

FCC 47 CFR PART 15 SUBPART C ISED RSS-210 ISSUE 10

CERTIFICATION TEST REPORT

For

Ring Contact Sensor

MODEL NUMBER: 5AT3S2

HVIN: Ring Contact Sensor

FCC ID: 2AEUP5AT3S2A

IC: 20271-5AT3S2A

REPORT NUMBER: 4790641259.1-3

ISSUE DATE: December 02, 2022

Prepared for

Ring LLC

12515 Cerise Ave Hawthorne California 90250 United States

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Room 101, Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

> Tel: +86 769 33817100 Fax: +86 769 33244054 Website: www.ul.com

REPORT NO.: 4790434809.1-3 Page 2 of 42

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	12/02/2022	Initial Issue	

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	4
2. T	EST METHODOLOGY	5
3. F	ACILITIES AND ACCREDITATION	5
4. C	CALIBRATION AND UNCERTAINTY	6
4.1.	. MEASURING INSTRUMENT CALIBRATION	6
4.2.	MEASUREMENT UNCERTAINTY	6
5. E	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	. MAXIMUM EMISSIONS FIELD STRENGTH	7
5.3.	. THE WORSE CASE POWER SETTING PARAMETER	8
5.4.	. TEST ENVIRONMENT	8
5.5.	TEST CHANNEL CONFIGURATION	8
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	9
5.7.	DESCRIPTION OF TEST SETUP	10
5.8.	MEASURING INSTRUMENT AND SOFTWARE USED	11
6. S	SUMMARY OF TEST RESULTS	13
7. A	NTENNA PORT TEST RESULTS	14
7.1.	ON TIME AND DUTY CYCLE	14
7.2.	. 20 dB AND 99% EMISSION BANDWIDTH	16
8. R	ADIATED TEST RESULTS	19
8.1.	. LIMITS AND PROCEDURE	19
8.2.	. FIELD STRENGTH OF INTENTIONAL EMISSIONS	25
8.3.	. SPURIOUS EMISSIONS BELOW 30M	31
8.4.	. SPURIOUS EMISSIONS BELOW 1 GHz	34
8.5.	. SPURIOUS EMISSIONS 1 ~ 10GHz	36
9. A	NTENNA REQUIREMENTS	42

REPORT NO.: 4790434809.1-3 Page 4 of 42

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Ring LLC

Address: 12515 Cerise Ave Hawthorne California 90250 United States

Manufacturer Information

Company Name: Ring LLC

Address: 12515 Cerise Ave Hawthorne California 90250 United States

EUT Information

EUT Name: Ring Contact Sensor

Model: 5AT3S2 Brand: ring

Sample Received Date: November 16, 2022

Sample Status: Normal Sample ID: 5542342

Date of Tested: November 16~ December 02, 2022

APPLICABLE STANDARDS

STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	PASS
ISED RSS-210 Issue 10	PASS
ISED RSS-GEN Issue 5	PASS

Prepared By:

Checked By:

Kebo Zhang

Senior Project Engineer

kelo. zhang

Denny Huang

Senior Project Engineer

Approved By:

Stephen Guo

Laboratory Manager

REPORT NO.: 4790434809.1-3 Page 5 of 42

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, ISED RSS-210 Issue 10 and RSS-GEN Issue 5

3. FACILITIES AND ACCREDITATION

	100 100 100 100 100 100 100 100 100 100
	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification rules
	ISED (Company No.: 21320)
Approditation	, , , ,
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	·
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B , the VCCI registration No. is C-20012 and T-20011
	Chicianig (Com 2), the Veer regionation (Ve. 18 et 20012 and 1 20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

REPORT NO.: 4790434809.1-3 Page 6 of 42

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.62 dB
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

REPORT NO.: 4790434809.1-3 Page 7 of 42

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment	Ring Contact Sensor		
Model Name	5AT3S2		
	908.4 MHz:40kbps/FSK		
Data Rates	908.42 MHz:9.6kbps/FSK		
	916.0 MHz:100kbps/GFSK		
	Channel ID Channel Frequency(MHz)		
Transmit Channel Tested:	1	908.40	
Transmit Chamer resteu.	2 908.42		
	3 916.00		
Battery	2*3V CR2032 button cell		

5.2. MAXIMUM EMISSIONS FIELD STRENGTH

Operation Frequency (MHz)	Number of Transmit Chains (NTX)	Channel Number	Max. Emissions Field Strength (dBμV/m)
908.4-916	1	[1~3]	93.56

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

This report shall not be reproduced except in full, without the written approval of UL Verification Services

(Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT NO.: 4790434809.1-3 Page 8 of 42

5.3. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 908.4~916MHz				
Test So	oftware	sscom5.13.1		
Modulation Type	Transmit Antenna	Test Channel		
iviodulation Type	Number	916MHz	908.42MHz	908.4MHz
Z-wave	1	20(raw)	20(raw)	20(raw)

Note:

- 1. raw is the test software setting description provide by customer.
- 2. All tests executed under maximum input levels.

