MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 2105RSU006-U7 Report Version: Issue Date: 12-05-2021 # **DFS MEASUREMENT REPORT** FCC ID: SFK-WF808 Applicant: CIG Shanghai Co., Ltd. **Application Type:** Certification WiFi 6 Extender **Product:** Model No.: WF-808 **Brand Name:** CIG **FCC Classification:** Unlicensed National Information Infrastructure (NII) FCC Rule Part(s): Part 15 Subpart E - 15.407 Section (h)(2) KDB 905462 D02v02, KDB 905462 D04v01 Test Date: October 25 ~ 30, 2021 Reviewed By: Sunny Sun Approved By: TESTING LABORATORY Robin Wu CERTIFICATE #3628.01 The test results relate only to the samples tested. This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 905462 D02v02. Test results reported herein relate only to the item(s) tested. The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd. # **Revision History** | Report No. | Version | Description | Issue Date | Note | |---------------|---------|----------------|------------|-------| | 2105RSU006-U7 | Rev. 01 | Initial report | 12-05-2021 | Valid | | | | | | | # **CONTENTS** | De | scripti | | Page | |----|---------|---|------| | 1. | Gene | eral Information | 4 | | | 1.1. | Applicant | 4 | | | 1.2. | Manufacturer | 4 | | | 1.3. | Testing Facility | 4 | | 2. | PRO | DUCT INFORMATION | 5 | | | 2.1. | Equipment Description | 5 | | | 2.2. | Radio Specification under Test | 5 | | | 2.3. | DFS Band Carrier Frequencies Operation | 6 | | | 2.4. | Description of Available Antennas | 6 | | | 2.5. | Test Mode | 7 | | | 2.6. | Test Environment Condition | 7 | | 3. | DFS | DETECTION THRESHOLDS AND RADAR TEST WAVEFORMS | 8 | | | 3.1. | Applicability | 8 | | | 3.2. | DFS Devices Requirements | 9 | | | 3.3. | DFS Detection Threshold Values | 10 | | | 3.4. | Parameters of DFS Test Signals | 11 | | | 3.5. | Conducted Test Setup | 14 | | 4. | TEST | EQUIPMENT CALIBRATION DATE | 15 | | 5. | TEST | RESULT | 16 | | | 5.1. | Summary | 16 | | | 5.2. | Radar Waveform Calibration | 17 | | | 5.2.1 | . Calibration Setup | 17 | | | 5.2.2 | . Calibration Procedure | 17 | | | 5.2.3 | . Calibration Result | 18 | | | 5.2.4 | . Channel Loading Test Result | 20 | | | 5.3. | Statistical Performance Check Measurement | 21 | | | 5.3.1 | . Test Limit | 21 | | | 5.3.2 | . Test Procedure | 21 | | | 5.3.3 | . Test Result | 22 | | 6. | CON | CLUSION | 50 | | Ар | pendi | x A - Test Setup Photograph | 51 | | Аp | pendi | к В - EUT Photograph | 52 | ## 1. General Information ## 1.1. Applicant CIG Shanghai Co., Ltd. 5F, Building 8, NO.2388 CHENGHANG ROAD, MINHANG DISTRTCT, SHANGHAI #### 1.2. Manufacturer CIG Shanghai Co., Ltd. 5F, Building 8, NO.2388 CHENGHANG ROAD, MINHANG DISTRTCT, SHANGHAI ## 1.3. Testing Facility | \boxtimes | Test Site – MRT Suzhou Laboratory | | | | | |-------------|--|-------------------------|--|--|--| | | Laboratory Location (Suzhou – Wuzhong) D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China Laboratory Location (Suzhou – SIP) 4b Building, Liando U Valley, No.200 Xingpu Rd., Shengpu Town, Suzhou Industrial Park, China | Laboratory Accreditations | poratory Accreditations | | | | | | A2LA: 3628.01 CNAS: L10551 | | | | | | | FCC: CN1166 ISED: CN0001 | | | | | | | VCCI: R-20025, G-20034, C-20020, T-20020 | | | | | | | Test Site – MRT Shenzhen Laboratory | | | | | | | Laboratory Location (Shenzhen) | | | | | | | 1G, Building A, Junxiangda Building, Zhongshanyuan Road West, Nanshan District, Shenzhen, | | | | | | | China | | | | | | | Laboratory Accreditations | | | | | | | A2LA: 3628.02 CNAS: L10551 | | | | | | | FCC: CN1284 ISED: CN0105 | | | | | | | Test Site – MRT Taiwan Laboratory | | | | | | | Laboratory Location (Taiwan) No. 38, Fuxing 2 nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) | | | | | | | | | | | | | | Laboratory Accreditations | | | | | | | TAF: L3261-190725 | | | | | | | FCC: 291082, TW3261 | ISED: TW3261 | | | | Page Number: 4 of 52 #### 2. PRODUCT INFORMATION ## 2.1. Equipment Description | Product Name | WiFi 6 Extender | |-------------------------|--------------------------------| | Model No. | WF-808 | | Brand Name | CIG | | Operating Temperature | 0 ~ 40°C | | Wi-Fi Specification | 802.11a/b/g/n/ac | | Bluetooth Specification | V4.0 single mode | | Power Type | AC/DC Adapter | | Accessory | | | AC to DC Adapter | Model: ADS0248T-W050250 | | | Input: 100-240V ~ 50-60Hz 0.6A | | | Output: 5V, 2.5A | | Domark: | | #### Remark: - 1. EUT is open the Mesh function Via software and there is no hardware change. This report is based on the original report (report No.: 2105RSU006-U3) to add the test for Mesh function. - The information of EUT was provided by the manufacturer, and the accuracy of the information shall be the responsibility of the manufacturer. ## 2.2. Radio Specification under Test | Frequency Range: | For 802.11a/n-HT20/ac-VHT20: | |------------------------|--| | | 5260~5320MHz, 5500~5720MHz | | | For 802.11n-HT40/ac-VHT40: | | | 5270~5310MHz, 5510~5710MHz | | | For 802.11ac-VHT80: | | | 5290MHz, 5530MHz, 5610MHz, 5690MHz | | Type of Modulation: | 802.11a/n/ac: OFDM | | Data Rate: | 802.11a: 6/9/12/18/24/36/48/54Mbps | | | 802.11n: up to 600Mbps | | | 802.11ac: up to 1733.2Mbps | | Uniform Spreading (For | For the 5250-5350MHz, 5470-5725 MHz bands, the Master device provides, | | DFS Frequency Band) | on aggregate, uniform loading of the spectrum across all devices by | | | selecting an operating channel among the available channels using a | | | random algorithm. | Page Number: 5 of 52 ## 2.3. DFS Band Carrier Frequencies Operation #### 802.11a/n-HT20/ac-VHT20 | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------| | 52 | 5260 MHz | 56 | 5280 MHz | 60 | 5300 MHz | | 64 | 5320 MHz | 100 | 5500 MHz | 104 | 5520 MHz | | 108 | 5540 MHz | 112 | 5560 MHz | 116 | 5580 MHz | | 120 | 5600 MHz | 124 | 5620 MHz | 128 | 5640 MHz | | 132 | 5660 MHz | 136 | 5680 MHz | 140 | 5700 MHz | | 144 | 5720 MHz | | | | | #### 802.11n-HT40/ac-VHT40 | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------| | 54 | 5270 MHz | 62 | 5310 MHz | 102 | 5510 MHz | | 110 | 5550 MHz | 118 | 5590 MHz | 126 | 5630 MHz | | 134 | 5670 MHz | 142 | 5710 MHz | | | #### 802.11ac-VHT80 | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------| | 58 | 5290 MHz | 106 | 5530 MHz | 122 | 5610 MHz | | 138 | 5690 MHz | | | | | ## 2.4. Description of Available Antennas | Antenna Type | Frequency | T _X Path | Max Antenna | Uncorrelated Antenna | |-------------------|---------------|---------------------|-------------|----------------------| | | (MHz) | | Gain (dBi) | Gain (dBi) | | Wi-Fi Antenna | | | | | | PCB Antenna | 2400 ~ 2483.5 | 2 | 3.0 | 0.51 | | PCB Antenna | 5150 ~ 5350 | 4 | 6.5 | 1.95 | | PCB Antenna | 5470 ~ 5725 | 4 | 7.2 | 1.97 | | Bluetooth Antenna | | | | | | PCB Antenna | 2400 ~ 2483.5 | 1 | 1.9 | | Note 1: The EUT supports SISO Mode for 802.11a and support MIMO mode for 802.11b/g/n/ac. Note 2: Due to the same modulation between 802.11n and 802.11ac, so 802.11n-HT20 and HT40 are covered by 802.11ac-VHT20 and VHT40 in this report Note 3: All information was provided by manufacturer. #### 2.5. Test Mode | Test Mode 1: Operating under Mesh mode | |--| |--| ## 2.6. Test Environment Condition | Ambient Temp. | 15 ~ 35°C | |-------------------|------------| | Relative Humidity | 20 ~ 75%RH | #### 3. DFS DETECTION THRESHOLDS AND RADAR TEST WAVEFORMS #### 3.1. Applicability The following table from FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 lists the applicable requirements for the DFS testing. | Requirement | Operational Mode | | | | | |---------------------------------|---------------------------------------|-----------------|--------------|--|--| | | Master Client Without Client With Rad | | | | | | | | Radar Detection | Detection | | | | Non-Occupancy Period | Yes | Not required | Yes | | | | DFS Detection Threshold | Yes | Not required | Yes | | | | Channel Availability Check Time | Yes | Not required | Not required | | | | U-NII Detection Bandwidth | Yes | Not required | Yes | | | Table 3-1: Applicability of DFS Requirements Prior to Use of a Channel | Requirement | Operational Mode | | | | | |-----------------------------------|-------------------------|--------------|--|--|--| | | Master Device or Client | | | | | | | With Radar Detection | Detection | | | | | DFS Detection Threshold | Yes | Not required | | | | | Channel Closing Transmission Time | Yes | Yes | | | | | Channel Move Time | Yes | Yes | | | | | U-NII Detection Bandwidth | Yes | Not required | | | | | Additional requirements for devices with | Master Device or Client | Client Without Radar | |--|---------------------------|-----------------------------| | multiple bandwidth modes | with Radar Detection | Detection | | U-NII Detection Bandwidth and | All BW modes must be | Not no outine d | | Statistical Performance Check | tested | Not required | | Channel Move Time and Channel | Test using widest BW mode | Test using
the widest BW | | Closing Transmission Time | available | mode available for the link | | All other tests | Any single BW mode | Not required | Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency. Table 3-2: Applicability of DFS Requirements during normal operation #### 3.2. DFS Devices Requirements # Per FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 the following are the requirements for Master Devices: - (a) The Master Device will use DFS in order to detect Radar Waveforms with received signal strength above the DFS Detection Threshold in the 5250 ~ 5350 MHz and 5470 ~ 5725 MHz bands. DFS is not required in the 5150 ~ 5250 MHz or 5725 ~ 5825 MHz bands. - (b) Before initiating a network on a Channel, the Master Device will perform a Channel Availability Check for a specified time duration (Channel Availability Check Time) to ensure that there is no radar system operating on the Channel, using DFS described under subsection a) above. - (c) The Master Device initiates a U-NII network by transmitting control signals that will enable other U-NII devices to Associate with the Master Device. - (d) During normal operation, the Master Device will monitor the Channel (In-Service Monitoring) to ensure that there is no radar system operating on the Channel, using DFS described under a). - (e) If the Master Device has detected a Radar Waveform during In-Service Monitoring as described under d), the Operating Channel of the U-NII network is no longer an Available Channel. The Master Device will instruct all associated Client Device(s) to stop transmitting on this Channel within the Channel Move Time. The transmissions during the Channel Move Time will be limited to the Channel Closing Transmission Time. - (f) Once the Master Device has detected a Radar Waveform it will not utilize the Channel for the duration of the Non-Occupancy Period. - (g) If the Master Device delegates the In-Service Monitoring to a Client Device, then the combination will be tested to the requirements described under d) through f) above. # Channel Move Time and Channel Closing Transmission Time requirements are listed in the following table. | Parameter | Value | |-----------------------------------|---| | Non-occupancy period | Minimum 30 minutes | | Channel Availability Check Time | 60 seconds | | Channel Move Time | 10 seconds | | Charmer wove time | See Note 1. | | | 200 milliseconds + an aggregate of 60 | | Channel Closing Transmission Time | milliseconds over remaining 10 second period. | | | See Notes 1 and 2. | | U-NII Detection Bandwidth | Minimum 100% of the U-NII 99% transmission | | O-MI Detection Danawidth | power bandwidth. See Note 3. | Page Number: 9 of 52 Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. **Table 3-3: DFS Response Requirements** #### 3.3. DFS Detection Threshold Values The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring. These detection thresholds are listed in the following table. | Maximum Transmit Power | Value | |---|-------------------------| | | (See Notes 1, 2, and 3) | | EIRP ≥ 200 milliwatt | -64 dBm | | EIRP < 200 milliwatt and | -62 dBm | | power spectral density < 10 dBm/MHz | | | EIRP < 200 milliwatt that do not meet the power | -64 dBm | | spectral density requirement | | Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01. Table 3-4: Detection Thresholds for Master Devices and Client Devices with Radar Detection Page Number: 10 of 52 #### 3.4. Parameters of DFS Test Signals This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms. **Short Pulse Radar Test Waveforms** | Radar
