RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB . 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (20) of (55) #### **Test results** | Test mode | Frequency(쌘) | 6 dB bandwidth(Mb) | 99 % bandwidth(₩z) | |--------------|--------------|--------------------|--------------------| | 802.11b | 2 412 | 7.09 | 10.09 | | | 2 437 | 7.07 | 10.09 | | | 2 462 | 7.09 | 10.08 | | 802.11g | 2 412 | 16.02 | 16.40 | | | 2 437 | 16.06 | 16.39 | | | 2 462 | 15.83 | 16.39 | | 802.11n HT20 | 2 412 | 17.02 | 17.59 | | | 2 437 | 17.39 | 17.57 | | | 2 462 | 17.06 | 17.58 | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (21) of (55) # 6 dB bandwidth(Mb) 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0042 Page (22) of (55)