5.4. TEST ENVIRONMENT

Environment Parameter Selected Val		lues During Tests	
Relative Humidity	55 ~ 65%		
Atmospheric Pressure:	1025Pa		
Temperature	TN	23 ~ 28°C	
	VL	N/A	
Voltage :	VN	2*3V CR2032 button cell	
	VH	N/A	

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel Number	Test Channel	
Z-wave	CH 1, CH 2, CH 3/ Low, Middle, High	908.4MHz, 908.42MHz, 916MHz	

REPORT NO.: 4790434809.1-3 Page 9 of 42

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	908.4~916	IFA Antenna	0.1

Test Mode Transmit and Receive Mode		Description	
Z-wave ⊠1TX, 1RX		Antenna 1 can be used as transmitting/receiving antenna.	

Note: 1. The value of the antenna gain was declared by customer.

REPORT NO.: 4790434809.1-3 Page 10 of 42

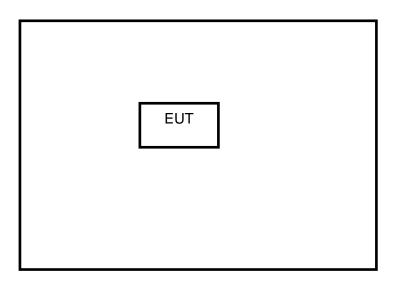
5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
/	/	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
/	/	/	/	/	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
/	/		/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop before test.

SETUP DIAGRAM FOR TESTS

REPORT NO.: 4790434809.1-3 Page 11 of 42

5.8. MEASURING INSTRUMENT AND SOFTWARE USED

	Radiated Emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.17, 2022	Oct.16, 2023		
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024		
Preamplifier	HP	8447D	2944A09099	Oct.17, 2022	Oct.16, 2023		
EMI Measurement Receiver	R&S	ESR26	101377	Oct.17, 2022	Oct.16, 2023		
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024		
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.17, 2022	Oct.16, 2023		
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024		
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.17, 2022	Oct.16, 2023		
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.17, 2022	Oct.16, 2023		
Loop antenna	Schwarzbeck	1519B	80000	Dec.14, 2021	Dec.13, 2024		
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.17, 2022	Oct.16, 2023		
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01201941	Oct.17, 2022	Oct.16, 2023		
	Software						
	Description		Manufacturer	Name	Version		
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1		

REPORT NO.: 4790434809.1-3 Page 12 of 42

Other instruments Equipment Manufacturer Model No. Serial No. Last Cal. Next Cal. Spectrum Analyzer N9030A MY55410512 Oct.17, 2022 Oct.16, 2023 Keysight USB Wideband Power Sensor Keysight MY5100022 Oct.17, 2022 Oct.16, 2023 Power Sensor Temperature **OMEGA** ITHX-SD-5 18470007 Oct.22, 2022 Oct.21, 2023 humidity probe Attenuator Agilent 8495B 2814a12853 Oct.18, 2022 Oct.17, 2023

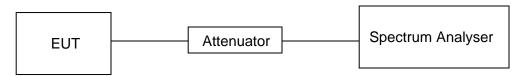
REPORT NO.: 4790434809.1-3

Page 13 of 42

6. SUMMARY OF TEST RESULTS

Summary of Test Results					
Clause	Test Items	FCC/IC Rules	Test Results		
1	20dB Bandwidth	FCC Part 15.215(c)	Pass		
2	99% Emission Bandwidth	RSS-Gen Clause 6.7	Pass		
3	TX Spurious Emission	FCC 15.249 (a)(d)(e) FCC 15.209 FCC 15.205 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass		
4	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass		

REPORT NO.: 4790434809.1-3 Page 14 of 42


7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only

TEST SETUP

TEST ENVIRONMENT

Temperature	24.3 °C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	LLest Voltage	2*3V CR2032 button cell

REPORT NO.: 4790434809.1-3 Page 15 of 42

RESULTS

Test Channel	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	minimum VBW 1/T (KHz)
MID	19.90	20.20	0.9851	98.51%	0.07	0.05

Note: Duty Cycle Correction Factor=10log(1/x).


Where: x is Duty Cycle (Linear)

Where: T is On Time (transmit duration)

Duty cycle > 98%, so, VBW=10Hz has been used to test.

All test modes have been tested and the results are the same, so only one mode test data record in this report.