Type | Pulse
Width
(µsec) | PRI
(µsec) | Number of Pulses | Minimum Percentage of Successful Detection | Minimum
Number of
Trials | |---------------|--------------------------|--|--|--|--------------------------------| | 0 | 1 | 1428 | 18 | See Note 1 | See Note 1 | | 1 | 1 | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 3-6 Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A | $ \text{Roundup} \left\{ $ | 60% | 30 | | 2 | 1-5 | 150-230 | 23-29 | 60% | 30 | | 3 | 6-10 | 200-500 | 16-18 | 60% | 30 | | 4 | 11-20 | 200-500 | 12-16 | 60% | 30 | | Aggregate | (Radar Typ | oes 1-4) | | 80% | 120 | Note: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests. Table 3-5: Parameters for Short Pulse Radar Waveforms A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. | Pulse Repetition Frequency | Pulse Repetition Frequency | Pulse Repetition Interval | |----------------------------|----------------------------|---------------------------| | Number | (Pulses Per Second) | (Microseconds) | | 1 | 1930.5 | 518 | | 2 | 1858.7 | 538 | | 3 | 1792.1 | 558 | | 4 | 1730.1 | 578 | | 5 | 1672.2 | 598 | | 6 | 1618.1 | 618 | | 7 | 1567.4 | 638 | | 8 | 1519.8 | 658 | | 9 | 1474.9 | 678 | | 10 | 1432.7 | 698 | | 11 | 1392.8 | 718 | | 12 | 1355 | 738 | | 13 | 1319.3 | 758 | | 14 | 1285.3 | 778 | | 15 | 1253.1 | 798 | | 16 | 1222.5 | 818 | | 17 | 1193.3 | 838 | | 18 | 1165.6 | 858 | | 19 | 1139 | 878 | | 20 | 1113.6 | 898 | | 21 | 1089.3 | 918 | | 22 | 1066.1 | 938 | | 23 | 326.2 | 3066 | Table 3-6: Pulse Repetition Intervals Values for Test A Page Number: 12 of 52 #### Long Pulse Radar Test Waveform | Radar | Pulse | Chirp | PRI | Number | Number of | Minimum | Minimum | |-------|----------|--------|----------------|-----------|-----------|---------------|-----------| | Туре | Width | Width | (µsec) | of Pulses | Bursts | Percentage of | Number of | | | (µsec) | (MHz) | | per Burst | | Successful | Trials | | | | | | | | Detection | | | 5 | 50 – 100 | 5 – 20 | 1000 –
2000 | 1 – 3 | 8 – 20 | 80% | 30 | **Table 3-7: Parameters for Long Pulse Radar Waveforms** The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms. #### Frequency Hopping Radar Test Waveform | Radar
Type | Pulse
Width
(µsec) | PRI
(µsec) | Pulses
Per
Hop | Hopping
Rate
(kHz) | Hopping Sequence Length (msec) | Minimum Percentage of Successful Detection | Minimum Number of Trials | |---------------|--------------------------|---------------|----------------------|--------------------------|--------------------------------|--|--------------------------| | 6 | 1 | 333 | 9 | 0.333 | 300 | 70% | 30 | **Table 3-8: Parameters for Frequency Hopping Radar Waveforms** For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely. #### 3.5. Conducted Test Setup The
FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 describes a radiated test setup and a conducted test setup. The conducted test setup was used for this testing. Figure 3-1 shows the typical test setup. Figure 3-1: Conducted Test Setup where UUT is a Master and Radar Test Waveforms are injected into the Masters ## 4. TEST EQUIPMENT CALIBRATION DATE Dynamic Frequency Selection (WZ-SR4) | Instrument | Manufacturer | Type No. | Asset No. | Cali. Interval | Cali. Due Date | |-----------------------------|--------------|----------|-------------|----------------|----------------| | Signal Analyzer | R&S | FSV40 | MRTSUE06218 | 1 year | 2022/04/13 | | Vector Signal Generator | Agilent | E4438C | MRTSUE06026 | 1 year | 2022/10/27 | | Vector Signal Generator | R&S | SMBV100A | MRTSUE06279 | 1 year | 2022/04/13 | | MXG Vector Signal Generator | KEYSIGHT | N5182B | MRTSUE06451 | 1 year | 2022/06/24 | | Thermal Hygrometer | testo | 608-H1 | MRTSUE06222 | 1 year | 2022/10/12 | ### Dynamic Frequency Selection (SIP-TR2) | Instrument | Manufacturer | Type No. | Asset No. | Cali. Interval | Cali. Due Date | |-------------------------|--------------|----------|-------------|----------------|----------------| | EXA Signal Analyzer | KEYSIGHT | N9010B | MRTSUE06603 | 1 year | 2022/10/31 | | Vector Signal Generator | Keysight | N5182B | MRTSUE06605 | 1 year | 2022/10/31 | | Thermal Hygrometer | testo | 622 | MRTSUE06628 | 1 year | 2022/11/02 | | Software | Version | Manufacturer | Function | |-------------------------|----------|--------------|----------------------------------| | Pulse Building | N/A | Agilent | Radar Signal Generation Software | | R&S Pulse Sequencer DFS | V 1.4 | R&S | DFS Test Software | | DFS Tool | V 6.9.2 | Agilent | DFS Test Software | | N7606C Signal Studio | V2.0.0.0 | Keysight | DFS Test Software | Page Number: 15 of 52 ## 5. TEST RESULT ## 5.1. Summary | Parameter | Limit | Test Result | Reference | |-------------------------------|-----------------|-------------|-------------| | Statistical Performance Check | Refer Table 3-3 | Pass | Section 5.3 | Page Number: 16 of 52 #### 5.2. Radar Waveform Calibration #### 5.2.1. Calibration Setup The conducted test setup was used for this calibration testing. Figure 3-2 shows the typical test setup. Figure 3-2: Conducted Test Setup #### 5.2.2. Calibration Procedure The Interference Radar Detection Threshold Level is (-64dBm) + (0) [dBi] + 1 dB= -63 dBm that had been taken into account the output power range and antenna gain. The above equipment setup was used to calibrate the conducted Radar Waveform. A vector signal generator was utilized to establish the test signal level for each radar type. During this process there were replace 50ohm terminal form Master and Client device and no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) at the frequency of the Radar Waveform generator. Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to at least 3MHz. The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was (-64dBm) + (0) [dBi] + 1 dB= -63dBm. Capture the spectrum analyzer plots on short pulse radar types, long pulse radar type and hopping radar waveform. #### 5.2.3. Calibration Result | Product | WiFi 6 Extender | Test Engineer | Jake Lan | |-----------|----------------------------|---------------|------------| | Test Site | WZ-SR4 | Test Date | 2021/10/25 | | Test Item | Radar Waveform Calibration | | | #### 5.2.4. Channel Loading Test Result | Product | WiFi 6 Extender | Test Engineer | Jake Lan | |-----------|-----------------|---------------|------------| | Test Site | WZ-SR4 | Test Date | 2021/10/27 | | Test Item | Channel Loading | | | Note: System testing was performed with the designated iperf test file. This file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. Packet ratio = Time On / (Time On + Off Time). #### 5.3. Statistical Performance Check Measurement #### 5.3.1. Test Limit The minimum percentage of successful detection requirements found in below table when a radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In- Service Monitoring). | Radar Type | Minimum Number of Trails | Detection Probability | |-----------------------------|-----------------------------------|-----------------------| | 0 | 30 | Pd > 60% | | 1 | 30(15 of test A and 15 of test B) | Pd > 60% | | 2 | 30 | Pd > 60% | | 3 | 30 | Pd > 60% | | 4 | 30 | Pd > 60% | | Aggregate (Radar Types 1-4) | 120 | Pd > 80% | | 5 | 30 | Pd > 80% | | 6 | 30 | Pd > 70% | Note: The percentage of successful detection is calculated by: (Total Waveform Detections / Total Waveform Trails) * 100 = Probability of Detection Radar Waveform In addition an aggregate minimum percentage of successful detection across all Short Pulse Radar Types 1-4 is required and is calculated as follows: (Pd1 + Pd2 + Pd3 + Pd4) / 4. #### 5.3.2. Test Procedure - 1. Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test. - 2. At time T0 the Radar Waveform generator sends the individual waveform for each of the Radar Types 1-6, at levels equal to the DFS Detection Threshold + 1dB, on the Operating Channel. - 3. Observe the transmissions of the EUT at the end of the Burst on the Operating Channel for duration greater than 10 seconds for Short Pulse Radar Types 0 to ensure detection occurs. - 4. Observe the transmissions of the EUT at the end of the Burst on the Operating Channel for duration greater than 22 seconds for Long Pulse Radar Type 5 to ensure detection occurs. - 5. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs. - 6. The Minimum number of trails, minimum percentage of successful detection and the average minimum percentage of successful detection are found in below table. #### 5.3.3. Test Result | Product | WiFi 6 Extender | Test Engineer | Jake Lan | | | | |-----------|---------------------------------------|---|------------|--|--|--| | Test Site | WZ-SR4 | Test Date | 2021/10/30 | | | | | Test Item | Radar Statistical Performance Check (| Radar Statistical Performance Check (802.11ac-VHT20 mode - 5500MHz) | | | | | | Test Mode | Mode 1 | | | | | | Radar Type 1 - Radar Statistical Performance | Trail # | Test Freq. | 1=Detection | Trail # | Test Freq. | 1=Detection | |---------|------------|-------------------|---------|------------|----------------| | | (MHz) | 0=No Detection | | (MHz) | 0=No Detection | | 1 | 5507 | 1 | 16 | 5500 | 1 | | 2 | 5501 | 1 | 17 | 5496 | 1 | | 3 | 5495 | 1 | 18 | 5504 | 1 | | 4 | 5506 | 1 | 19 | 5506 | 1 | | 5 | 5496 | 1 | 20 | 5502 | 1 | | 6 | 5490 | 1 | 21 | 5509 | 1 | | 7 | 5508 | 1 | 22 | 5503 | 1 | | 8 | 5495 | 1 | 23 | 5505 | 1 | | 9 | 5499 | 1 | 24 | 5491 | 1 | | 10 | 5497 | 1 | 25 | 5497 | 1 | | 11 | 5510 | 1 | 26 | 5501 | 1 | | 12 | 5496 | 1 | 27 | 5500 | 1 | | 13 | 5502 | 1 | 28 | 5495 | 1 | | 14 | 5503 | 1 | 29 | 5500 | 1 | | 15 | 5509 | 1 | 30 | 5492 | 1 | | | Det | ection Percentage | (%) | | 100.0% | Page Number: 22 of 52 Radar Type 2 - Radar Statistical Performance | Trail # | Test Freq.
(MHz) | 1=Detection 0=No Detection | Trail # | Test Freq.
(MHz) | 1=Detection 0=No Detection | |---------|---------------------|----------------------------|---------|---------------------|----------------------------| | 1 | 5494 | 1 | 16 | 5501 | 1 | | 2 | 5490 | 1 | 17 | 5497 | 1 | | 3 | 5492 | 1 | 18 | 5506 | 1 | | 4 | 5503 | 1 | 19 | 5490 | 1 | | 5 | 5506 | 1 | 20 | 5496 | 1 | | 6 | 5505 | 1 | 21 | 5505 | 1 | | 7 | 5490 | 1 | 22 | 5507 | 0 | | 8 | 5509 | 1 | 23 | 5492 | 0 | | 9 | 5494 | 1 | 24 | 5491 | 1 | | 10 | 5506 | 1 | 25 | 5505 | 1 | | 11 | 5510 | 1 | 26 | 5490 | 1 | | 12 | 5509 | 0 | 27 | 5508 | 1 | | 13 | 5491 | 1 | 28 | 5500 | 1 | | 14 | 5502 | 1 | 29 | 5501 | 1 | | 15 | 5500 | 1 | 30 | 5499 | 1 | | | Det | ection Percentage | (%) | | 90.0% | Page Number: 23 of 52 Radar Type 3 - Radar Statistical Performance | Trail # | Test Freq. | 1=Detection | Trail # | Test Freq. | 1=Detection | |---------|------------|-------------------|---------|------------|----------------| | | (MHz) | 0=No Detection | | (MHz) | 0=No Detection | | 1 | 5505 | 1 | 16 | 5493 | 0 | | 2 | 5502 | 0 | 17 | 5491 | 1 | | 3 | 5506 | 1 | 18 | 5495 | 1 | | 4 | 5499 | 1 | 19 | 5510 | 1 | | 5 | 5493 | 1 | 20 | 5493 | 1 | | 6 | 5491 | 1 | 21 | 5492 | 1 | | 7 | 5493 | 0 | 22 | 5504 | 1 | | 8 | 5500 | 1 | 23 | 5501 | 1 | | 9 | 5502 | 1 | 24 | 5499 | 1 | | 10 | 5504 | 1 | 25 | 5507 | 0 | | 11 | 5503 | 1 | 26 | 5505 | 1 | | 12 | 5496 | 0 | 27 | 5497 | 1 | | 13 | 5499 | 1 | 28 | 5490 | 1 | | 14 | 5510 | 0 | 29 | 5498 | 1 | | 15 | 5498 | 1 | 30 | 5492 | 1 | | | Det | ection Percentage | (%) | | 80% | Page Number: 24 of 52 Radar Type 4 - Radar Statistical Performance | Trail # | Test Freq.
(MHz) | 1=Detection 0=No Detection | Trail # | Test Freq.
(MHz) | 1=Detection 0=No Detection | |---------|---------------------|----------------------------|---------|---------------------|----------------------------| | 4 | | | 40 | | | | 1 | 5501 | 1 | 16 | 5502 | 1 | | 2 | 5504 | 1 | 17 | 5505 | 1 | | 3 | 5496 | 1 | 18 | 5499 | 1 | | 4 | 5506 | 0 | 19 | 5502 | 1 | | 5 | 5503 | 1 | 20 | 5498 | 1 | | 6 | 5497 | 0 | 21 | 5509 | 1 | | 7 | 5492 | 0 | 22 | 5500 | 1 | | 8 | 5490 | 1 | 23 | 5506 | 1 | | 9 | 5506 | 1 | 24 | 5495 | 1 | | 10 | 5491 | 1 | 25 | 5504 | 1 | | 11 | 5510 | 1 | 26 | 5491 | 1 | | 12 | 5491 | 1 | 27 | 5501 | 1 | | 13 | 5506 | 1 | 28 | 5503 | 1 | | 14 | 5496 | 1 | 29 | 5510 | 1 | | 15 | 5507 | 1 | 30 | 5507 | 1 | | | Det | ection Percentage | (%) | | 90% |
Note: In addition, an average minimum percentage of successful detection across all four Short pulse radar test waveforms is as follows: $$\frac{P_d 1 + P_d 2 + P_d 3 + P_d 4}{4} = (100\% + 90.0\% + 80\% + 90\%)/4 = 90\% (>80\%)$$ Page Number: 25 of 52 | Type 1 Radar Statistical Performance | | | | | | | | | |--------------------------------------|----------|---------------|------------------------|----------|---------------------|----------------------------|--|--| | | Trial Id | Radar
Type | Pulse
Width
(us) | PRI (us) | Humber of
Pulses | Taveform
Length
(us) | | | | Download | 0 | Type 1 | 1.0 | 798. 0 | 67 | 53466.0 | | | | Download | 1 | Type 1 | 1.0 | 718.0 | 74 | 53132.0 | | | | Download | 2 | Type 1 | 1.0 | 638.0 | 83 | 52954.0 | | | | Download | 3 | Type 1 | 1.0 | 518.0 | 102 | 52836.0 | | | | Download | 4 | Type 1 | 1.0 | 898.0 | 59 | 52982.0 | | | | Download | 5 | Type 1 | 1.0 | 818.0 | 65 | 53170.0 | | | | Download | 6 | Type 1 | 1.0 | 3066.0 | 18 | 55188.0 | | | | Download | 7 | Type 1 | 1.0 | 758. 0 | 70 | 53060.0 | | | | Download | 8 | Type 1 | 1.0 | 578.0 | 92 | 53176.0 | | | | Download | 9 | Type 1 | 1.0 | 678.0 | 78 | 52884.0 | | | | Download | 10 | Type 1 | 1.0 | 918.0 | 58 | 53244.0 | | | | Download | 11 | Type 1 | 1.0 | 878.0 | 61 | 53558.0 | | | | Download | 12 | Type 1 | 1.0 | 738. 0 | 72 | 53136.0 | | | | Download | 13 | Type 1 | 1.0 | 658.0 | 81 | 53298.0 | | | | Download | 14 | Type 1 | 1.0 | 838.0 | 63 | 52794.0 | | | | Download | 15 | Type 1 | 1.0 | 1750.0 | 31 | 54250.0 | | | | Download | 16 | Type 1 | 1.0 | 1067.0 | 50 | 53350.0 | | | | Download | 17 | Type 1 | 1.0 | 2207.0 | 24 | 52968.0 | | | | Download | 18 | Type 1 | 1.0 | 1924.0 | 28 | 53872.0 | | | | Download | 19 | Type 1 | 1.0 | 3022.0 | 18 | 54396.0 | | | | Download | 20 | Type 1 | 1.0 | 2138.0 | 25 | 53450.0 | | | | Download | 21 | Type 1 | 1.0 | 973.0 | 55 | 53515.0 | | | | Download | 22 | Type 1 | 1.0 | 3042.0 | 18 | 54756.0 | | | | Download | 23 | Type 1 | 1.0 | 1711.0 | 31 | 53041.0 | | | | Download | 24 | Type 1 | 1.0 | 2065.0 | 26 | 53690.0 | | | | Download | 25 | Type 1 | 1.0 | 2453.0 | 22 | 53966.0 | | | | Download | 26 | Type 1 | 1.0 | 1004.0 | 53 | 53212.0 | | | | Download | 27 | Type 1 | 1.0 | 2796.0 | 19 | 53124.0 | | | | Download | 28 | Type 1 | 1.0 | 779.0 | 68 | 52972.0 | | | | Download | 29 | Type 1 | 1.0 | 1347.0 | 40 | 53880.0 | | | | | Type 2 Radar Statistical Performance | | | | | | | | |----------|--------------------------------------|---------------|------------------------|----------|---------------------|----------------------------|--|--| | | Trial Id | Radar
Type | Pulse
Width
(us) | PRI (us) | Humber of
Pulses | Waveform
Length
(us) | | | | Download | 0 | Type 2 | 2.5 | 182.0 | 25 | 4550.0 | | | | Download | 1 | Type 2 | 3.2 | 152.0 | 26 | 3952.0 | | | | Download | 2 | Type 2 | 3.0 | 207. 0 | 26 | 5382.0 | | | | Download | 3 | Type 2 | 2.2 | 227. 0 | 25 | 5675.0 | | | | Download | 4 | Type 2 | 3.1 | 151.0 | 26 | 3926.0 | | | | Download | 5 | Type 2 | 3. 7 | 187. 0 | 27 | 5049.0 | | | | Download | 6 | Type 2 | 3.0 | 198.0 | 26 | 5148.0 | | | | Download | 7 | Type 2 | 1.9 | 174.0 | 24 | 4176.0 | | | | Download | 8 | Type 2 | 1.3 | 178.0 | 23 | 4094.0 | | | | Download | 9 | Type 2 | 4.2 | 218.0 | 28 | 6104.0 | | | | Download | 10 | Type 2 | 1.5 | 176.0 | 23 | 4048.0 | | | | Download | 11 | Type 2 | 1.5 | 191.0 | 23 | 4393.0 | | | | Download | 12 | Type 2 | 3.5 | 210.0 | 27 | 5670.0 | | | | Download | 13 | Type 2 | 4.9 | 209. 0 | 29 | 6061.0 | | | | Download | 14 | Type 2 | 3.0 | 193.0 | 26 | 5018.0 | | | | Download | 15 | Type 2 | 2. 7 | 177.0 | 25 | 4425.0 | | | | Download | 16 | Type 2 | 4.4 | 169.0 | 28 | 4732.0 | | | | Download | 17 | Type 2 | 3.2 | 170.0 | 26 | 4420.0 | | | | Download | 18 | Type 2 | 3.0 | 157.0 | 26 | 4082.0 | | | | Download | 19 | Type 2 | 1.8 | 155.0 | 24 | 3720.0 | | | | Download | 20 | Type 2 | 4.7 | 190.0 | 29 | 5510.0 | | | | Download | 21 | Type 2 | 1.4 | 196.0 | 23 | 4508.0 | | | | Download | 22 | Type 2 | 3.5 | 171.0 | 27 | 4617.0 | | | | Download | 23 | Type 2 | 2.9 | 160.0 | 26 | 4160.0 | | | | Download | 24 | Type 2 | 4.4 | 226.0 | 28 | 6328.0 | | | | Download | 25 | Type 2 | 4.6 | 228.0 | 29 | 6612.0 | | | | Download | 26 | Type 2 | 4.8 | 153.0 | 29 | 4437.0 | | | | Download | 27 | Type 2 | 1.5 | 188.0 | 23 | 4324.0 | | | | Download | 28 | Type 2 | 2.8 | 161.0 | 26 | 4186.0 | | | | Download | 29 | Type 2 | 3.8 | 219.0 | 27 | 5913.0 | | | | Type 3 Radar Statistical Performance | | | | | | | | |--------------------------------------|----------|---------------|------------------------|----------|---------------------|----------------------------|--| | | Trial Id | Radar
Type | Pulse
Width
(us) | PRI (us) | Humber of
Pulses | Taveform
Length
(us) | | | Download | 0 | Type 3 | 7.5 | 291.0 | 17 | 4947.0 | | | Download | 1 | Type 3 | 8.2 | 277.0 | 17 | 4709.0 | | | Download | 2 | Type 3 | 8.0 | 494.0 | 17 | 8398.0 | | | Download | 3 | Type 3 | 7.2 | 225.0 | 16 | 3600.0 | | | Download | 4 | Type 3 | 8.1 | 304.0 | 17 | 5168.0 | | | Download | 5 | Type 3 | 8. 7 | 239.0 | 18 | 4302.0 | | | Download | 6 | Type 3 | 8.0 | 252.0 | 17 | 4284.0 | | | Download | 7 | Type 3 | 6.9 | 238.0 | 16 | 3808.0 | | | Download | 8 | Type 3 | 6.3 | 317.0 | 16 | 5072.0 | | | Download | 9 | Type 3 | 9.2 | 259.0 | 18 | 4662.0 | | | Download | 10 | Type 3 | 6.5 | 266.0 | 16 | 4256.0 | | | Download | 11 | Type 3 | 6.5 | 421.0 | 16 | 6736.0 | | | Download | 12 | Туре З | 8.5 | 478.0 | 17 | 8126.0 | | | Download | 13 | Type 3 | 9.9 | 301.0 | 18 | 5418.0 | | | Download | 14 | Type 3 | 8.0 | 326.0 | 17 | 5542.0 | | | Download | 15 | Туре З | 7. 7 | 418.0 | 17 | 7106.0 | | | Download | 16 | Type 3 | 9.4 | 298.0 | 18 | 5364.0 | | | Download | 17 | Туре З | 8.2 | 224.0 | 17 | 3808.0 | | | Download | 18 | Type 3 | 8.0 | 331.0 | 17 | 5627.0 | | | Download | 19 | Туре З | 6.8 | 216.0 | 16 | 3456.0 | | | Download | 20 | Туре З | 9. 7 | 480.0 | 18 | 8640.0 | | | Download | 21 | Туре З | 6.4 | 243.0 | 16 | 3888.0 | | | Download | 22 | Type 3 | 8.5 | 405.0 | 17 | 6885.0 | | | Download | 23 | Type 3 | 7.9 | 265.0 | 17 | 4505.0 | | | Download | 24 | Туре З | 9.4 | 348.0 | 18 | 6264.0 | | | Download | 25 | Type 3 | 9.6 | 289.0 | 18 | 5202.0 | | | Download | 26 | Туре З | 9.8 | 324.0 | 18 | 5832.0 | | | Download | 27 | Type 3 | 6.5 | 281.0 | 16 | 4496.0 | | | Download | 28 | Type 3 | 7.8 | 467.0 | 17 | 7939. 0 | | | Download | 29 | Type 3 | 8.8 | 372.0 | 18 | 6696.0 | | | Type 4 Radar Statistical Performance | | | | | | | | | |--------------------------------------|----------|---------------|------------------------|----------|---------------------|----------------------------|--|--| | | Trial Id | Radar
Type | Pulse
Width
(us) | PRI (us) | Number of
Pulses | Taveform
Length
(us) | | | | Download | 0 | Type 4 | 14.3 | 291.0 | 13 | 3783.0 | | | | Download | 1 | Type 4 | 15.9 | 277.0 | 14 | 3878.0 | | | | Download | 2 | Type 4 | 15.5 | 494.0 | 14 | 6916.0 | | | | Download | 3 | Type 4 | 13.8 | 225.0 | 13 | 2925.0 | | | | Download | 4 | Type 4 | 15. 7 | 304.0 | 14 | 4256.0 | | | | Download | 5 | Type 4 | 17.1 | 239. 0 | 15 | 3585.0 | | | | Download | 6 | Type 4 | 15.4 | 252.0 | 14 | 3528.0 | | | | Download | 7 | Type 4 | 13.0 | 238. 0 | 13 | 3094.0 | | | | Download | 8 | Type 4 | 11.7 | 317.0 | 12 | 3804.0 | | | | Download | 9 | Type 4 | 18. 1 | 259.0 | 15 | 3885.0 | | | | Download | 10 | Type 4 | 12.2 | 266.0 | 12 | 3192.0 | | | | Download | 11 | Type 4 | 12.2 | 421.0 | 12 | 5052.0 | | | | Download | 12 | Type 4 | 16.6 | 478.0 | 15 | 7170.0 | | | | Download | 13 | Type 4 | 19.6 | 301.0 | 16 | 4816.0 | | | | Download | 14 | Type 4 | 15.5 | 326.0 | 14 | 4564.0 | | | | Download | 15 | Type 4 | 14.8 | 418.0 | 14 | 5852.0 | | | | Download | 16 | Type 4 | 18.6 | 298.0 | 16 | 4768.0 | | | | Download | 17 | Type 4 | 16.0 | 224.0 | 14 | 3136.0 | | | | Download | 18 | Type 4 | 15.5 | 331.0 | 14 | 4634.0 | | | | Download | 19 | Type 4 | 12.8 | 216.0 | 13 | 2808.0 | | | | Download | 20 | Type 4 | 19.2 | 480.0 | 16 | 7680.0 | | | | Download | 21 | Type 4 | 12.0 | 243.0 | 12 | 2916.0 | | | | Download | 22 | Type 4 | 16. 7 | 405.0 | 15 | 6075.0 | | | | Download | 23 | Type 4 | 15.3 | 265.0 | 14 | 3710.0 | | | | Download | 24 | Type 4 | 18.6 | 348.0 | 16 | 5568.0 | | | | Download | 25 | Type 4 | 19.0 | 289. 0 | 16 | 4624.0 | | | | Download | 26 | Type 4 | 19.6 | 324.0 | 16 | 5184.0 | | | | Download | 27 | Type 4 | 12.2 | 281.0 | 12 | 3372.0 | | | | Download | 28 | Type 4 | 14.9 | 467.0 | 14 | 6538.0 | | | | Download | 29 | Type 4 | 17.2 | 372.0 | 15 | 5580.0 | | | Radar Type 5 - Radar Statistical Performance | Trail # | Test Freq. | 1=Detection | Trail # | Test Freq. | 1=Detection | |---------|------------|-------------------|---------|------------|----------------| | | (MHz) | 0=No Detection | | (MHz) | 0=No Detection | | 1 | 5500.0 | 1 | 16 | 5494.4 | 1 | | 2 | 5500.0 | 1 | 17 | 5497.2 | 1 | | 3 | 5500.0 | 1 | 18 | 5495.2 | 1 | | 4 | 5500.0 | 0 | 19 | 5495.2 | 1 | | 5 | 5500.0 | 1 | 20 | 5493.2 | 0 | | 6 | 5500.0 | 1 | 21 | 5502.4 | 1 | | 7 | 5500.0 | 1 | 22 | 5507.6 | 1 | | 8 | 5500.0 | 1 | 23 | 5504.0 | 1 | | 9 | 5500.0 | 0 | 24 | 5505.2 | 1 | | 10 | 5500.0 | 1 | 25 | 5502.8 | 1 | | 11 | 5492.8 | 1 | 26 | 5502.4 | 1 | | 12 | 5492.8 | 1 | 27 | 5502.0 | 1 | | 13 | 5495.6 | 1 | 28 | 5507.2 | 1 | | 14 | 5498.0 | 1 | 29 | 5505.2 | 1 | | 15 | 5495.2 | 1 | 30 | 5503.6 | 0 | | | Det | ection Percentage | (%) | | 86.7% | | | | | Type 5 Rada | r Waveform_ | I | | | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------| | Burst ID | Burst
Offset
(us) | Pulse
Fidth (us) | Chirp
Vidth
(MHz) | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | | 0 | 610106.0 | 68.5 | 10 | 2 | 1467.0 | 1329.0 | _ | | 1 | 851574.0 | 77. 0 | 10 |
2 | 1528.0 | 1719.0 | _ | | 2 | 96553.0 | 74.8 | 10 | 2 | 1748.0 | 1625.0 | _ | | 3 | 339017.0 | 65.4 | 10 | 1 | 1162.0 | _ | _ | | 4 | 580006.0 | 76. 1 | 10 | 2 | 1384.0 | 1943.0 | _ | | 5 | 820656.0 | 84.1 | 10 | 3 | 1527.0 | 1104.0 | 2000.0 | | 6 | 66811.0 | 74.5 | 10 | 2 | 1516.0 | 1389.0 | _ | | 7 | 309161.0 | 61.1 | 10 | 1 | 1214.0 | _ | _ | | 8 | 551390.0 | 54.2 | 10 | 1 | 1228.0 | _ | _ | | 9 | 790987.0 | 89.5 | 10 | 3 | 1218.0 | 1493.0 | 1836.0 | | 10 | 37063.0 | 56.6 | 10 | 1 | 1824.0 | _ | _ | | 11 | 279105.0 | 56. 7 | 10 | 1 | 1995.0 | _ | _ | Page Number: 28 of 52 977164.0 223091.0 90.4 57.9 9 | | | | Type 5 Rad | lar Waveform_ | 2 | | | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------------|--------------------|-----------| | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Width
(MHz) | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us | | 0 | 416295.0 | 81.0 | 13 | 2 | 1413.0 | 1385.0 | _ | | 1 | 607909.0 | 97. 7 | 13 | 3 | 1802.0 | 1699.0 | 1562.0 | | 2 | 5782.0 | 75. 1 | 13 | 2 | 1853.0 | 1447.0 | _ | | 3 | 199248.0 | 71.0 | 13 | 2 | 1042.0 | 1290.0 | _ | | 4 | 392154.0 | 92.1 | 13 | 3 | 1101.0 | 1183.0 | 1174.0 | | 5 | 586122.0 | 77. 7 | 13 | 2 | 1236.0 | 1158.0 | - | | 6 | 778904.0 | 75. 1 | 13 | 2 | 1813.0 | 1260.0 | _ | | 7 | 175566.0 | 60.1 | 13 | 1 | 1660.0 | _ | _ | | 8 | 368218.0 | 95.2 | 13 | 3 | 1595.0 | 1013.0 | 1151.0 | | 9 | 563177.0 | 55.6 | 13 | 1 | 1142.0 | 4770.0 | - | | 10
11 | 754918.0 | 81.4 | 13 | 2 | 1485.0 | 1776.0 | - | | 12 | 151538.0 | 73.8 | 13 | 3 | 1360.0 | 1239.0 | 1204 0 | | 13 | 343927. 0
537037. 0 | 92.0 | 13 | 3 | 1694.0
1593.0 | 1925. 0