ON TIME AND DUTY CYCLE MID

7.2. 20 dB AND 99% EMISSION BANDWIDTH

LIMITS

FCC Part15 (15.249) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)			
FCC 15.215(c)	20dB Bandwidth	for reporting purposes only	902-928 MHz			
RSS-Gen Clause 6.7	99% Emission Bandwidth	N/A	902-928 MHz			

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

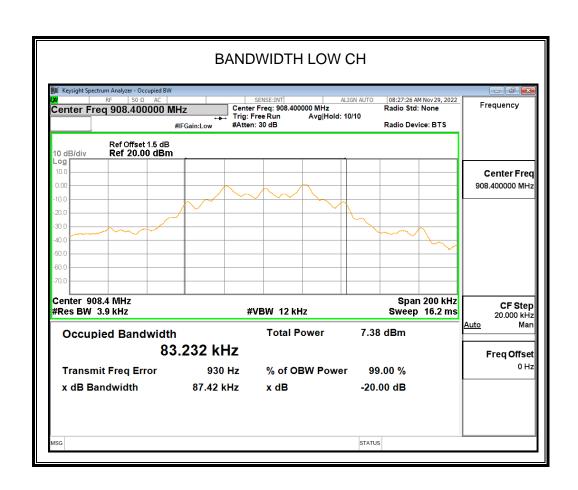
Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1% to 5% of the occupied bandwidth
VBW	≥ 3×RBW
Span	Approximately 2 to 3 times the 20dB bandwidth
Trace	Max hold
Sweep	Auto couple

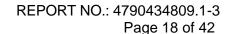
Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

TEST ENVIRONMENT

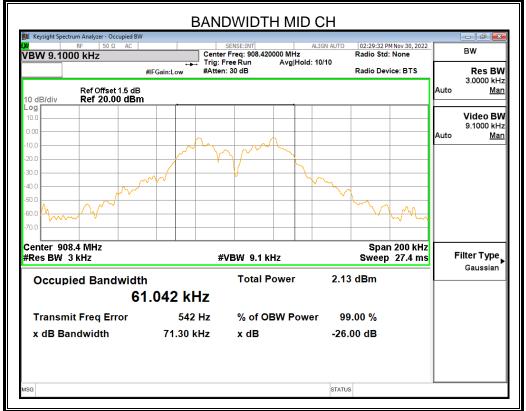
Temperature	24.3 °C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	LLest Voltage	2*3V CR2032 button cell

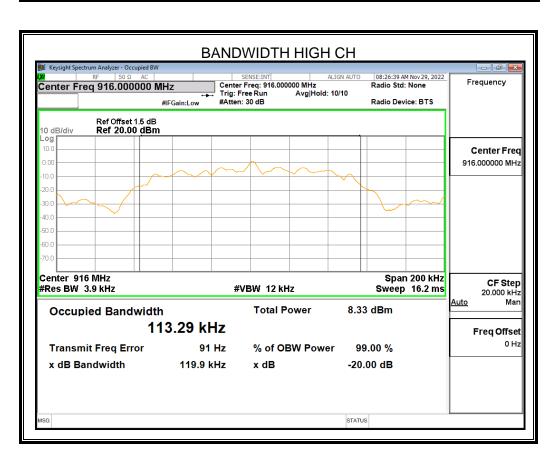
TEST SETUP


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch


This report shall not be reproduced except in full, without the written approval of UL Verification Services

(Guangzhou) Co., Ltd, Song Shan Lake Branch.




Channel	20dB bandwidth (KHz)	99% bandwidth (KHz)	Result
Low	87.42	83.232	Pass
Middle	71.30	61.042	Pass
High	119.9	113.29	Pass

REPORT NO.: 4790434809.1-3 Page 19 of 42

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

Please refer to FCC §15.205 and §15.209 Please refer to FCC §15.249 (a)(d)(e) RSS-210 Issue 10 Clause Annex B B.10 Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10

The field strength of emissions from intentional radiators operated within these frequency bands					
Frequency (MHz)	Field strength of Fundamental	Field strength of Harmonics	Distance (m)		
902 - 928	50 mV/m (94 dBuV/m)	500 uV/m (54d BuV/m)	3		
2400 – 2483.5	50 mV/m (94 dBuV/m)	500 uV/m (54d BuV/m)	3		
5725 – 5875	50 mV/m (94 dBuV/m)	500 uV/m (54 dBuV/m)	3		

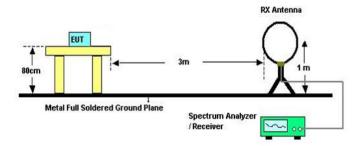
Radiation Disturbance Test Limit for FCC (Class B)(9 kHz-1 GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note:

(1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

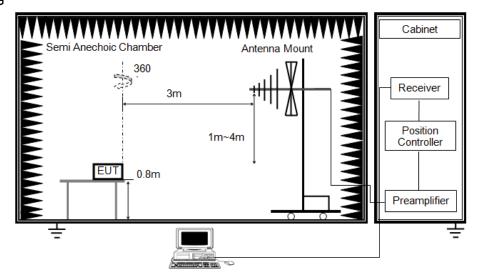
(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.


Radiation Disturbance Test Limit for FCC (Above 1GHz)

Fraguency (MHz)	dB (uV/m) (at 3 meters)		
Frequency (MHz)	Peak	Average	
Above 1000	74	54	

About Restricted bands of operation please refer to RSS-Gen section 8.10 and FCC §15.205 (a)

TEST SETUP AND PROCEDURE


Below 30 MHz

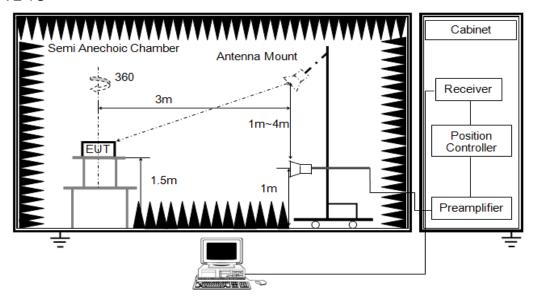
The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

The setting of the spectrum analyser. (For Bandedge and Field strength)

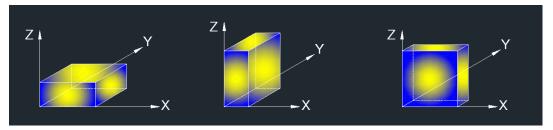
RBW	≥ OBW (125 kHz)
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold


The setting of the spectrum analyser. (For Spurious emissions)

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Measurement = Reading Level + Correct Factor
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

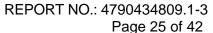
ABOVE 1G


The setting of the spectrum analyser

RBW	1M MHz
1VBW	PEAK: 3MHz AVG: See Note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

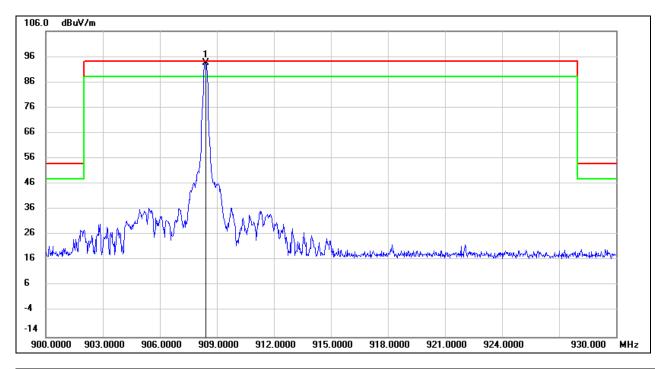
- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For average power measurement, set the detector to AVG, while maintaining all of the other instrument settings, if the duty cycle of the EUT is less than 98%, the Duty Cycle Correction Factor shall be added to the measured emission levels. For the Duty Cycle and Correction Factor please refer to clause 7.1.ON TIME AND DUTY CYCLE.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

X axis, Y axis, Z axis positions:


Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT

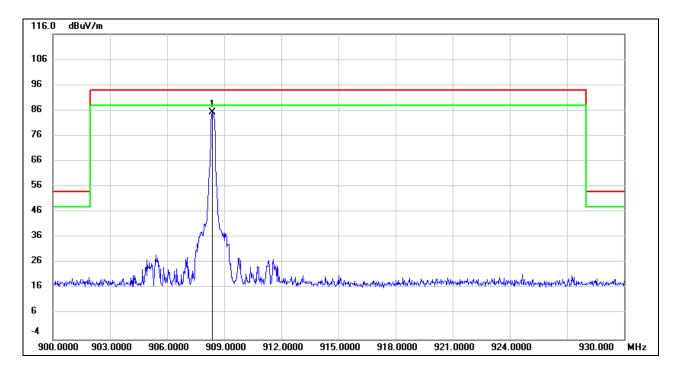
Temperature	23.8 °C	Relative Humidity	65 %
Atmosphere Pressure	101 kPa	Test Voltage	2*3V CR2032
Almosphere Pressure	IUIKFa	Test voltage	button cell


RESULTS

.

8.2. FIELD STRENGTH OF INTENTIONAL EMISSIONS

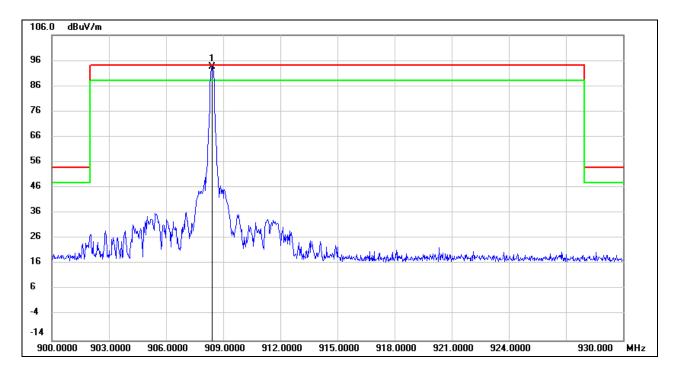
FIELD STRENGTH OF INTENTIONAL EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	908.4300	98.57	-5.01	93.56	94.00	-0.44	peak

Note: 1. Measurement = Reading Level + Correct Factor.