1891. 0 | 1304.0 | | 14 | 730634.0 | 97.4 | 13 | 3 | 1474.0 | 1169.0 | 1143.0 | | | 130034.0 | J. 4 | <u> </u> | lar Waveform_ | | 1100.0 | 1145.0 | | | Burst | | Chirp | Humber of | <u> </u> | | | | Burst ID | Offset
(us) | Pulse
Tidth (us) | Width
(MHz) | Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us | | 0 | 137097.0 | 56. 7 | 12 | 1 | 1170.0 | _ | _ | | 1 | 344114.0 | 72.0 | 12 | 2 | 1302.0 | 1316.0 | - | | 2 | 550696.0 | 84.6 | 12 | 3 | 1311.0 | 1190.0 | 1152.0 | | 3 | 757775.0 | 95. 7 | 12 | 3 | 1490.0 | 1003.0 | 1069.0 | | 4 | 111503.0 | 50.0 | 12 | 1 | 1342.0 | _ | _ | | 5 | 318644.0 | 76.3 | 12 | 2 | 1153.0 | 1309.0 | _ | | 6 | 526419.0 | 56.9 | 12 | 1 | 1670.0 | _ | _ | | 7 | 732314.0 | 80.6 | 12 | 2 | 1956.0 | 1560.0 | _ | | 8 | 85605.0 | 87.8 | 12 | 3 | 1900.0 | 1074.0 | 1673.0 | | 9 | 292444.0 | 94.3 | 12 | 3 | 1233.0 | 1271.0 | 1902.0 | | 10 | 500307.0 | 73. 7 | 12 | 2 | 1026.0 | 1592.0 | _ | | 11 | 707459.0 | 67.8 | 12 | 2 | 1323.0 | 1412.0 | _ | | 12 | 60235.0 | 69.1 | 12 | 2 | 1524.0 | 1740.0 | _ | | 13 | 267827.0 | 61.3 | 12 | 1 | 1667.0 | _ | _ | | | | | Type 5 Rad | lar Waveform_ | 4 | | | | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Tidth
(MHz) | Humber of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us | | 0 | 554626.0 | 59.0 | 9 | 1 | 1763.0 | _ | _ | | 1 | 794377.0 | 93.6 | 9 | 3 | 1547.0 | 1399.0 | 1764.0 | | 2 | 40573.0 | 71.6 | 9 | 2 | 1242.0 | 1090.0 | _ | | | | | | _ | + | _ | | | 3 | 282743.0 | 60.1 | 9 | 1 | 1611.0 | _ | | | 4 | 524925.0 | 52.5 | 9 | 1 | 1532.0 | _ | _ | | 5 | 763862.0 | 94.3 | 9 | 3 | 1957.0 | 1863.0 | 1907.0 | | 6 | 10745.0 | 95.9 | 9 | 3 | 1482.0 | 1960.0 | 1018.0 | | 7 | 252635.0 | 70. 1 | 9 | 2 | 1086.0 | 1638.0 | _ | | 8 | 495109.0 | 65.9 | 9 | 1 | 1508.0 | _ | _ | | | | + | | | | | - | | 9 | 737204.0 | 56.3 | 9 | 1 | 1603.0 | | | | | | 1 | 1 - | 1 - | 1 | I | 1 | 1065.0 1610.0 1695.0 1068.0 | | | | Type 5 Rada | ar Waveform_ | 5 | | | |--------------|-------------------------|---------------------|--|----------------------------------|------------------|------------------|------------------| | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Width
(MHz) | Humber of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | | 0 | 398138.0 | 83.3 | 13 | 2 | 1241.0 | 1496.0 | _ | | ı | 604915.0 | 72.3 | 13 | 2 | 1397.0 | 1965.0 | _ | | 2 | 813595.0 | 62.8 | 13 | 1 | 1668.0 | _ | _ | | 3 | 164936.0 | 95.6 | 13 | 3 | 1825.0 | 1495.0 | 1777.0 | | 1 | 373285.0 | 50.9 | 13 | 1 | 1196.0 | _ | _ | | 5 | 579679.0 | 73. 4 | 13 | 2 | 1644.0 | 1320.0 | _ | | 6 | 786702.0 | 82.2 | 13 | 2 | 1253.0 | 1866.0 | _ | | 7 | 139671.0 | 86. 7 | 13 | 3 | 1202.0 | 1621.0 | 1119.0 | | <u> </u> | 346950.0 | 67.8 | 13 | 2 | 1459.0 | 1619.0 | _ | | , | 553319.0 | 89.2 | 13 | 3 | 1420.0 | 1574.0 | 1269.0 | | 0 | | | | 2 | | | 1269.0 | | | 761076.0 | 69. 7 | 13 | | 1390.0 | 1855.0 | - | | 11 | 114128.0 | 93.8 | 13 | 3 | 1479.0 | 1523.0 | 1344.0 | | 12 | 321860.0 | 56.5 | 13 | 1 | 1948.0 | | | | 13 | 528349.0 | 80.5 | 13 | 2 | 1648.0 | 1792.0 | | | | | | Type 5 Rada | ar Waveform_6 | 6 | | | | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Vidth
(MHz) | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | | 1 | 642960.0 | 74.0 | 15 | 2 | 1805.0 | 1801.0 | _ | | | 77676.0 | 67. 1 | 15 | 2 | 1449.0 | 1335.0 | _ | | : | 258564.0 | 87.3 | 15 | 3 | 1240.0 | 1436.0 | 1075.0 | | 1 | 439837.0 | 76.8 | 15 | 2 | 1697.0 | 1571.0 | _ | | - | 621171.0 | 68.3 | 15 | 2 | 1255.0 | 1739.0 | _ | | i | 55421.0 | 59.8 | 15 | 1 | 1865.0 | _ | _ | | <u> </u> | 237038.0 | 56.0 | 15 | 1 | 1327. 0 | 1071 0 | 1001.0 | | <u> </u> | 416503.0
598071.0 | 98.8
86.2 | 15
15 | 3 | 1951.0
1076.0 | 1871.0
1391.0 | 1281.0
1505.0 | | 1 | 33093.0 | 62.1 | 15 | 1 | 1378.0 | - | - | | 0 | 214686.0 | 59. 7 | 15 | 1 | 1277. 0 | _ | _ | | 1 | 395907.0 | 63.6 | 15 | 1 | 1972.0 | _ | _ | | 2 | 575465.0 | 89.5 | 15 | 3 | 1680.0 | 1298.0 | 1407.0 | | 3 | 10688.0 | 99.8 | 15 | 3 | 1121.0 | 1978.0 | 1079.0 | | 4 | 192153.0 | 51.5 | 15 | 1 | 1920.0 | _ | _ | | 5 | 372444.0 | 86. 7 | 15 | 3 | 1556.0 | 1082.0 | 1569.0 | | | | | Type 5 Rada | ar Waveform_7 | 7 | | | | Burst ID | Burst
Offset
(us) | Pulse
Width (us) | Chirp
Width | Humber of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us | |) | 634516.0 | 56.0 | 12 | 1 | 1913.0 | - | 1- | | l | 841149.0 | 78.2 | 12 | 2 | 1176.0 | 1537.0 | 1- | | 2 | 194236.0 | 55.3 | 12 | 1 | 1433.0 | _ | - | | 3 | 400245.0 | 92.2 | 12 | 3 | 1887. 0 | 1752.0 | 1046.0 | | 1 | 607392.0 | 93.0 | 12 | 3 | 1458.0 | 1014.0 | 1653.0 | | <u> </u> | 812946.0 | 84.6 | 12 | 3 | 1992.0 | 1743.0 | 1783.0 | | <u> </u> | 168255.0 | 67.8 | 12 | 2 | 1893.0 | 1654.0 | _ | | ,
7 | | | 12 | 3 | + | + | 1872 0 | | r
B | 374954.0 | 92.3 | | 3 | 1063.0 | 1351.0 | 1872.0 | | | 582031.0 | 93.3 | 12 | | 1257. 0 | 1287.0 | 1402.0 | | 9 | 791523.0 | 50.2 | 12 | 1 | 1172.0 | - | 1000 0 | | 10 | 142607.0 | 85. 7 | 12 | 3 | 1365.0 | 1138.0 | 1923.0 | | 11 | 349725.0 | 82.5 | 12 | 2 | 1829.0 | 1848.0 | 1015 - | | 12 | 556184.0 | 93.6 | 12 | 3 | 1429.0 | 1821.0 | 1245.0 | | 13 | 763748.0 | 69.8 | 12 | 2 | 1635.0 | 1999.0 | I- | | | | | Type 5 Ra | dar Waveform_8 | 8 | | | |----------|-------------------------|-----------------------|-------------------------|----------------------------------|------------------|------------------|--------------------| | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Tidth
(MHz) | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | | 0 | 164351.0 | 73.9 | 8 | 2 | 1645.0 | 1894.0 | - | | 1 | 454495.0 | 77.9 | 8 | 2 | 1712.0 | 1922.0 | _ | | 2 | 745744.0 | 53.5 | 8 | 1 | 1879.0 | _ | _ | | 3 | 1034743.0 | 72.0 | 8 | 2 | 1939.0 | 1770.0 | _ | | 4 | 128624.0 | 70.3 | 8 | 2 | 1469.0 | 1915.0 | _ | | 5 | 418876.0 | 78. 7 | 8 | 2 | 1983.0 | 1301.0 | _ | | 6 | 709673.0 | 82.8 | 8 | 2 | 1299.0 | 1048.0 | _ | | 7 | 997815.0 | 89.2 | 8 | 3 | 1511.0 | 1873.0 | 1749.0 | |
8 | 92740.0 | 88.0 | 8 | 3 | 1831.0 | 1472.0 | 1840.0 | | 9 | 383051.0 | 80.5 | 8 | 2 | 1834.0 | 1683.0 | _ | | - | 000001.0 | 00.0 | _ | dar Waveform_ | | 1000.0 | | | Burst ID | Burst
Offset
(us) | Pulse
Vidth (us) | Chirp
Tidth
(MHz) | Number of | PRI-1 (us) | PRI-2 (us) | PRI-3 (us | | 0 | 749396.0 | 51.8 | 6 | 1 | 1498.0 | _ | _ | | 1 | 1070448.0 | 84.5 | 6 | 3 | 1401.0 | 1212.0 | 1319.0 | | 2 | 63440.0 | 86.2 | 6 | 3 | 1708.0 | 1175.0 | 1618.0 | | 3 | | + | <u> </u> | | | 1115.0 | 1010.0 | | | 386573.0 | 50.6 | 6 | 1 | 1577.0 | | | | 4 | 708236.0 | 85.8 | 6 | 3 | 1760.0 | 1017.0 | 1295.0 | | 5 | 1029704.0 | 87.3 | 6 | 3 | 1623.0 | 1935.0 | 1701.0 | | 6 | 23747.0 | 84.0 | 6 | 3 | 1520.0 | 1263.0 | 1450.0 | | 7 | 346227.0 | 82.4 | 6 | 2 | 1746.0 | 1984.0 | _ | | 8 | 668289.0 | 85.2 | 6 | 3 | 1691.0 | 1078.0 | 1774.0 | | | • | | Type 5 Rac | dar Waveform_1 | 0 | • | • | | Burst ID | Burst
Offset
(us) | Pulse
Width (us) | Chirp
Width
(MHz) | Number of
Pulses per | PRI-1 (us) | PRI-2 (us) | PRI-3 (us | | 0 | 494545.0 | 81.1 | 17 | Burst
2 | 1950.0 | 1310.0 | - | | 2 | 655852.0 | 83. 1
91. 5 | 17 | 2 | 1800.0
1552.0 | 1045.0 | 1369.0 | | 3 | 152678.0
313254.0 | 88.5 | 17 | 3 | 1116.0 | 1441.0
1510.0 | 1849.0 | | 4 | 476146.0 | 64.3 | 17 | 1 | 1275.0 | _ | _ | | 5 | 634159.0 | 87.5 | 17 | 3 | 1379.0 | 1936.0 | 1473.0 | | 6
7 | 132814.0 | 89.4 | 17 | 3 | 1747.0 | 1964. 0 | 1040.0 | | 8 | 293659.0
454274.0 | 99. 4
95. 1 | 17 | 3 | 1248.0
1112.0 | 1126.0
1932.0 | 1677. 0
1139. 0 | | 9 | 614286.0 | 83.5 | 17 | 3 | 1567. 0 | 1657. 0 | 1671.0 | | 10 | 113386.0 | 68.0 | 17 | 2 | 1494.0 | 1227.0 | _ | | 11 | 274343.0 | 74.2 | 17 | 2 | 1555.0 | 1337.0 | _ | | 12 | 435123.0 | 73.6 | 17 | 2 | 1703.0 | 1503.0 | _ | | 13 | 597265.0 | 55.2 | 17 | 1 | 1835.0 | | _ | | 15 | 93768. 0
254126. 0 | 66.3
88.3 | 17 | 3 | 1184.0
1507.0 | 1291.0 | 1103.0 | | 16 | 415579.0 | 81.9 | 17 | 2 | 1339.0 | 1426.0 | - | | 17 | | 60.1 | 17 | 1 | 1394.0 | 1 |
1 | | | | | Type 5 Rac | lar Waveform_1 | 1 | | | |----------|-------------------------|-----------------------|-------------------------|----------------------------------|--------------------|------------------|--------------------| | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Vidth
(MHz) | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | | 0 | 147724.0 | 67.4 | 7 | 2 | 1582.0 | 1230.0 | _ | | 1 | 470229.0 | 79.5 | 7 | 2 | 1615.0 | 1729.0 | _ | | 2 | 793107.0 | 72.8 | 7 | 2 | 1038.0 | 1779.0 | _ | | 3 | 1116786.0 | 53.9 | 7 | 1 | 1641.0 | _ | _ | | | | | | 1 | | 4000 0 | | | 4 | 107959.0 | 66.9 | 7 | 2 | 1634.0 | 1380.0 | _ | | 5 | 430029.0 | 90.2 | 7 | 3 | 1661.0 | 1733.0 | 1393.0 | | 6 | 752714.0 | 74.9 | 7 | 2 | 1967.0 | 1989.0 | _ | | 7 | 1074763.0 | 90.4 | 7 | 3 | 1608.0 | 1341.0 | 1461.0 | | 8 | 68309.0 | 58.5 | 7 | 1 | 1207.0 | _ | _ | | | | - | Type 5 Rac | lar Waveform_1 | 2 | | | | Burst ID | Burst
Offset
(us) | Pulse
Width (us) | Chirp
Tidth
(MHz) | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | | 0 | 390476.0 | 98.5 | 7 | 3 | 1064.0 | 1874.0 | 1386.0 | | 1 | 713455.0 | 67.1 | 7 | 2 | 1262.0 | 1846.0 | _ | | 2 | 1037161.0 | 56.4 | 7 | 1 | 1715.0 | _ | _ | | 3 | 28513.0 | 55.9 | 7 | 1 | 1173.0 | _ | _ | | 4 | 351626.0 | 66.3 | 7 | 1 | 1091.0 | _ | _ | | 5 | 674747.0 | 53. 2 | 7 | 1 | 1071.0 | _ | _ | | 6 | 995155.0 | 97.3 | 7 | 3 | 1434.0 | 1796.0 | 1456.0 | | 7 | | | 7 | 1 | | 1130.0 | 1450.0 | | | 1320642.0 | 62.4 | - | 1 | 1410.0 | 1010.0 | 1050.0 | | 8 | 310846.0 | 86.8 | 7 | 3 | 1405.0 | 1916.0 | 1958.0 | | | ln. | | | lar Waveform_1 | 3 | | | | Burst ID | Burst
Offset
(us) | Pulse
Width (us) | Chirp
Width
(MHz) | Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | | 0 | 356206.0 | 82.4 | 14 | 2 | 1576.0 | 1023.0 | - | | 2 | 536695.0
716273.0 | 89. 4
89. 3 | 14 | 3 | 1044. 0
1986. 0 | 1542.0
1338.0 | 1097. 0
1843. 0 | | 3 | 152238.0 | 84.6 | 14 | 3 | 1934.0 | 1215.0 | 1268.0 | | 4 | 334017.0 | 80.9 | 14 | 2 | 1084.0 | 1203.0 | - | | 5 | 514933.0 | 79.4 | 14 | 2 | 1372.0 | 1536.0 | _ | | 6 | 694605.0 | 87. 7 | 14 | 3 | 1294.0 | 1575.0 | 1672.0 | | 7 | 130514.0 | 55. 7 | 14 | 1 | 1266.0 | - | _ | | 8 | 311313.0 | 69.9 | 14 | 2 | 1193.0 | 1973.0 | _ | | 9 | 493420.0 | 56.2 | 14 | 1 | 1686.0 | _ | _ | | 10 | 673295.0 | 78.3 | 14 | 2 | 1717.0 | 1759.0 | <u> -</u> | | 11 | 107952.0 | 79.2 | 14 | 2 | 1273.0 | 1332.0 | _ | | 12 | 289063.0 | 69.8 | 14 | 2 | 1146.0 | 1862.0 | | | 13 | 471100.0
652339.0 | 62.4 | 14 | 1 | 1630.0 | - | Ε | | 14 | | 53.9 | 14 | 1 | 1933.0 | | | | | | | Туре 5 Rad | dar Waveform_1 | 4 | | | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------| | Burst ID | Burst
Offset
(us) | Pulse
Width (us) | Chirp
Width
(MHz) | Humber of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | | 0 | 213591.0 | 66.6 | 20 | 1 | 1867. 0 | _ | _ | | 1 | 358746.0 | 52.9 | 20 | 1 | 1718.0 | _ | _ | | 2 | 504108.0 | 62.4 | 20 | 1 | 1409.0 | - | - | | 3 | 50594.0 | 77.2 | 20 | 2 | 1471.0 | 1123.0 | _ | | 4 | 195955.0 | 66.2 | 20 | 1 | 1154.0 | _ | - | | 5 | 340997.0 | 51.2 | 20 | 1 | 1500.0 | _ | _ | | 6 | 485882.0 | 63.5 | 20 | 1 | 1832.0 | _ | _ | | 7 | 32749.0 | 74.0 | 20 | 2 | 1442.0 | 1124.0 | _ | | 8 | 177681.0 | 79.0 | 20 | 2 | 1219.0 | 1226.0 | - | | 9 | 321295.0 | 91.0 | 20 | 3 | 1929.0 | 1318.0 | 1629.0 | | 10 | 467295.0 | 82.2 | 20 | 2 | 1404.0 | 1345.0 | _ | | 11 | 14854.0 | 88.6 | 20 | 3 | 1782.0 | 1565.0 | 1100.0 | | 12 | 159567.0 | 77.5 | 20 | 2 | 1573.0 | 1852.0 | - | | 13 | 305314.0 | 51.7 | 20 | 1 | 1350.0 | _ | _ | | 14 | 449627.0 | 71.0 | 20 | 2 | 1055.0 | 1462.0 | _ | | 15 | 594140.0 | 76.3 | 20 | 2 | 1476.0 | 1438.0 | _ | | 16 | 141558.0 | 92.9 | 20 | 3 | 1166.0 | 1073.0 | 1974.0 | | 17 | 286593.0 | 79.6 | 20 | 2 | 1761.0 | 1331.0 | | | 18 | 432610.0 | 55.8 | 20 | 1 | 1366.0 | _ | _ | | 19 | 575820.0 | 92.5 | 20 | 3 | 1089.0 | 1258.0 | 1067.0 | ## Type 5 Radar Waveform_15 | Burst ID | Burst
Offset
(us) | Pulse
Width (us) | Chirp
Width