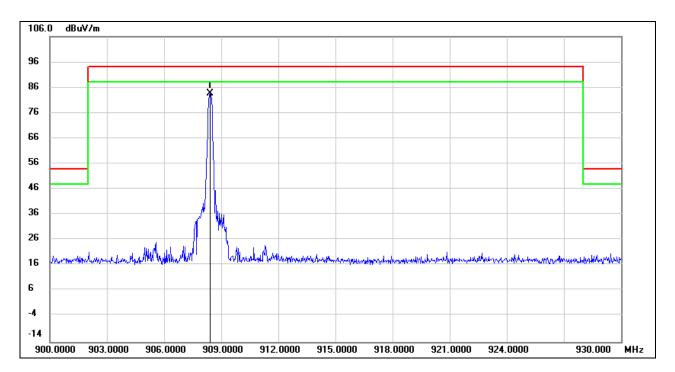
FIELD STRENGTH OF INTENTIONAL EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	908.3700	90.25	-5.01	85.24	94.00	-8.76	peak

Note: 1. Measurement = Reading Level + Correct Factor.

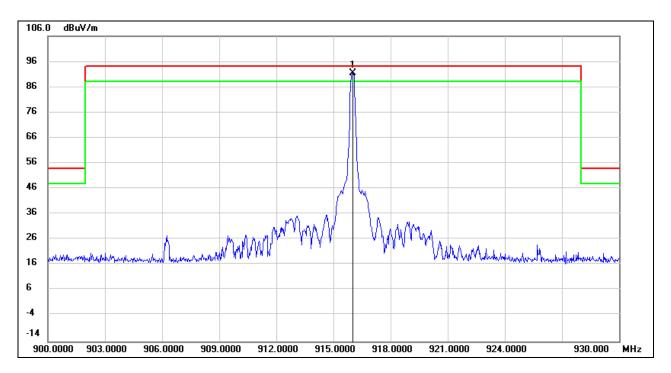
FIELD STRENGTH OF INTENTIONAL EMISSIONS (MIDDLE CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	908.4200	98.43	-5.01	93.42	94.00	-0.58	peak

Note: 1. Measurement = Reading Level + Correct Factor.

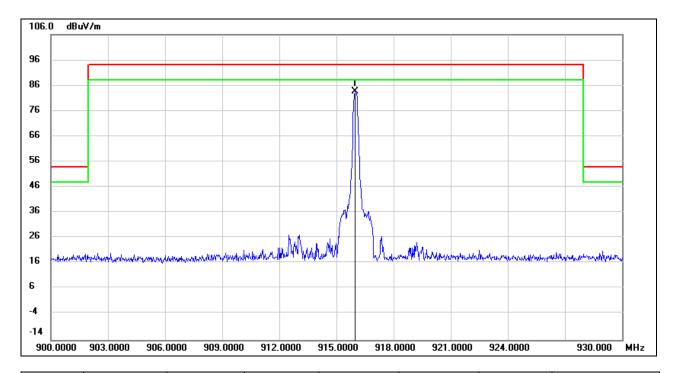
FIELD STRENGTH OF INTENTIONAL EMISSIONS (MIDDLE CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	908.4300	88.56	-5.01	83.55	94.00	-10.45	peak

Note: 1. Measurement = Reading Level + Correct Factor.

FIELD STRENGTH OF INTENTIONAL EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	916.0200	96.39	-4.84	91.55	94.00	-2.45	peak

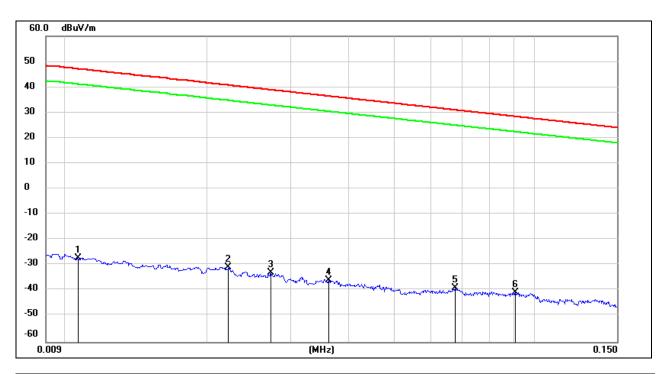
Note: 1. Measurement = Reading Level + Correct Factor.

REPORT NO.: 4790434809.1-3 Page 30 of 42

FIELD STRENGTH OF INTENTIONAL EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	915.9900	88.39	-4.84	83.55	94.00	-10.45	peak

Note: 1. Measurement = Reading Level + Correct Factor.

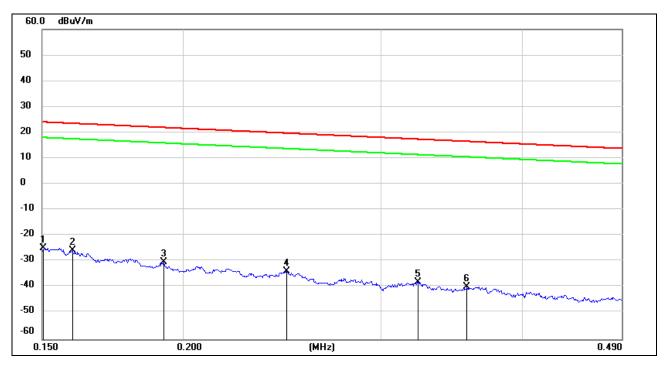

REPORT NO.: 4790434809.1-3 Page 31 of 42

8.3. SPURIOUS EMISSIONS BELOW 30M

SPURIOUS EMISSIONS

(LOW CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

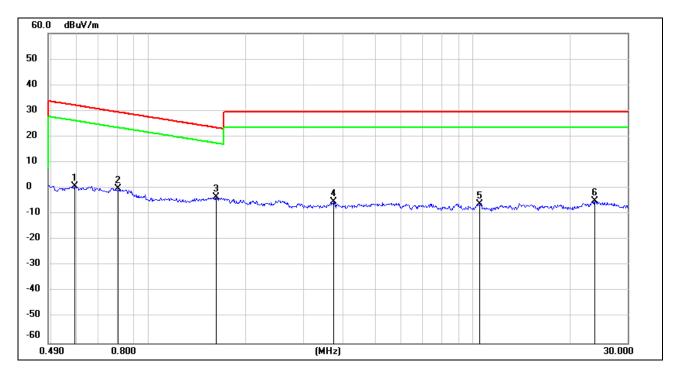
9kHz~ 150kHz


No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0106	74.38	-101.39	-27.01	47.09	-78.51	-4.41	-74.10	peak
2	0.0221	70.63	-101.35	-30.72	40.71	-82.22	-10.79	-71.43	peak
3	0.0273	68.49	-101.38	-32.89	38.88	-84.39	-12.62	-71.77	peak
4	0.0362	65.51	-101.42	-35.91	36.43	-87.41	-15.07	-72.34	peak
5	0.0675	62.64	-101.56	-38.92	31.02	-90.42	-20.48	-69.94	peak
6	0.0911	61.11	-101.72	-40.61	28.41	-92.11	-23.09	-69.02	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

150kHz ~ 490kHz


No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1504	76.75	-101.63	-24.88	24.06	-76.38	-27.44	-48.94	peak
2	0.1595	75.86	-101.65	-25.79	23.55	-77.29	-27.95	-49.34	peak
3	0.1925	71.46	-101.70	-30.24	21.92	-81.74	-29.58	-52.16	peak
4	0.2472	67.95	-101.80	-33.85	19.74	-85.35	-31.76	-53.59	peak
5	0.3234	63.98	-101.88	-37.9	17.41	-89.40	-34.09	-55.31	peak
6	0.3573	62.08	-101.91	-39.83	16.54	-91.33	-34.96	-56.37	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$).

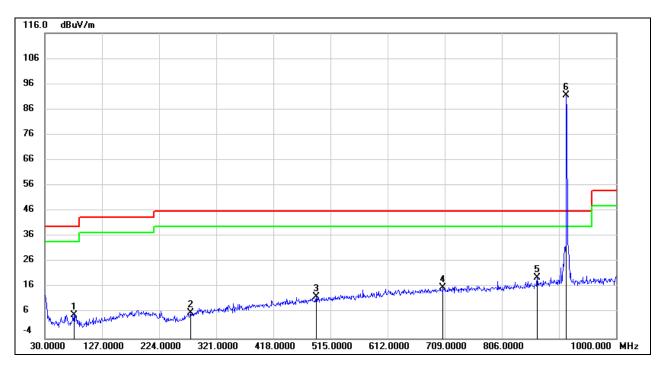
- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

REPORT NO.: 4790434809.1-3 Page 33 of 42

490kHz ~ 30MHz

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5917	62.74	-62.08	0.66	32.16	-50.84	-19.34	-31.50	peak
2	0.8061	61.91	-62.15	-0.24	29.47	-51.74	-22.03	-29.71	peak
3	1.6149	58.62	-62.00	-3.38	23.44	-54.88	-28.06	-26.82	peak
4	3.7100	56.20	-61.41	-5.21	29.54	-56.71	-21.96	-34.75	peak
5	10.5234	54.81	-60.82	-6.01	29.54	-57.51	-21.96	-35.55	peak
6	23.7728	55.71	-60.55	-4.84	29.54	-56.34	-21.96	-34.38	peak

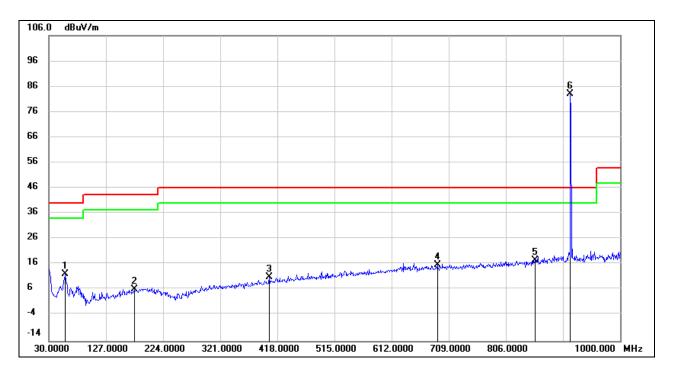
Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$).


- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes and channels had been tested, but only the worst data recorded in the report.

8.4. SPURIOUS EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS BELOW 1GHZ (WORST-CASE MID CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	79.4700	26.55	-21.30	5.25	40.00	-34.75	QP
2	277.3500	23.16	-16.96	6.20	46.00	-39.80	QP
3	490.7500	23.98	-11.68	12.30	46.00	-33.70	QP
4	706.0900	24.09	-8.28	15.81	46.00	-30.19	QP
5	866.1400	25.58	-5.85	19.73	46.00	-26.27	QP
6	915.6100	96.29	-4.85	91.44	/	/	Fundamental

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

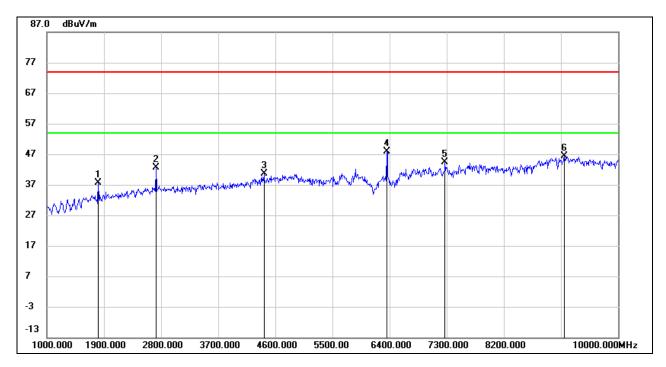
- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
- 4. About the Fundamental emission test result please refer to section 8.2.

SPURIOUS EMISSIONS BELOW 1GHz (WORST-CASE MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	58.1300	32.82	-20.55	12.27	40.00	-27.73	QP
2	175.5000	23.27	-17.07	6.20	43.50	-37.30	QP
3	404.4200	24.23	-13.26	10.97	46.00	-35.03	QP
4	689.6000	24.22	-8.35	15.87	46.00	-30.13	QP
5	855.4700	23.78	-6.12	17.66	46.00	-28.34	QP
6	915.6100	87.94	-4.85	83.09	/	/	Fundamental

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto
- 4. About the Fundamental emission test result please refer to section 8.2.

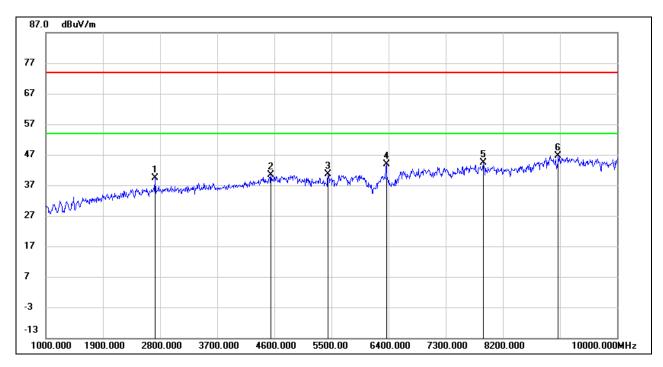

Note: All the modes and channels had been tested, but only the worst data recorded in the report.

REPORT NO.: 4790434809.1-3 Page 36 of 42

8.5. SPURIOUS EMISSIONS 1 ~ 10GHz

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1810.000	49.31	-11.69	37.62	74.00	-36.38	peak
2	2719.000	50.44	-7.84	42.60	74.00	-31.40	peak
3	4420.000	43.05	-2.52	40.53	74.00	-33.47	peak
4	6355.000	44.72	3.18	47.90	74.00	-26.10	peak
5	7273.000	38.58	5.92	44.50	74.00	-29.50	peak
6	9154.000	36.54	9.80	46.34	74.00	-27.66	peak