(MHz) | Mumber of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------| | 0 | 177570.0 | 70.9 | 13 | 2 | 1305.0 | 1001.0 | _ | | 1 | 384239.0 | 82.9 | 13 | 2 | 1903.0 | 1859.0 | _ | | 2 | 590386.0 | 98.6 | 13 | 3 | 1387.0 | 1664.0 | 1901.0 | | 3 | 797705.0 | 93.4 | 13 | 3 | 1844.0 | 1191.0 | 1238.0 | | 4 | 152171.0 | 66.2 | 13 | 1 | 1525.0 | _ | _ | | 5 | 359794.0 | 61.2 | 13 | 1 | 1267.0 | _ | _ | | 6 | 565752.0 | 70.2 | 13 | 2 | 1971.0 | 1737.0 | _ | | 7 | 773206.0 | 68.6 | 13 | 2 | 1730.0 | 1460.0 | _ | | 8 | 126643.0 | 62.0 | 13 | 1 | 1303.0 | _ | _ | | 9 | 333849.0 | 79.4 | 13 | 2 | 1137.0 | 1092.0 | _ | | 10 | 540642.0 | 78.6 | 13 | 2 | 1678.0 | 1421.0 | _ | | 11 | 748902.0 | 54. 7 | 13 | 1 | 1811.0 | _ | _ | | 12 | 101021.0 | 52.5 | 13 | 1 | 1765.0 | _ | _ | | 13 | 308140.0 | 78.8 | 13 | 2 | 1324.0 | 1374.0 | _ | ## Type 5 Radar Waveform_16 | Burst ID | Burst
Offset
(us) | Pulse
Width (us) | Chirp
Tidth
(MHz) | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------| | 0 | 554213.0 | 99.8 | 11 | 3 | 1357.0 | 1020.0 | 1856.0 | | 1 | 779751.0 | 50.2 | 11 | 1 | 1053.0 | _ | _ | | 2 | 81058.0 | 84.8 | 11 | 3 | 1468.0 | 1289.0 | 1570.0 | | 3 | 303735.0 | 85.2 | 11 | 3 | 1443.0 | 1734.0 | 1600.0 | | 4 | 527222.0 | 70.6 | 11 | 2 | 1722.0 | 1711.0 | _ | | 5 | 750765.0 | 81.1 | 11 | 2 | 1787.0 | 1033.0 | _ | | 6 | 53664.0 | 75.9 | 11 | 2 | 1753.0 | 1669.0 | _ | | 7 | 277254.0 | 65.2 | 11 | 1 | 1609.0 | _ | _ | | 8 | 500533.0 | 55.6 | 11 | 1 | 1988.0 | _ | _ | | 9 | 721592.0 | 90.0 | 11 | 3 | 1072.0 | 1955.0 | 1931.0 | | 10 | 26176.0 | 97.3 | 11 | 3 | 1009.0 | 1453.0 | 1448.0 | | 11 | 248743.0 | 99.2 | 11 | 3 | 1726.0 | 1665.0 | 1845.0 | | 12 | 472437.0 | 78.3 | 11 | 2 | 1572.0 | 1544.0 | _ | | Burst ID | Burst
Offset
(us) | Pulse
Width (us) | Chirp
Width
(MHz) | Mumber of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------------|----------------|------------| | 0 | 502379.0 | 68.2 | 18 | 2 | 1178.0 | 1030.0 | - | | 1 | 662375.0 | 85.3 | 18 | 3 | 1094.0 | 1087.0 | 1185.0 | | 2 | 160489.0 | 51.9 | 18 | 1 | 1110.0 | _ | _ | | 3 | 320217.0 | 86.3 | 18 | 3 | 1803.0 | 1736.0 | 1066.0 | | 4 | 480738.0 | 90.3 | 18 | 3 | 1889.0 | 1676.0 | 1109.0 | | 5 | 644350.0 | 56.5 | 18 | 1 | 1517.0 | _ | _ | | 6 | 140475.0 | 61.4 | 18 | 1 | 1728.0 | _ | _ | | 8 | 302062.0 | 56.3 | 18 | 1 | 1027.0 | _ | | | 9 | 461188.0 | 83. 7 | 18 | 3 | 1254.0 | 1946.0 | 1149.0 | | 10 | 624638.0
120382.0 | 54. 4
69. 1 | 18 | 2 | 1348.0
1451.0 | 1538.0 | | | 11 | 282180.0 | 61.0 | 18 | 1 | 1019.0 | 1636.0 | | | 12 | 443306.0 | 54.9 | 18 | 1 | 1491.0 | _ | 1_ | | 13 | 603628.0 | 81.0 | 18 | 2 | 1519.0 | 1077. 0 | 1_ | | 14 | 100329.0 | 95.0 | 18 | 3 | 1596.0 | 1769.0 | 1117.0 | | 15 | 261995.0 | 61.9 | 18 | 1 | 1778.0 | _ | <u> </u> | | 16 | 421513.0 | 99.6 | 18 | 3 | 1716.0 | 1280.0 | 1513.0 | | 17 | 584727.0 | 62.3 | 18 | 1 | 1529.0 | - | <u> </u> | | n | (us) | 77.5 | (I IIIz) | Burst | 1354 0 | 1417.0 | _ | | 0 | 96973.0 | 77.5 | 13 | 2 | 1354.0 | 1417.0 | _ | | 1 | 289978.0 | 86.1 | 13 | 3 | 1036.0 | 1605.0 | 1088.0 | | 2 | 482969.0 | 98. 7 | 13 | 3 | 1024.0 | 1908.0 | 1010.0 | | 3 | 678423.0 | 52.0 | 13 | 1 | 1133.0 | _ | _ | | 4 | 73166.0 | 70. 7 | 13 | 2 | 1617.0 | 1051.0 | _ | | 5 | 265860.0 | 91.6 | 13 | 3 | 1282.0 | 1558.0 | 1875.0 | | 6 | 460788.0 | 57. 7 | 13 | 1 | 1168.0 | _ | - | | 7 | 653913.0 | 59.0 | 13 | 1 | 1921.0 | _ | _ | | 8 | 49352.0 | 74. 7 | 13 | 2 | 1145.0 | 1424.0 | _ | | 9 | 242955.0 | 66.6 | 13 | 1 | 1909.0 | _ | _ | | 10 | 436575.0 | 55.6 | 13 | 1 | 1804.0 | _ | _ | | 11 | 629016.0 | 77.3 | 13 | 2 | 1707.0 | 1550.0 | _ | | 12 | 25552.0 | 58. 5 | 13 | 1 | 1857.0 | _ | _ | | 13 | 218684.0 | 96.2 | 13 | 3 | 1041.0 | 1085.0 | 1347.0 | | 14 | 412072.0 | 67.0 | 13 | 2 | 1383.0 | 1693.0 | _ | | | | | Type 5 Ra | dar Waveform_1 | 19 | | | | | Burst | | Chirp | Humber of | | | | | Burst ID | Offset | Pulse
Tidth (us) | Width
(WHz) | Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us | | Burst ID | | | Tidth | | PRI-1 (us) | PRI-2 (us) | PRI-3 (us | | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Tidth
(MHz) | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------| | 0 | 649298.0 | 83.0 | 13 | 2 | 1093.0 | 1270.0 | - | | 1 | 1831.0 | 52.0 | 13 | 1 | 1633.0 | _ | _ | | 2 | 208637.0 | 83. 4 | 13 | 3 | 1647.0 | 1297.0 | 1478.0 | | 3 | 416957.0 | 60.1 | 13 | 1 | 1325.0 | _ | _ | | 4 | 622145.0 | 93. 1 | 13 | 3 | 1181.0 | 1924.0 | 1475.0 | | 5 | 828814.0 | 88.4 | 13 | 3 | 1454.0 | 1243.0 | 1990.0 | | 6 | 183197.0 | 98.2 | 13 | 3 | 1744.0 | 1364.0 | 1150.0 | | 7 | 389576.0 | 91.2 | 13 | 3 | 1937.0 | 1428.0 | 1927.0 | | 8 | 597649.0 | 72.4 | 13 | 2 | 1599.0 | 1589.0 | _ | | 9 | 806369.0 | 66.0 | 13 | 1 | 1481.0 | _ | _ | | 10 | 157806.0 | 95.8 | 13 | 3 | 1135.0 | 1229.0 | 1418.0 | | 11 | 365940.0 | 65. 7 | 13 | 1 | 1052.0 | _ | _ | | 12 | 572035.0 | 74. 1 | 13 | 2 | 1416.0 | 1926.0 | _ | | 13 | 780542.0 | 65.6 | 13 | 1 | 1771.0 | _ | _ | | | | | Type 5 Rada | r Waveform_2 | 20 | | | |----------
-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------| | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Vidth
(MHz) | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | | 0 | 185807.0 | 50.1 | 8 | 1 | 1620.0 | _ | _ | | 1 | 475837.0 | 80.9 | 8 | 2 | 1585.0 | 1581.0 | _ | | 2 | 767360.0 | 53.2 | 8 | 1 | 1210.0 | _ | _ | | 3 | 1057735.0 | 56.0 | 8 | 1 | 1627.0 | - | _ | | 4 | 149827.0 | 77. 7 | 8 | 2 | 1773.0 | 1283.0 | - | | 5 | 439866.0 | 69. 7 | 8 | 2 | 1784.0 | 1970.0 | _ | | 6 | 731278.0 | 63.1 | 8 | 1 | 1650.0 | _ | - | | 7 | 1021184.0 | 79.6 | 8 | 2 | 1179.0 | 1328.0 | - | | 8 | 114178.0 | 66.1 | 8 | 1 | 1905.0 | _ | _ | | 9 | 404973.0 | 64.5 | 8 | 1 | 1259.0 | _ | _ | ## Type 5 Radar Waveform_21 | Burst ID | Burst
Offset
(us) | Pulse
Width (us) | Chirp
Width
(MHz) | Mumber of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------| | 0 | 365874.0 | 60.4 | 19 | 1 | 1156.0 | _ | _ | | 1 | 517281.0 | 78.6 | 19 | 2 | 1415.0 | 1553.0 | _ | | 2 | 41120.0 | 81.2 | 19 | 2 | 1640.0 | 1437.0 | - | | 3 | 193567.0 | 81.9 | 19 | 2 | 1543.0 | 1486.0 | _ | | 4 | 345387.0 | 94.8 | 19 | 3 | 1406.0 | 1362.0 | 1392.0 | | 5 | 499482.0 | 50.6 | 19 | 1 | 1731.0 | _ | _ | | 6 | 22402.0 | 56.4 | 19 | 1 | 1446.0 | _ | _ | | 7 | 174520.0 | 95.9 | 19 | 3 | 1188.0 | 1772.0 | 1037.0 | | 8 | 327477.0 | 73.0 | 19 | 2 | 1322.0 | 1237. 0 | _ | | 9 | 478406.0 | 94.0 | 19 | 3 | 1349.0 | 1651.0 | 1692.0 | | 10 | 3571.0 | 72.0 | 19 | 2 | 1396.0 | 1192.0 | _ | | 11 | 155777.0 | 79.0 | 19 | 2 | 1979.0 | 1997.0 | _ | | 12 | 309344.0 | 61.5 | 19 | 1 | 1217.0 | _ | _ | | 13 | 461726.0 | 51.8 | 19 | 1 | 1899.0 | _ | _ | | 14 | 614704.0 | 56.5 | 19 | 1 | 1632.0 | _ | _ | | 15 | 137238.0 | 73.9 | 19 | 2 | 1115.0 | 1898.0 | _ | | 16 | 289401.0 | 79.4 | 19 | 2 | 1790.0 | 1839.0 | _ | | 17 | 440569.0 | 94.9 | 19 | 3 | 1477.0 | 1968.0 | 1789.0 | | 18 | 593954.0 | 76.3 | 19 | 2 | 1918.0 | 1755.0 | _ | ## Type 5 Radar Waveform_22 | Burst ID | Burst
Offset
(us) | Pulse
Width (us) | | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | |----------|-------------------------|---------------------|---|----------------------------------|------------|------------|------------| | 0 | 250280.0 | 86.1 | 6 | 3 | 1509.0 | 1998.0 | 1795.0 | | 1 | 573625.0 | 74.9 | 6 | 2 | 1165.0 | 1225.0 | _ | | 2 | 895843.0 | 75.8 | 6 | 2 | 1822.0 | 1425.0 | _ | | 3 | 1217524.0 | 83.6 | 6 | 3 | 1561.0 | 1120.0 | 1557.0 | | 4 | 210628.0 | 93.5 | 6 | 3 | 1949.0 | 1333.0 | 1882.0 | | 5 | 533511.0 | 74.6 | 6 | 2 | 1914.0 | 1356.0 | - | | 6 | 855203.0 | 85. 7 | 6 | 3 | 1969.0 | 1083.0 | 1601.0 | | 7 | 1179934.0 | 52.4 | 6 | 1 | 1850.0 | _ | _ | | 8 | 171232.0 | 71.2 | 6 | 2 | 1465.0 | 1506.0 | - | | Type 5 Radar Waveform_23 | | | | | | | | | |--------------------------|-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------|--| | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Width
(MHz) | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | | | 0 | 277284.0 | 80.9 | 15 | 2 | 1756.0 | 1336.0 | _ | | | 1 | 458294.0 | 76.4 | 15 | 2 | 1675.0 | 1643.0 | _ | | | 2 | 641214.0 | 53.9 | 15 | 1 | 1186.0 | _ | _ | | | 3 | 73973.0 | 53.4 | 15 | 1 | 1566.0 | _ | _ | | | 4 | 254367.0 | 85.9 | 15 | 3 | 1568.0 | 1330.0 | 1963.0 | | | 5 | 436323.0 | 68.8 | 15 | 2 | 1637.0 | 1106.0 | _ | | | 6 | 615936.0 | 99. 7 | 15 | 3 | 1842.0 | 1011.0 | 1851.0 | | | 7 | 51623.0 | 64.5 | 15 | 1 | 1430.0 | _ | _ | | | 8 | 233041.0 | 57. 1 | 15 | 1 | 1861.0 | _ | _ | | | 9 | 414707.0 | 66.3 | 15 | 1 | 1466.0 | _ | - | | | 10 | 593417.0 | 96.4 | 15 | 3 | 1947.0 | 1788.0 | 1288.0 | | | 11 | 29207.0 | 71.7 | 15 | 2 | 1578.0 | 1211.0 | - | | | 12 | 210861.0 | 59.5 | 15 | 1 | 1256.0 | _ | _ | | | 13 | 390814.0 | 100.0 | 15 | 3 | 1056.0 | 1786.0 | 1545.0 | | | 14 | 571538.0 | 92.8 | 15 | 3 | 1286.0 | 1930.0 | 1315.0 | | | 15 | 6875.0 | 80.1 | 15 | 2 | 1869.0 | 1977.0 | _ | | ## Type 5 Radar Waveform_24 | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Vidth
(MHz) | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------| | 0 | 214525.0 | 93.6 | 12 | 3 | 1408.0 | 1700.0 | 1884.0 | | 1 | 422425.0 | 71.2 | 12 | 2 | 1235.0 | 1276.0 | _ | | 2 | 629448.0 | 69.4 | 12 | 2 | 1128.0 | 1725.0 | _ | | 3 | 838375.0 | 51.4 | 12 | 1 | 1081.0 | _ | _ | | 4 | 188967.0 | 99.6 | 12 | 3 | 1938.0 | 1598.0 | 1910.0 | | 5 | 397426.0 | 53. 7 | 12 | 1 | 1363.0 | _ | _ | | 6 | 603497.0 | 90.4 | 12 | 3 | 1189.0 | 1062.0 | 1209.0 | | 7 | 811009.0 | 68.2 | 12 | 2 | 1847.0 | 1122.0 | _ | | 8 | 164339.0 | 53.2 | 12 | 1 | 1194.0 | _ | _ | | 9 | 371104.0 | 80.1 | 12 | 2 | 1583.0 | 1522.0 | _ | | 10 | 577428.0 | 89.6 | 12 | 3 | 1096.0 | 1246.0 | 1954.0 | | 11 | 784374.0 | 84.6 | 12 | 3 | 1684.0 | 1368.0 | 1131.0 | | 12 | 138240.0 | 95.0 | 12 | 3 | 1659.0 | 1157.0 | 1639.0 | | 13 | 345227.0 | 87.8 | 12 | 3 | 1685.0 | 1274.0 | 1043.0 | ## Type 5 Radar Waveform_25 | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Tidth
(THz) | Humber of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------| | 0 | 430531.0 | 57.2 | 18 | 1 | 1431.0 | _ | _ | | 1 | 592034.0 | 59.0 | 18 | 1 | 1249.0 | _ | _ | | 2 | 87579.0 | 98.3 | 18 | 3 | 1512.0 | 1111.0 | 1815.0 | | 3 | 248345.0 | 85.3 | 18 | 3 | 1714.0 | 1198.0 | 1113.0 | | 4 | 410466.0 | 65.0 | 18 | 1 | 1741.0 | _ | _ | | 5 | 568581.0 | 96.6 | 18 | 3 | 1797.0 | 1996.0 | 1612.0 | | 6 | 67873.0 | 90.1 | 18 | 3 | 1205.0 | 1252.0 | 1220.0 | | 7 | 229031.0 | 68.6 | 18 | 2 | 1487.0 | 1141.0 | _ | | 8 | 388734.0 | 93.1 | 18 | 3 | 1502.0 | 1878.0 | 1541.0 | | 9 | 549110.0 | 92.8 | 18 | 3 | 1646.0 | 1953.0 | 1464.0 | | 10 | 48215.0 | 52.1 | 18 | 1 | 1626.0 | _ | _ | | 11 | 208518.0 | 92.0 | 18 | 3 | 1890.0 | 1588.0 | 1293.0 | | 12 | 370221.0 | 66. 7 | 18 | 2 | 1114.0 | 1554.0 | _ | | 13 | 532298.0 | 63.1 | 18 | 1 | 1373.0 | _ | _ | | 14 | 28219.0 | 98.6 | 18 | 3 | 1167.0 | 1590.0 | 1883.0 | | 15 | 189639.0 | 54.5 | 18 | 1 | 1631.0 | _ | _ | | 16 | 350069.0 | 76.5 | 18 | 2 | 1440.0 | 1826.0 | _ | | 17 | 511358.0 | 75.0 | 18 | 2 | 1470.0 | 1285.0 | - | | | | | Type 5 Rad | dar Waveform_2 | 26 | | | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------| | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Width
(MHz) | Mumber of
Pulses per
Burst | PRI-1 (us) | PBI-2 (us) | PRI-3 (us) | | 0 | 8011.0 | 83.0 | 19 | 2 | 1317.0 | 1966.0 | _ | | 1 | 160975.0 | 53. 5 | 19 | 1 | 1002.0 | _ | _ | | 2 | 312035.0 | 99.9 | 19 | 3 | 1981.0 | 1388.0 | 1400.0 | | 3 | 466650.0 | 53.4 | 19 | 1 | 1265.0 | _ | - | | 4 | 619298.0 | 66.3 | 19 | 1 | 1492.0 | _ | _ | | 5 | 141991.0 | 50.9 | 19 | 1 | 1652.0 | _ | _ | | 6 | 294156.0 | 71.7 | 19 | 2 | 1132.0 | 1828.0 | _ | | 7 | 446682.0 | 77. 1 | 19 | 2 | 1833.0 | 1034.0 | - | | 8 | 597610.0 | 86.0 | 19 | 3 | 1906.0 | 1535.0 | 1057.0 | | 9 | 122619.0 | 85.8 | 19 | 3 | 1313.0 | 1367.0 | 1798.0 | | 10 | 276020.0 | 50.1 | 19 | 1 | 1489.0 | _ | _ | | 11 | 429130.0 | 55.8 | 19 | 1 | 1059.0 | _ | _ | | 12 | 580039.0 | 79.2 | 19 | 2 | 1515.0 | 1723.0 | _ | | 13 | 104375.0 | 65.1 | 19 | 1 | 1521.0 | _ | _ | | 14 | 256719.0 | 69.5 | 19 | 2 | 1080.0 | 1579.0 | _ | | 15 | 408954.0 | 69.4 | 19 | 2 | 1206.0 | 1911.0 | _ | | 16 | 562763.0 | 59.0 | 19 | 1 | 1564.0 | _ | _ | | 17 | 85251.0 | 87.3 | 19 | 3 | 1054.0 | 1539.0 | 1148.0 | | 18 | 237862.0 | 73. 4 | 19 | 2 | 1781.0 | 1061.0 | _ | ### Type 5 Radar Waveform_27 | | | | 71 | | | | | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------| | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Width
(MHz) | Humber of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | | O | 371127.0 | 74.3 | 20 | 2 | 1049.0 | 1177.0 | _ | | 1 | 514616.0 | 85.0 | 20 | 3 | 1025.0 | 1488.0 | 1439.0 | | 2 | 63010.0 | 96.2 | 20 | 3 | 1817.0 | 1340.0 | 1904.0 | | 3 | 207476.0 | 90.1 | 20 | 3 | 1272.0 | 1919.0 | 1371.0 | | 4 | 352755.0 | 75.0 | 20 | 2 | 1108.0 | 1987. 0 | _ | | 5 | 497999.0 | 78. 1 | 20 | 2 | 1105.0 | 1419.0 | _ | | 6 | 45442.0 | 76.6 | 20 | 2 | 1140.0 | 1231.0 | _ | | 7 | 190001.0 | 99.3 | 20 | 3 | 1134.0 | 1346.0 | 1098.0 | | 8 | 335645.0 | 57.5 | 20 | 1 | 1808.0 | _ | _ | | 9 | 478408.0 | 87.0 | 20 | 3 | 1432.0 | 1422.0 | 1838.0 | | 10 | 27574.0 | 77.3 | 20 | 2 | 1549.0 | 1125.0 | _ | | 11 | 172458.0 | 69. 7 | 20 | 2 | 1480.0 | 1147.0 | _ | | 12 | 316069.0 | 98.8 | 20 | 3 | 1721.0 | 1518.0 | 1780.0 | | 13 | 463048.0 | 53.5 | 20 | 1 | 1559.0 | _ | _ | | 14 | 9741.0 | 64.6 | 20 | 1 | 1941.0 | _ | _ | | 15 | 154861.0 | 51.5 | 20 | 1 | 1663.0 | _ | _ | | 16 | 298071.0 | 91.5 | 20 | 3 | 1738.0 | 1917.0 | 1809.0 | | 17 | 443619.0 | 87.9 | 20 | 3 | 1187.0 | 1164.0 | 1292.0 | | 18 | 590433.0 | 53.8 | 20 | 1 | 1435.0 | _ | _ | | 19 | 136340.0 | 92.8 | 20 | 3 | 1376.0 | 1130.0 | 1980.0 | ## Type 5 Radar Waveform_28 | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | | Mumber of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | |----------|-------------------------|---------------------|---|----------------------------------
------------|------------|------------| | 0 | 626573.0 | 97.4 | 7 | 3 | 1159.0 | 1860.0 | 1355.0 | | 1 | 950872.0 | 63.5 | 7 | 1 | 1594.0 | _ | _ | | 2 | 1270301.0 | 87.9 | 7 | 3 | 1706.0 | 1886.0 | 1724.0 | | 3 | 265097.0 | 60.5 | 7 | 1 | 1656.0 | _ | _ | | 4 | 588179.0 | 54.2 | 7 | 1 | 1411.0 | - | _ | | 5 | 910051.0 | 68.5 | 7 | 2 | 1358.0 | 1750.0 | _ | | 6 | 1231333.0 | 87.2 | 7 | 3 | 1985.0 | 1548.0 | 1021.0 | | 7 | 225281.0 | 63.5 | 7 | 1 | 1854.0 | _ | _ | | 8 | 547325.0 | 87. 1 | 7 | 3 | 1107.0 | 1221.0 | 1666.0 | | | | 1 | Гуре 5 Rada | r Waveform_2 | 9 | | | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------| | Burst ID | Burst
Offset
(us) | Pulse
Width (us) | Chirp
Tidth
(MHz) | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | | 0 | 602142.0 | 72.4 | 12 | 2 | 1580.0 | 1155.0 | _ | | 1 | 823513.0 | 97.4 | 12 | 3 | 1961.0 | 1222.0 | 1604.0 | | 2 | 128381.0 | 54.0 | 12 | 1 | 1606.0 | _ | _ | | 3 | 351719.0 | 61.2 | 12 | 1 | 1993.0 | _ | _ | | 4 | 574053.0 | 81.1 | 12 | 2 | 1818.0 | 1868.0 | _ | | 5 | 798658.0 | 52.2 | 12 | 1 | 1814.0 | _ | _ | | 6 | 100465.0 | 90.1 | 12 | 3 | 1713.0 | 1807.0 | 1628.0 | | 7 | 323195.0 | 86.9 | 12 | 3 | 1514.0 | 1531.0 | 1810.0 | | 8 | 548068.0 | 63.4 | 12 | 1 | 1195.0 | _ | _ | | 9 | 770128.0 | 74.9 | 12 | 2 | 1261.0 | 1757.0 | _ | | 10 | 73257.0 | 75.3 | 12 | 2 | 1004.0 | 1445.0 | _ | | 11 | 295763.0 | 89. 7 | 12 | 3 | 1681.0 | 1870.0 | 1306.0 | | 12 | 520285.0 | 51.7 | 12 | 1 | 1624.0 | _ | _ | ## Type 5 Radar Waveform_30 | Burst ID | Burst
Offset
(us) | Pulse
Tidth (us) | Chirp
Tidth
(MHz) | Number of
Pulses per
Burst | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) | |----------|-------------------------|---------------------|-------------------------|----------------------------------|------------|------------|------------| | 0 | 604066.0 | 64.2 | 16 | 1 | 1622.0 | _ | _ | | 1 | 37016.0 | 90.1 | 16 | 3 | 1732.0 | 1704.0 | 1754.0 | | 2 | 218769.0 | 58. 7 | 16 | 1 | 1382.0 | _ | _ | | 3 | 400098.0 | 66.1 | 16 | 1 | 1820.0 | _ | _ | | 4 | 581948.0 | 51.4 | 16 | 1 | 1314.0 | _ | _ | | 5 | 14835.0 | 52.2 | 16 | 1 | 1674.0 | _ | - | | 6 | 196423.0 | 64.6 | 16 | 1 | 1312.0 | _ | _ | | 7 | 378158.0 | 63.5 | 16 | 1 | 1005.0 | _ | _ | | 8 | 558741.0 | 78. 1 | 16 | 2 | 1161.0 | 1278.0 | - | | 9 | 739004.0 | 81.5 | 16 | 2 | 1767.0 | 1727.0 | _ | | 10 | 174029.0 | 55.1 | 16 | 1 | 1427.0 | _ | _ | | 11 | 353842.0 | 94.6 | 16 | 3 | 1649.0 | 1745.0 | 1696.0 | | 12 | 536149.0 | 76. 1 | 16 | 2 | 1015.0 | 1785.0 | _ | | 13 | 718824.0 | 60. 7 | 16 | 1 | 1284.0 | _ | _ | | 14 | 150978.0 | 97.1 | 16 | 3 | 1690.0 | 1247.0 | 1885.0 | | 15 | 332044.0 | 85.6 | 16 | 3 | 1959.0 | 1058.0 | 1050.0 | Page Number: 38 of 52 Radar Type 6 - Radar Statistical Performance | Trail # | 1=Detection | Trail # | 1=Detection | |---------|--------------------------|---------|----------------| | | 0=No Detection | | 0=No Detection | | 1 | 1 | 16 | 1 | | 2 | 1 | 17 | 1 | | 3 | 0 | 18 | 1 | | 4 | 1 | 19 | 1 | | 5 | 0 | 20 | 1 | | 6 | 1 | 21 | 0 | | 7 | 1 | 22 | 1 | | 8 | 1 | 23 | 1 | | 9 | 1 | 24 | 1 | | 10 | 1 | 25 | 1 | | 11 | 1 | 26 | 1 | | 12 | 1 | 27 | 1 | | 13 | 1 | 28 | 1 | | 14 | 1 | 29 | 1 | | 15 | 1 | 30 | 1 | | | Detection Percentage (%) | | 90% | | | | | Type 6 R | adar Wave | form_1 | | | | |----------|----------|-------------------------|------------------------|-----------|-------------------|--------------------------|---------------------------------------|--------------------------------| | | Trial Id | Radar
Type | Pulse
Width
(us) | PRI (us) | Pulses
per Hop | Hopping
Rate
(kHz) | Hopping
Sequence
Length
(ms) | Visible
Frequency
Number | | Download | 0 | Type 6 | 1.0 | 333.3 | 9 | 0. 3333 | 300,0000000 | 3 | | | | Frequency
List (MHz) | o | 1 | 2 | 3 | 4 | | | | | 0 | 5692 | 5622 | 5370 | 5563 | 5281 | | | | | 5 | 5334 | 5377 | 5537 | 5673 | 5311 | | | | | 10 | 5289 | 5302 | 5607 | 5638 | 5421 | | | | | 15 | 5613 | 5459 | 5693 | 5285 | 5300 | | | | | 20 | 5264 | 5394 | 5401 | 5466 | 5357 | | | | | 25 | 5551 | 5484 | 5398 | 5316 | 5618 | | | | | 30 | 5553 | 5539 | 5604 | 5546 | 5395 | | | | | 35 | 5435 | 5368 | 5303 | 5699 | 5485 | | | | | 40 | 5350 | 5722 | 5636 | 5591 | 5628 | | | | | 45 | 5447 | 5491 | 5478 | 5623 | 5642 | | | | | 50 | 5705 | 5473 | 5516 | 5702 | 5690 | | | | | 55 | 5270 | 5333 | 5536 | 5260 | 5644 | | | | | 60 | 5714 | 5335 | 5704 | 5356 | 5548 | | | | | 65 | 5571 | 5671 | 5707 | 5423 | 5504 | | | | | 70 | 5522 | 5397 | 5587 | 5600 | 5616 | | | | | 75 | 5648 | 5487 | 5676 | 5701 | 5660 | | | | | 80 | 5342 | 5656 | 5381 | 5280 | 5515 | | | | | 85 | 5567 | 5445 | 5317 | 5413 | 5572 | | | | | 90 | 5431 | 5261 | 5647 | 5506 | 5681 | | | | | 95 | 5619 | 5624 | 5645 | 5629 | 5263 | | Page Number: 39 of 52 | | | | Type 6 R | adar Wavef | orm_2 | | | | |----------|----------|-------------------------|----------|------------|-------|--------|-------------|---| | Download | 1 | Туре 6 | 1.0 | 333.3 | 9 | 0.3333 | 300.0000000 | 2 | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5472 | 5386 | 5306 | 5724 | 5501 | | | | | 5 | 5376 | 5399 | 5612 | 5361 | 5518 | | | | | 10 | 5695 | 5663 | 5648 | 5261 | 5442 | | | | | 15 | 5701 | 5489 | 5321 | 5326 | 5409 | | | | | 20 | 5671 | 5466 | 5680 | 5711 | 5367 | | | | | 25 | 5667 | 5318 | 5560 | 5655 | 5440 | | | | | 30 | 5356 | 5273 | 5358 | 5705 | 5262 | | | | | 35 | 5646 | 5637 | 5666 | 5588 | 5379 | | | | <u> </u> | 40 | 5714 | 5307 | 5423 | 5590 | 5341 | | | | | 45 | 5468 | 5474 | 5686 | 5300 | 5712 | | | | | 50 | 5654 | 5674 | 5256 | 5431 | 5417 | | | | | 55 | 5704 | 5656 | 5405 | 5564 | 5682 | | | | <u> </u> | 60 | 5665 | 5425 | 5640 | 5540 | 5281 | | | | | 65 | 5430 | 5305 | 5380 | 5463 | 5377 | | | | | 70 | 5304 | 5506 | 5604 | 5371 | 5373 | | | | | 75 | 5449 | 5569 | 5316 | 5453 | 5441 | | | | | 80 | 5699 | 5556 | 5576 | 5280 | 5357 | | | | | 85 | 5530 | 5282 | 5345 | 5251 | 5426 | | | | | 90 | 5653 | 5443 | 5631 | 5448 | 5679 | | | | | 95 | 5527 | 5620 | 5572 | 5649 | 5296 | | ## Type 6 Radar Waveform_3 | _ | D 1 | | m o | | 000.0 | | 0.0000 | 200 0000000 | _ | |---|----------|---|-------------------------|------|-------|------|--------|-------------|---| | 3 | Download | 2 | Type 6 | 1.0 | 333.3 | 9 | 0.3333 | 300.0000000 | 2 | | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | | 0 | 5252 | 5625 | 5717 | 5410 | 5343 | | | | | | 5 | 5418 | 5324 | 5687 | 5524 | 5250 | | | | | | 10 | 5626 | 5452 | 5689 | 5456 | 5463 | | | | | | 15 | 5314 | 5616 | 5424 | 5274 | 5698 | | | | | | 20 | 5679 | 5535 | 5621 | 5703 | 5340 | | | | | | 25 | 5555 | 5645 | 5288 | 5381 | 5552 | | | | | | 30 | 5482 | 5720 | 5705 | 5573 | 5479 | | | | | | 35 | 5557 | 5310 | 5253 | 5559 | 5363 | | | | | | 40 | 5293 | 5553 | 5390 | 5361 | 5355 | | | | | | 45 | 5338 | 5397 | 5454 | 5254 | 5269 | | | | | | 50 | 5353 | 5599 | 5718 | 5442 | 5264 | | | | | | 55 | 5417 | 5610 | 5498 | 5383 | 5653 | | | | | | 60 | 5319 | 5590 | 5631 | 5472 | 5613 | | | | | | 65 | 5258 | 5655 | 5473 | 5492 | 5607 | | | | | | 70 | 5695 | 5408 | 5538 | 5284 | 5362 | | | | | | 75 | 5449 | 5349 | 5697 | 5384 | 5296 | | | | | | 80 | 5658 | 5257 | 5593 | 5591 | 5281 | | | | | | 85 | 5477 | 5348 | 5265 | 5465 | 5259 | | | | | | 90 | 5710 | 5425 | 5675 | 5372 | 5391 | | | | | | 95 | 5415 | 5307 | 5541 | 5595 | 5532 | | ### Type 6 Radar Waveform_4 | Download | 3 | Type 6 | 1.0 | 333.3 | 9 | 0. 3333 | 300.0000000 | 3 | |----------|---|-------------------------|------|-------|------|---------|-------------|---| | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5410 | 5389 | 5653 | 5571 | 5563 | | | | | 5 | 5557 | 5346 | 5287 | 5687 | 5554 | | | | | 10 | 5460 | 5716 | 5255 | 5651 | 5484 | | | | | 15 | 5305 | 5268 | 5430 | 5319 | 5415 | | | | | 20 | 5701 | 5659 | 5317 | 5313 | 5594 | | | | | 25 | 5491 | 5485 | 5586 | 5621 | 5706 | | | | | 30 | 5662 | 5631 | 5280 | 5449 | 5441 | | | | | 35 | 5355 | 5516 | 5682 | 5392 | 5473 | | | | | 40 | 5299 | 5498 | 5335 | 5704 | 5434 | | | | | 45 | 5337 | 5705 | 5406 | 5531 | 5301 | | | | | 50 | 5552 | 5683 | 5605 | 5564 | 5688 | | | | | 55 | 5580 | 5624 | 5448 | 5576 | 5401 | | | | | 60 | 5289 | 5270 | 5454 | 5678 | 5649 | | | | | 65 | 5422 | 5625 | 5458 | 5545 | 5478 | | | | | 70 | 5707 | 5544 | 5703 | 5367 | 5404 | | | | | 75 | 5505 | 5482 | 5459 | 5262 | 5447 | | | | | 80 | 5550 | 5658 | 5613 | 5553 | 5352 | | | | | 85 | 5590 | 5372 | 5366 | 5269 | 5281 | | | | | 90 | 5511 | 5374 | 5314 | 5694 | 5323 | | | | | 95 | 5481 | 5303 | 5667 | 5486 | 5627 | | | | | | | | | | | | | | | | Type | 6 Radar Wa | aveform_5 | | | | |----------|---|-------------------------|--------------|--------------|--------------|--------------|--------------|---------| | Download | 4 | Type 6 | 1.0 | 333.3 | 9 | 0. 3333 | 300.0000000 | 2 | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5665 | 5628 | 5589 | 5257 | 5405 | | | | | 5 | 5599 | 5271 | 5362 | 5278 | 5286 | | | | | 10 | 5391 | 5505 | 5296 | 5371 | 5393 | | | | _ | 15
20 | 5395 | 5533 | 5364 | 5607 | 5598 | | | _ | + | 25 | 5392
5694 | 5600
5620 | 5309
5663 | 5709
5595 | 5446
5619 | + | | | + | 30 | 5431 | 5575 | 5491 | 5532 | 5626 | + | | | | 35 | 5669 | 5693 | 5706 | 5653 | 5712 | | | | | 40 | 5263 | 5332 | 5633 | 5414 | 5420 | | | | | 45 | 5288 | 5459 | 5276 | 5373 | 5707 | | | | | 50 | 5352 | 5375 | 5530 | 5696 | 5518 | | | | | 55 | 5403 | 5399 | 5480 | 5445 | 5521 | | | - | | 60
65 | 5708
5685 | 5687
5632 | 5691
5261 | 5655
5714 | 5627
5464 | + | | _ | + | 70 | 5710 | 5679 | 5326 | 5379 | 5524 | + | | | 1 | 75 | 5648 | 5411 | 5259 | 5472 | 5426 | + | | | | 80 | 5510 | 5547 | 5686 | 5561 | 5455 | 1 | | | | 85 | 5613 | 5544 | 5458 | 5423 | 5517 | | | | | 90 | 5467 | 5293 | 5448 | 5490 | 5386 | | | | | 95 | 5596 | 5369 | 5300 | 5460 |
5406 | | | | | | Type | 6 Radar Wa | aveform_6 | | | | | Download | 5 | Type 6 | 1.0 | 333.3 | 9 | 0.3333 | 300.0000000 | 5 | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5445 | 5392 | 5525 | 5418 | 5625 | | | | | 5 | 5641 | 5293 | 5437 | 5441 | 5493 | | | | | 10 | 5322 | 5294 | 5434 | 5566 | 5526 | | | | | 15 | 5481 | 5522 | 5636 | 5409 | 5324 | | | | _ | 20 | 5606 | 5461 | 5541 | 5398 | 5259 | | | _ | | 25
30 | 5500
5705 | 5395
5484 | 5325
5576 | 5693
5646 | 5654
5557 | | | | | 35 | 5630 | 5623 | 5519 | 5444 | 5607 | | | | | 40 | 5545 | 5261 | 5553 | 5503 | 5329 | | | | | 45 | 5562 | 5394 | 5346 | 5512 | 5724 | | | | | 50 | 5408 | 5403 | 5709 | 5474 | 5375 | | | | | 55 | 5593 | 5469 | 5609 | 5610 | 5563 | | | | | 60 | 5540 | 5513 | 5478 | 5624 | 5464 | | | _ | | 65