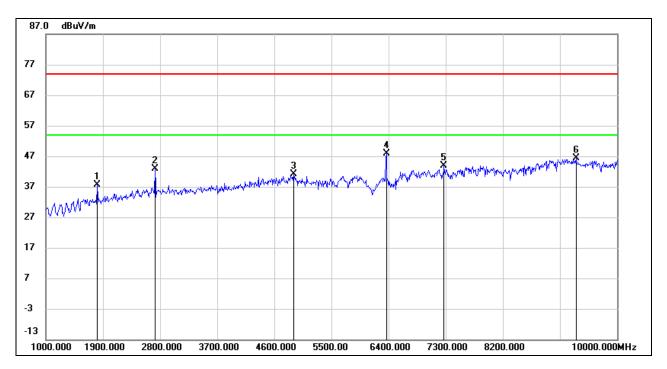

Note: 1. Result = Reading + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

RSS-Gen section 8.10

REPORT NO.: 4790434809.1-3 Page 37 of 42

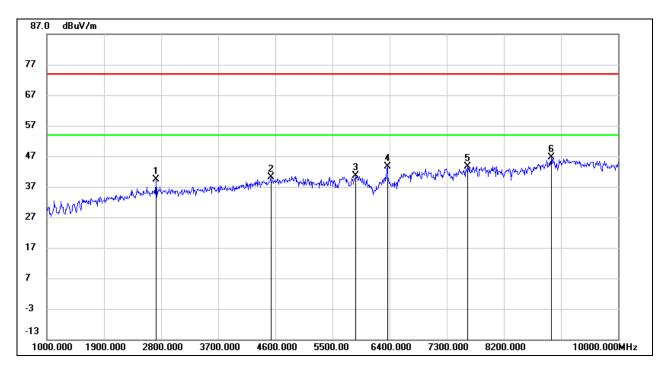
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2719.000	47.28	-7.84	39.44	74.00	-34.56	peak
2	4546.000	42.33	-1.96	40.37	74.00	-33.63	peak
3	5446.000	40.22	0.35	40.57	74.00	-33.43	peak
4	6364.000	40.67	3.22	43.89	74.00	-30.11	peak
5	7894.000	38.62	5.66	44.28	74.00	-29.72	peak
6	9073.000	36.91	9.77	46.68	74.00	-27.32	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

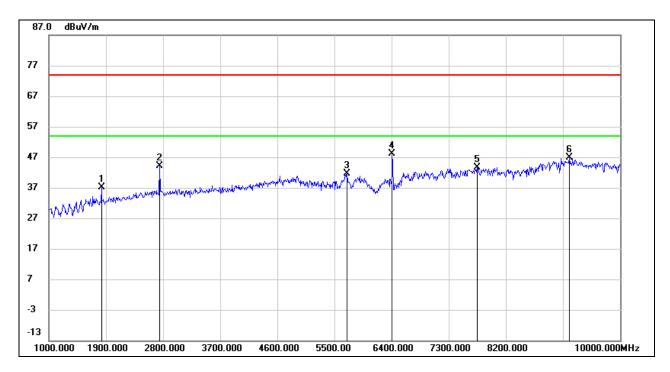
HARMONICS AND SPURIOUS EMISSIONS (MIDDLE CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1810.000	49.38	-11.69	37.69	74.00	-36.31	peak
2	2719.000	50.76	-7.84	42.92	74.00	-31.08	peak
3	4906.000	41.56	-0.53	41.03	74.00	-32.97	peak
4	6364.000	44.78	3.22	48.00	74.00	-26.00	peak
5	7273.000	37.99	5.92	43.91	74.00	-30.09	peak
6	9352.000	36.41	9.88	46.29	74.00	-27.71	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

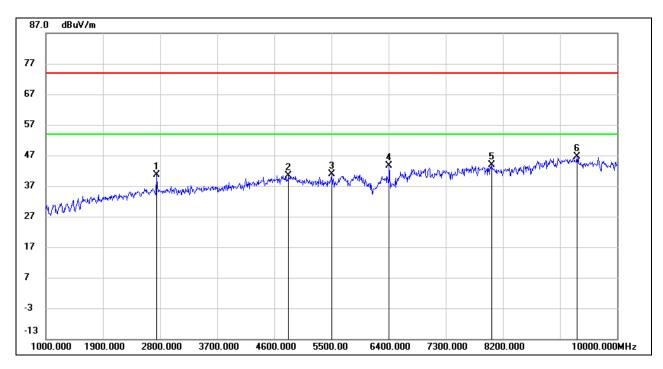
HARMONICS AND SPURIOUS EMISSIONS (MIDDLE CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2719.000	47.26	-7.84	39.42	74.00	-34.58	peak
2	4528.000	42.12	-2.03	40.09	74.00	-33.91	peak
3	5869.000	39.10	1.48	40.58	74.00	-33.42	peak
4	6364.000	40.53	3.22	43.75	74.00	-30.25	peak
5	7633.000	38.06	5.68	43.74	74.00	-30.26	peak
6	8947.000	37.29	9.37	46.66	74.00	-27.34	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1828.000	48.78	-11.62	37.16	74.00	-36.84	peak
2	2746.000	51.97	-7.75	44.22	74.00	-29.78	peak
3	5698.000	40.71	0.99	41.70	74.00	-32.30	peak
4	6409.000	44.74	3.39	48.13	74.00	-25.87	peak
5	7750.000	38.04	5.67	43.71	74.00	-30.29	peak
6	9199.000	37.00	9.82	46.82	74.00	-27.18	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2746.000	48.32	-7.75	40.57	74.00	-33.43	peak
2	4825.000	41.32	-0.84	40.48	74.00	-33.52	peak
3	5500.000	40.48	0.42	40.90	74.00	-33.10	peak
4	6409.000	40.19	3.39	43.58	74.00	-30.42	peak
5	8020.000	38.22	5.67	43.89	74.00	-30.11	peak
6	9370.000	36.63	9.89	46.52	74.00	-27.48	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

REPORT NO.: 4790434809.1-3

Page 42 of 42

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

RESULTS

Complies

END OF REPORT