70 | 5690 | 5539 | 5311 | 5547
5251 | 5335 | | | | | 75 | 5620
5694 | 5655
5414 | 5285
5582 | 5515 | 5644
5590 | | | | | 80 | 5670 | 5544 | 5326 | 5377 | 5290 | | | | | 85 | 5287 | 5611 | 5299 | 5482 | 5372 | | | | | 90 | 5495 | 5613 | 5424 | 5284 | 5691 | | | | | 95 | 5439 | 5509 | 5588 | 5579 | 5592 | | | | | | Туре | 6 Radar Wa | aveform_7 | | | | | Download | 6 | Type 6 | 1.0 | 333.3 | 9 | 0.3333 | 300.0000000 | 2 | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | 4 | | | | 0 | 5700 | 5631 | 5461 | 5482 | 5467 | | | | | 5 | 5683 | 5693 | 5512 | 5604 | 5322 | + | | - | | 10
15 | 5655
5552 | 5475
5264 | 5664
5357 | 5547
5516 | 5569
5614 | + | | _ | + | 20 | 5627 | 5264
5579 | 5390 | 5707 | 5614 | + | | | | 25 | 5722 | 5528 | 5591 | 5272 | 5470 | + | | | | 30 | 5533 | 5386 | 5331 | 5593 | 5294 | 1 | | | | 35 | 5714 | 5315 | 5597 | 5521 | 5481 | 1 | | | | 40 | 5344 | 5491 | 5268 | 5423 | 5394 | | | | | 45 | 5374 | 5586 | 5307 | 5468 | 5428 | | | | | 50 | 5600 | 5584 | 5454 | 5420 | 5399 | | | | | 55 | 5418 | 5329 | 5308 | 5415 | 5440 | | | | | 60 | 5263 | 5300 | 5508 | 5372 | 5339 | + | | - | | 65
70 | 5680 | 5679 | 5525 | 5660 | 5674 | + | | - | + | 70
75 | 5582
5719 | 5720
5695 | 5383
5667 | 5338
5362 | 5469
5666 | + | | - | + | 80 | 5595 | 5296 | 5657 | 5258 | 5541 | + | | _ | | 85 | 5698 | 5464 | 5711 | 5636 | 5356 | + | | | | | | 1 | 1 | | | | | | | 90 | 5291 | 5538 | 5485 | 5301 | 5305 | | | Download | | | Type 6 R | adar Wave | form_8 | | | | |----------|--|--|---|--|--|---|--|---| | | 7 1 | Type 6 | 1.0 | 333.3 | 9 | 0. 3333 | 300.0000000 | 5 | | | P | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5480 | 5395 | 5397 | 5643 | 5687 | | | | 5 | 5 | 5347 | 5715 | 5587 | 5292 | 5529 | | | | 1 | 10 | 5562 | 5444 | 5516 | 5384 | 5568 | | | | 1 | 15 | 5560 | 5679 | 5367 | 5402 | 5708 | | | | 2 | 20 | 5525 | 5696 | 5520 | 5479 | 5680 | | | | 2 | 25 | 5276 | 5574 | 5256 | 5523 | 5625 | | | | 3 | 30 | 5411 | 5359 | 5490 | 5601 | 5483 | | | | | 35 | 5413 | 5433 | 5330 | 5586 | 5275 | | | | | 40 | 5532 | 5320 | 5524 | 5429 | 5420 | | | | | 45 | 5323 | 5257 | 5669 | 5365 | 5521 | | | | | 50 | 5693 | 5379 | 5285 | 5505 | 5509 | | | | | 55 | 5697 | 5265 | 5310 | 5283 | 5498 | | | | | 60 | 5709 | 5392 | 5465 | 5453 | 5262 | | | | | 65 | 5626 | 5502 | 5474 | 5599 | 5506 | | | - | | 70
75 | 5377 | 5552 | 5519 | 5341 | 5318 | | | <u> </u> | | 75
80 | 5510 | 5678 | 5567 | 5312 | 5408 | | | - | | 85 | 5451 | 5443
5418 | 5705
5553 | 5346
5548 | 5321
5634 | | | - | | 90 | 5441
5382 | 5418
5311 | 5553
5305 | 5548
5466 | 5634
5514 | | | | | 95 | 5616 | 5647 | 5534 | 5349 | 5487 | | | |] | ,,, | - | | 1 | 5349 | 5401 | | | | | | Type 6 R | adar Wave | form_9 | | | | | Download | | Туре 6 | 1.0 | 333. 3 | 9 | 0.3333 | 300.0000000 | 5 | | | P | Frequency
List (EHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5638 | 5634 | 5333 | 5329 | 5529 | | | | 5 | 5 | 5389 | 5640 | 5662 | 5455 | 5261 | | | | 1 | 10 | 5396 | 5708 | 5557 | 5579 | 5589 | | | | 1 | 15 | 5648 | 5331 | 5373 | 5447 | 5425 | | | | 2 | 20 | 5533 | 5387 | 5461 | 5471 | 5653 | | | | 2 | 25 | 5542 | 5523 | 5459 | 5627 | 5659 | | | | 3 | 30 | 5453 | 5723 | 5719 | 5257 | 5611 | | | | 3 | 35 | 5475 | 5518 | 5382 | 5525 | 5446 | | | | 4 | 40 | 5607 | 5367 | 5651 | 5417 | 5630 | | | | 4 | 45 | 5712 | 5277 | 5423 | 5574 | 5580 | | | | 5 | 50 | 5255 | 5556 | 5598 | 5520 | 5684 | | | | 5 | 55 | 5498 | 5688 | 5528 | 5521 | 5495 | | | | 6 | 60 | 5608 | 5563 | 5572 | 5703 | 5635 | | | | 6 | 65 | 5716 | 5269 | 5326 | 5624 | 5505 | | | | | 70 | 5441 | 5545 | 5486 | 5637 | 5536 | | | | | 75 | 5432 | 5551 | 5695 | 5340 | 5510 | | | | | 80 | 5384 | 5438 | 5613 | 5270 | 5492 | | | | | 85 | 5643 | 5599 | 5433 | 5559 | 5503 | | | | | 90 | 5631 | 5414 | 5390 | 5250 | 5286 | | | |] 9 | 95 | 5385 | 5657 | 5343 | 5262 | 5325 | | | | | | Type 6 Ra | adar Wavef | orm_10 | | | | | Download | 9 T | Type 6 | 1.0 | 333.3 | 9 | 0. 3333 | 300.0000000 | 5 | | | P | Frequency
List (MHz) | o | 1 | 2 | 3 | 4 | | | | o | | 5418 | 5495 | 5269 | 5490 | 5274 | | | | 5 | 5 | 5431 | 5662 | 5262 | 5521 | 5565 | | | | 1 | 10 | 5327 | 5497 | 5598 | 5299 | 5610 | | | | 1 | 15 | 5261 | 5458 | 5476 | 5492 | 5617 | | | | 2 | 20 | 5541 | 5456 | 5499 | 5560 | 5626 | | | | | 25 | 5430 | 5375 | 5256 | 5693 | 5709 | | | | | 30 | 5404 | 5459 | 5409 | 5614 | 5609 | | | | | 35 | 5275 | 5678 | 5360 | 5473 | 5690 | | | | | | 5305 | 5416 | 5414 | 5559 | 5692 | | | | 4 | 40 | | | | 5606 | 5540 | | | | 4 | 4 5 | 5384 | 5627 | 5370 | | 0010 | | | | 4 | | | 5627
5687 | 5721 | 5531 | 5686 | | | | 4 | 4 5 | 5384 | | | | | | | | 4
4
5
5 | 45
50 | 5384
5607 | 5687 | 5721 | 5531 | 5686 | | | | 4
4
5
5 | 45
50
55 | 5384
5607
5666 | 5687
5306 | 5721
5347 | 5531
5553 | 5686
5320 | | | | 4
4
5
5
6
6 | 45
50
55
60 | 5384
5607
5666
5440 | 5687
5306
5389 | 5721
5347
5615 | 5531
5553
5526 | 5686
5320
5372
5318
5596 | | | | 4
4
5
5
6
6 | 45
50
55
60
65 | 5384
5607
5666
5440
5671 | 5687
5306
5389
5548 | 5721
5347
5615
5539 | 5531
5553
5526
5604 | 5686
5320
5372
5318 | | | | 4
4
5
5
6
6
6
7
7 | 45
50
55
60
65
70 | 5384
5607
5666
5440
5671
5588 | 5687
5306
5389
5548
5444 | 5721
5347
5615
5539
5394 | 5531
5553
5526
5604
5462 | 5686
5320
5372
5318
5596 | | | | 4
4
5
5
6
6
7
7 | 45
50
55
60
65
70 | 5384
5607
5666
5440
5671
5588
5505 | 5687
5306
5389
5548
5444
5552 | 5721
5347
5615
5639
5394
5597 | 5531
5553
5526
5604
5462
5413 | 5686
5320
5372
5318
5596
5472 | | | | 4
5
5
6
6
7
7
7
8
8 | 45
50
55
60
65
70
75 | 5384
5607
5666
5440
5671
5588
5505
5353 | 5687
5306
5389
5548
5444
5562
5589 | 5721
5347
5615
5539
5394
5597
5674 | 5531
5553
5526
5604
5462
5413
5544 | 5686
5320
5372
5318
5596
5472
5435 | | | Download | 1
0
5
1
1
2
2
2 | 5
5
10
15
20
25
30 | 1.0
5418
5431
5327
5261
5541
5430
5404
5275 | 333.3
1
5495
5662
5497
5458
5456
5375
5459
5678 | 9
2
5269
5262
5598
5476
5499
5256
5409
5360
5414 | 3
5490
5621
5299
5492
5560
5693
5614
5473
5559 | 5274
5565
5610
5617
5626
5709
5609
5690 | | | ľ | Download | 10 | Type 6 | 1.0 | Radar Wav | 9 | 0.3333 | 300.0000000 | 2 | |-----|----------|----|----------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|----------| | 1 | | | Frequency
List (EHz) | 0 | 1 | 2 | 3 | 4 | | | - | | + | List (MDHz) | 5673 | 5259 | 5680 | 5651 | 5591 | 1 | | ŀ | | | 5 | 5473 | 5587 | 5337 | 5684 | 5297 | | | ŀ | | | 10 | 5258 | 5286 | 5639 | 5494 | 5631 | | | t | | | 15 | 5349 | 5585 | 5579 | 5440 | 5431 | | | t | | | 20 | 5452 | 5622 | 5552 | 5599 | 5696 | | | t | | | 25 | 5324 | 5293 | 5360 | 5252 | 5634 | | | Ī | | | 30 | 5598 | 5361 | 5674 | 5658 | 5629 | | | Ī | | | 35 | 5278 | 5700 | 5546 | 5356 | 5371 | | | Ī | | | 40 | 5409 | 5298 | 5718 | 5656 | 5411 | | | | | | 45 | 5488 | 5672 | 5443 | 5442 | 5257 | | | | | | 50 | 5482 | 5716 | 5398 | 5544 | 5475 | | | | | | 55 | 5302 | 5620 | 5496 | 5702 | 5682 | | | _ | | | 60 | 5485 | 5385 | 5272 | 5312 | 5561 | | | _ | | | 65 | 5321 | 5610 | 5283 | 5334 | 5407 | | | - | | | 70 | 5390 | 5574 | 5438 | 5555 | 5377 | | | - | | | 75 | 5265 | 5394 | 5724 | 5463 | 5370 | | | - | | + | 80
85 | 5266 | 5607 | 5432 | 5625 | 5648 | 1 | | - | | + | 90 | 5580 | 5521 | 5486 | 5426 | 5538 | | | - | | + | 95 | 5320
5686 | 5699
5315 | 5518
5466 | 5549
5694 | 5347
5309 | 1 | | _ | | | 93 | | | | 2694 | 5309 | | | | | | | Type 6 | Radar Wav | veform_12 | | | | | | Download | 11 | Type 6 | 1.0 | 333.3 | 9 | 0.3333 | 300.0000000 | 7 | | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | | 0 | 5453 | 5498 | 5616 | 5337 | 5336 | | | | | | 5 | 5612 | 5609 | 5412 | 5372 | 5504 | | | | | | 10 | 5567 | 5550 | 5680 | 5592 | 5652 | | | | | | 15 | 5340 | 5615 | 5682 | 5485 | 5623 | | | | | | 20 | 5460 | 5691 | 5381 | 5641 | 5572 | | | | | | 25 | 5584 | 5651 | 5496
| 5561 | 5286 | | | | | | 30 | 5676 | 5318 | 5414 | 5335 | 5449 | | | _ | | | 35 | 5320 | 5316 | 5342 | 5606 | 5285 | | | _ | | | 40 | 5723 | 5478 | 5656 | 5324 | 5505 | | | _ | | | 45 | 5526 | 5500 | 5258 | 5522 | 5261 | | | - | | | 50 | 5417 | 5709 | 5487 | 5367 | 5322 | | | _ | | | 55 | 5490 | 5574 | 5686 | 5363 | 5673 | | | | | | 60 | 5650 | 5330 | 5579 | 5613 | 5507 | | | - | | | 65
70 | 5270 | 5646 | 5590 | 5701 | 5588 | | | - | | | 75 | 5559 | 5560 | 5547 | 5514 | 5346 | | | | | | 80 | 5695
5626 | 5408
5430 | 5375
5670 | 5404
5429 | 5573
5345 | | | | | + | 85 | 5551 | 5645 | 5647 | 5300 | 5392 | | | | | + | 90 | 5256 | 5719 | 5529 | 5395 | 5323 | _ | | - | | + | 95 | 5480 | 5279 | 5382 | 5497 | 5545 | | | - | | | 93 | | | | 2491 | 5545 | | | | | | | Type 6 | Radar Way | veform_13 | | | | | Į | Download | 12 | Type 6 Frequency | 1.0 | 333.3 | 9 | 0. 3333
3 | 300.0000000 | 7 | | - | | + | Frequency
List (MHz) | 0 | | 2 | | 4 | | | ŀ | | + | 5 | 5611
5654 | 5262
5534 | 5552
5487 | 5498
5535 | 5653
5711 | 1 | | H | | + | 10 | 5436 | 5721 | 5312 | 5673 | 5428 | 1 | | - | | + | 15 | 5267 | 5310 | 5530 | 5340 | 5468 | | | 100 | | + | 20 | 5382 | 5419 | 5633 | 5545 | 5375 | <u> </u> | | - | | 1 | 25 | 5503 | 5699 | 5665 | 5320 | 5718 | | | - | | _ | 30 | 5473 | 5275 | 5532 | 5584 | 5269 | | | - | | _ | 35 | 5459 | 5407 | 5710 | 5284 | 5674 | | | | | | 40 | 5562 | 5561 | 5497 | 5564 | 5502 | | | | | | | 5724 | 5632 | 5609 | 5461 | 5689 | | | | | | 45 | | 5612 | 5593 | 5285 | 5576 | 1 | | | | | 45
50 | 5409 | | | 5401 | | + | | | | | | 5409
5266 | 5678 | 5528 | | 5657 | 1 | | | | | 50 | 5266 | 5678 | | | | | | | | | 50
55 | 5266
5644 | 5678
5465 | 5372 | 5411 | 5536 | | | | | | 50
55
60 | 5266 | 5678 | | | | | | | | | 50
55
60
65 | 5266
5644
5550
5496 | 5678
5465
5276
5391 | 5372
5694
5631 | 5411
5585
5546 | 5536
5325
5647 | | | | | | 50
55
60
65
70 | 5266
5644
5550
5496
5416 | 5678
5465
5276
5391
5390 | 5372
5694
5631
5693 | 5411
5585
5546
5454 | 5536
5325
5647
5356 | | | | | | 50
55
60
65
70
75 | 5266
5644
5550
5496 | 5678
5465
5276
5391
5390
5586 | 5372
5694
5631
5693
5594 | 5411
5585
5546 | 5536
5325
5647
5356
5329 | | | | | | 50
55
60
65
70
75 | 5266
5644
5550
5496
5416
5656 | 5678
5465
5276
5391
5390 | 5372
5694
5631
5693 | 5411
5585
5546
5454
5258 | 5536
5325
5647
5356 | | | | | | Type on | adar Wavef | 01111_14 | | | | |----------|----|-------------------------|------------------------------|----------------------|----------------------|----------------------|----------------------|--| | Download | 13 | Type 6 | 1.0 | 333.3 | 9 | 0. 3333 | 300.0000000 | 7 | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5391 | 5501 | 5488 | 5562 | 5398 | | | | | 5 | 5696 | 5556 | 5601 | 5540 | 5429 | | | | | 10 | 5700 | 5384 | 5507 | 5694 | 5516 | | | | | 15 | 5394 | 5316 | 5478 | 5532 | 5379 | | | | | 20 | 5451 | 5360 | 5722 | 5518 | 5263 | | | | | 25 | 5452 | 5427 | 5294 | 5354 | 5382 | | | | | 30 | 5362 | 5707 | 5272 | 5261 | 5467 | | | | | 35 | 5598 | 5498 | 5506 | 5437 | 5588 | | | | | 40 | 5401 | 5644 | 5435 | 5329 | 5499 | | | | | 45 | 5612 | 5692 | 5519 | 5267 | 5674 | | | | | 50 | 5336 | 5665 | 5482 | 5591 | 5594 | | | | | 55 | 5505 | 5317 | 5340 | 5496 | 5477 | | | | | 60 | 5643 | 5621 | 5632 | 5388 | 5669 | | | | | 65 | 5325 | 5629 | 5650 | 5269 | 5432 | | | | | 70 | 5662 | 5460 | 5597 | 5337 | 5433 | | | | | 75 | 5663 | 5283 | 5418 | 5326 | 5260 | | | | | 80 | 5454 | 5371 | 5668 | 5608 | 5397 | | | | | 85 | 5277 | 5262 | 5541 | 5366 | 5468 | | | | | 90 | 5389 | 5447 | 5358 | 5383 | 5563 | | | | | 95 | 5670 | 5372 | 5300 | 5276 | 5266 | | | | | | Type 6 R | adar Wavef | orm_15 | | | | | Download | 14 | Type 6 | 1.0 | 333.3 | 9 | 0. 3333 | 300.0000000 | 4 | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5646 | 5265 | 5424 | 5723 | 5715 | | | | | 5 | 5263 | 5481 | 5637 | 5289 | 5272 | | | | | 10 | 5489 | 5425 | 5702 | 5604 | 5521 | | | | | 15 | 5419 | 5523 | 5724 | 5387 | 5617 | | | | + | 20 | 5301 | 5714 | 5491 | 5626 | 5304 | | | | + | 25 | 5630 | 5398 | 5388 | 5348 | 5664 | — | | | + | 30 | 5487 | 5510 | 5287 | 5262 | 5686 | | | | + | 35 | 5302 | 5687 | 5599 | 5349 | 5373 | | | | + | 40 | 5472 | 5496 | 5485 | 5495 | 5300 | | | | + | 45 | 5577 | 5320 | 5561 | 5364 | 5470 | | | | + | 50 | 5279 | 5689 | 5532 | 5579 | 5436 | <u> </u> | | | + | 55 | 5306 | 5673 | 5670 | 5647 | 5663 | | | | + | 60 | 5442 | 5657 | 5367 | 5658 | 5397 | — | | | + | 65 | 5615 | 5653 | 5492 | 5720 | 5391 | | | | + | 70 | 5534 | 5580 | 5643 | 5318 | 5685 | | | | + | 75 | 5331 | 5444 | 5350 | 5323 | 5552 | | | | + | 80 | | | | 5651 | | | | | + | 85 | 5357 | 5688 | 5631 | | 5573 | - | | | + | 90 | 5351 | 5525 | 5557 | 5671 | 5547 | - | | | + | | 5400 | 5347 | 5710 | 5431 | 5345 | - | | | | 95 | 5486 | 5286 | 5290 | 5584 | 5295 | | | | | | Type 6 R | adar Wavef | orm_16 | | | | | Download | 15 | Туре 6 | 1.0 | 333.3 | 9 | 0.3333 | 300.0000000 | 8 | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5426 | 5504 | 5360 | 5409 | 5460 | | | | | 5 | 5402 | 5503 | 5712 | 5452 | 5479 | | | | | 10 | 5669 | 5278 | 5466 | 5422 | 5261 | | | | 1 | 15 | 5595 | 5648 | 5522 | 5568 | 5441 | | | | | 20 | 5395 | 5308 | 5339 | 5328 | 5464 | | | | | 25 | 5417 | 5253 | 5599 | 5621 | 5702 | | | | | 30 | 5284 | 5485 | 5304 | 5302 | 5573 | | | | | 35 | 5365 | 5513 | 5651 | 5432 | 5311 | | | | | 40 | 5493 | 5414 | 5475 | 5383 | 5538 | | | | | 45 | 5373 | 5351 | 5618 | 5646 | 5438 | | | | | 50 | 5465 | 5512 | 5379 | 5292 | 5390 | | | | | 55 | 5496 | 5492 | 5280 | 5682 | 5586 | | | | | 60 | 5388 | 5501 | 5638 | 5596 | 5674 | | | | | 65 | 5453 | 5275 | 5566 | 5601 | 5341 | | | | | 70 | 5696 | 5350 | 5603 | 5396 | 5462 | | | | | 75 | 5344 | 5700 | 5514 | 5544 | 5320 | | | | | 80 | 5272 | 5357 | 5530 | 5691 | 5368 | | | | 1 | 85 | 5298 | 5361 | 5553 | 5337 | 5704 | | | | | | | | | | | | | | | 90 | 5722 | 5502 | 5499 | 5415 | 5718 | 1 | | | | 75
80 | 53 44
5272
5298 | 5700
5357
5361 | 5514
5530
5553 | 5544
5691
5337 | 5320
5368
5704 | | | Downloa | 1.0 | T | | ladar Wave | | 0.000 | 300.0000000 | le le | |---------|----------|--|--|--|--|--|--|-------------------------------| | Downloa | .d 16 | Type 6 Frequency | 1.0 | 333. 3 | 9 | 0. 3333 | | 5 | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | - | | 0 | 5681 | 5268 | 5296 | 5570 | 5302 | | | - | | 5 | 5444 | 5428 | 5312 | 5615 | 5308 | | | | | 15 | 5503
5683 | 55 4 2
5678 | 5507
5625 | 5520
5613 | 5282
5633 | | | - | | 20 | 5306 | 5377 | 5280 | 5320 | 5437 | | | _ | | 25 | 5305 | 5580 | 5464 | 5703 | 5456 | | | | | 30 | 5605 | 5601 | 5578 | 5345 | 5436 | | | | | 35 | 5443 | 5393 | 5466 | 5518 | 5427 | | | | | 40 | 5490 | 5515 | 5724 | 5477 | 5587 | | | | | 45 | 5721 | 5455 | 5596 | 5426 | 5713 | | | | | 50 | 5494 | 5347 | 5489 | 5554 | 5335 | | | | | 55 | 5323 | 5480 | 5344 | 5686 | 5311 | | | | | 60 | 5431 | 5409 | 5525 | 5412 | 5324 | | | | | 65 | 5632 | 5506 | 5638 | 5684 | 5281 | | | | | 70 | 5665 | 5672 | 5309 | 5375 | 5723 | | | | | 75 | 5357 | 5617 | 5454 | 5481 | 5704 | | | | | 80 | 5317 | 5467 | 5260 | 5469 | 5654 | | | | | 85 | 5463 | 5406 | 5356 | 5546 | 5575 | | | | | 90 | 5526 | 5656 | 5371 | 5519 | 5496 | | | | | 95 | 5616 | 5673 | 5692 | 5304 | 5383 | | | | | | Type 6 R | adar Wave | orm_18 | | | | | Downlo: | ad 17 | Type 6 | 1.0 | 333.3 | 9 | 0.3333 | 300.0000000 | 4 | | | | Frequency
List (MHz) | o | 1 | 2 | 3 | 4 | | | _ | | List (MHz) | | -
EE07 | | | | - | | | | 5 | 5364
5486 | 5507
5450 | 5707
5387 | 5256
5681 | 5522
5515 | | | | | 10 | | | | | | | | - | | 15 | 5434 | 5428 | 5548 | 5715 | 5303 | - | | | | 20 | 5296
5314 | 5330
5543 | 5253
5696 | 5561
5409 | 5350
5410 | | | | | 25 | | | | | 5490 | | | | | 30 | 5571
5647 | 5432
5587 | 5667
5535 | 5332
5560 | 5685 | | | | | 35 | 5503 | 5582 | 5484 | 5262 | 5293 | | | | | 40 | 5438 | 5329 | 5598 | 5662 | 5717 | | | | | 45 | 5584 | 5650 | 5435 | 5549 | 5654 | | | | | 50 | 5479 | 5370 | 5523 | 5540 | 5643 | | | _ | | 55 | 5536 | 5645 | 5676 | 5304 | 5508 | | | | | 60 | 5305 | 5538 | 5690 | 5669 | 5713 | | | | | 65 | 5377 | 5525 | 5668 | 5716 | 5615 | | | | | 70 | 5259 | 5710 | 5670 | 5381 | 5417 | | | | | 75 | 5648 | 5268 | 5344 | 5368 | 5500 | | | | | 80 | 5358 | 5394 | 5467 | 5367 | 5292 | | | | | 85 | 5692 | 5638 | 5311 | 5714 | 5655 | | | | | 90 | 5274 | 5407 | 5319 | 5298 | 5691 | | | | | 95 | 5308 | 5371 | 5465 | 5633 | 5609 | | | | | | | <u> </u> | | 1 | | <u> </u> | | | | | Type 6 R | adar Wave | form_19 | | | | | | Trial Id | Radar
Type | Pulse
Width
(us) | PRI (us) | Pulses
per Hop | Hopping
Rate
(kHz) | Hopping
Sequence
Length
(ms) | Visible
Frequenc
Number | | Downlo | ad 18 | Type 6 | 1.0 | 333.3 | 9 | 0. 3333 | 300.0000000 | 3 | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5619 | 5271 | 5643 | 5417 | 5364 | | | | | 5 | 5625
5365 | 5375
5692 | 5462
5589 | 5369
5435 | 5722
5324 | + | | | | 15 |
5365 | 5692
5457 | 5589
5259 | 5435
5606 | 5324
5639 | + | | | | | | 5612 | 5637 | 5401 | 5383 | 1 | | | | 20 | 5322 | | 5395 | 5436 | 5524 | 1 | | | | | 5322
5459 | 5381 | 5395 | 0430 | | | | | | 20
25
30 | | 5381
5476 | 5492 | 5300 | 5362 | | | | | 20
25
30
35 | 5459 | 5476
5721 | | | 5446 | | | | | 20
25
30
35 | 5459
5689
5323
5352 | 5476
5721
5303 | 5492
5575
5600 | 5300
5533
5385 | 5446
5581 | | | | | 20
25
30
36
40
45 | 5459
5689
5323
5352
5482 | 5476
5721
5303
5415 | 5492
5575
5600
5254 | 5300
5533
5385
5615 | 5446
5581
5390 | | | | | 20
25
30
35
40
45 | 5459
5689
5323
5352
5482
5699 | 5476
5721
5303
5415
5591 | 5492
5575
5600
5254
5257 | 5300
5533
5385
5615
5359 | 5446
5581
5390
5284 | | | | | 20
25
30
35
40
45
50 | 5459
5689
5323
5352
5482
5699
5630 | 5476
5721
5303
5415
5591
5494 | 5492
5575
5600
5254
5257
5327 | 5300
5533
5385
5615
5359
5276 | 5446
5581
5390
5284
5667 | | | | | 20
25
30
35
40
45
50
60 | 5459
5689
5323
5352
5482
5699
5630
5380 | 5476
5721
5303
5415
5591
5494
5614 | 5492
5575
5600
5254
5257
5327
5547 | 5300
5533
5385
5615
5359
5276
5636 | 5446
5581
5390
5284
5667
5348 | | | | | 20
25
30
35
40
45
50 | 5459
5689
5352
5352
5482
5699
5630
5380
5485 | 5476
5721
5303
5415
5591
5494
5614
5607 | 5492
5576
5600
5254
5257
5327
5547 | 5300
5533
5385
5615
5359
5276
5636
5507 | 5446
5581
5390
5284
5667
5348
5537 | | | | | 20
25
30
35
40
45
50
55
60
65 | 5459
5689
5323
5352
5482
5699
5630
5380 | 5476
5721
5303
5415
5591
5494
5614 | 5492
5575
5600
5254
5257
5327
5547 | 5300
5533
5385
5615
5359
5276
5636 | 5446
5581
5390
5284
5667
5348 | | | | | 20
25
30
35
40
45
50
66
65
70
75 | 5459
5689
5323
5352
5462
5699
5630
5380
5485
5404 | 5476
5721
5303
5415
5591
5494
5614
5607
5656 | 5492
5575
5600
5254
5257
5327
5547
5548
5266 | 5300
5533
5385
5615
5359
5276
5636
5507
5624 | 5446
5581
5390
5284
5667
5348
5537
5702 | | | | | 20
25
30
35
40
45
50
56
60
65
70 | 5459
5689
5323
5362
5482
5699
5630
5380
5485
5404
5313 | 5476
5721
5303
5415
5591
5494
5614
5607
5656
5488 | 5492
5575
5600
5254
5257
5327
5547
5548
5266
5546 | 5300
5533
5385
5615
5359
5276
5636
5636
5607
5624
5339 | 5446
5581
5390
5284
5667
5348
5537
5702
5646 | | | | Trial Id | Radar
Type | Pulse
Width
(us) | PRI (us) | Pulses
per Hop | Hopping
Rate
(kHz) | Hopping
Sequence
Length
(ms) | Visible
Frequen
Humber | |----------|----------|-------------------------|------------------------|------------|-------------------|--------------------------|---------------------------------------|--------------------------------| | Download | 19 | Type 6 | 1.0 | 333.3 | 9 | 0. 3333 | 300.0000000 | 2 | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5399 | 5510 | 5579 | 5578 | 5584 | | | | | 5 | 5667 | 5397 | 5537 | 5532 | 5551 | | | | | 10 | 5674 | 5481 | 5630 | 5345 | 5375 | | | | | 15 | 5362 | 5651 | 5356 | 5708 | 5303 | | | | | 20 | 5675 | 5490 | 5250 | 5598 | 5637 | | | | | 25 | 5558 | 5256 | 5365 | 5449 | 5515 | | | | | 30 | 5611 | 5618 | 5288 | 5426 | 5599 | | | | | 35 | 5266 | 5386 | 5538 | 5625 | 5411 | | | | | 40 | 5395 | 5337 | 5673 | 5488 | 5655 | | | | | 45 | 5500 | 5400 | 5642 | 5443 | 5657 | | | | | 50 | 5436 | 5472 | 5684 | 5621 | 5722 | | | | | 55 | 5321 | 5545 | 5559 | 5379 | 5462 | | | | | 60 | 5366 | 5549 | 5434 | 5643 | 5283 | | | | | 65 | 5302 | 5340 | 5476 | 5484 | 5590 | | | | | 70 | 5503 | 5661 | 5660 | 5608 | 5689 | | | | | 75 | 5320 | 5423 | 5687 | 5299 | 5418 | | | | | 80 | 5686 | 5541 | 5567 | 5262 | 5467 | | | | | 85 | 5582 | 5412 | 5718 | 5316 | 5546 | | | | | 90 | 5279 | 5513 | 5586 | 5719 | 5407 | | | | | 95 | 5416 | 5526 | 5520 | 5668 | 5694 | | | Download | 20 | Type 6 | (us) | 333. 3 | Pulses
per Hop | Rate
(kHz)
0.3333 | Length
(ms) | Humber
1 | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5654 | 5274 | 5515 | 5264 | 5426 | | | | | 5 | 5709 | 5322 | 5612 | 5695 | 5283 | | | | | 10 | 5605 | 5270 | 5671 | 5253 | 5366 | | | | | 15 | 5463 | 5711 | 5465 | 5696 | 5548 | | | | | 20 | 5716 | 5372 | 5616 | 5482 | 5329 | | | | | 25 | 5613 | 5657 | 5704 | 5266 | 5592 | | | | | 30 | 5395 | 5351 | 5406 | 5633 | 5288 | | | | | 35 | 5341 | 5427 | 5379 | 5697 | 5374 | | | | | 40 | 5277 | 5418 | 5469 | 5390 | 5575 | | | | | 45 | 5340 | 5278 | 5420 | 5256 | 5541 | | | | | 50 | 5542 | 5376 | 5576 | 5693 | 5532 | | | | | 55 | 5480 | 5380 | 5660 | 5538 | 5399 | | | | | 60 | 5343 | 5353 | 5710 | 5601 | 5686 | | | | | 65 | 5385 | 5312 | 5275 | 5383 | 5582 | | | | | 70 | 5590 | 5669 | 5618 | 5645 | 5250 | | | | | 75 | 5487 | 5439 | 5479 | 5620 | 5629 | | | | | 80 | 5631 | 5357 | 5301 | 5675 | 5700 | | | | | 85 | 5555 | 5287 | 5578 | 5683 | 5394 | | | | - | 90 | 5444 | 5409 | 5659 | 5547 | 5491 | | | | | 95 | 5611 | 5302 | 5313 | 5684 | 5299 | | | | | | | Dodor Wove | form 22 | | | | | | | | Type 6 | Radar Wave | | | | | | | Trial Id | Badar
Type | Pulse
Width
(us) | PRI (us) | Pulses
per Hop | Hopping
Rate
(kHz) | Hopping
Sequence
Length | Visible
Frequence
Humber | | Download | Trial Id | Type 6 | Pulse
Width | | Pulses | Rate | Sequence | | | Download | | Type 6 | Pulse
Width
(us) | PRI (us) | Pulses | Rate
(kHz) | Sequence
Length
(ms) | | | Download | | Туре | Pulse
Width
(us) | PRI (us) | Pulses
per Hop | Rate
(kHz)
0.3333 | Sequence
Length
(ms) | | | | | Trial Id | Radar
Type | Pulse
Width
(us) | PRI (us) | Pulses
per Hop | Hopping
Bate
(kHz) | Hopping
Sequence
Length
(ms) | Visible
Frequency
Number | |-----|----------|----------|-------------------------|------------------------|----------|-------------------|--------------------------|---------------------------------------|--------------------------------| | | Download | 21 | Туре 6 | 1.0 | 333.3 | 9 | 0.3333 | 300.0000000 | 5 | | _ | | | Frequency
List (WHz) | o | 1 | 2 | 3 | 4 | | | | | | 0 | 5337 | 5513 | 5451 | 5328 | 5646 | | | I | | | 5 | 5276 | 5344 | 5687 | 5286 | 5490 | | | | | | 10 | 5536 | 5534 | 5334 | 5448 | 5387 | | | | | | 15 | 5551 | 5266 | 5568 | 5644 | 5265 | | | | | | 20 | 5724 | 5538 | 5557 | 5571 | 5302 | | | | | | 25 | 5501 | 5509 | 5432 | 5370 | 5626 | | | I | | | 30 | 5437 | 5715 | 5363 | 5373 | 5537 | | | I | | | 35 | 5636 | 5566 | 5470 | 5493 | 5527 | | | | | | 40 | 5666 | 5257 | 5552 | 5317 | 5630 | | | | | | 45 | 5669 | 5647 | 5258 | 5503 | 5692 | | | | | | 50 | 5594 | 5332 | 5252 | 5277 | 5269 | | | | | | 55 | 5621 | 5681 | 5702 | 5492 | 5589 | | | | | | 60 | 5637 | 5567 | 5482 | 5400 | 5546 | | | I | | | 65 | 5518 | 5686 | 5573 | 5618 | 5325 | | | I – | | | 70 | 5464 | 5324 | 5717 | 5711 | 5587 | | | | | | 75 | 5288 | 5455 | 5579 | 5403 | 5282 | | | | | | 80 | 5452 | 5335 | 5336 | 5641 | 5680 | | | | | | 85 | 5444 | 5348 | 5285 | 5279 | 5415 | | | | | | 90 | 5417 | 5264 | 5401 | 5308 | 5347 | | | | | | 95 | 5655 | 5707 | 5323 | 5678 | 5441 | | | | Trial Id | Radar
Type | Pulse
Width
(us) | PRI (us) | Pulses | Hopping
Rate
(kHz) | Hopping
Sequence
Length | Visible
Frequency
Humber | |------------|----------|-------------------------|------------------------|----------|--------|--------------------------|-------------------------------|--------------------------------| | Download | 22 | Туре 6 | 1.0 | 333.3 | 9 | 0.3333 | 300,0000000 | 3 | | 20,112,044 | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5592 | 5277 | 5387 | 5489 | 5488 | | | | | 5 | 5415 | 5269 | 5287 | 5449 | 5319 | † | | | | 10 | 5370 | 5420 | 5375 | 5643 | 5408 | | | | | 15 | 5639 | 5393 | 5671 | 5689 | 5457 | | | | | 20 | 5635 | 5607 | 5595 | 5563 | 5275 | | | | | 25 | 5292 | 5361 | 5474 | 5660 | 5479 | | | | | 30 | 5701 | 5320 | 5588 | 5359 | 5608 | | | | | 35 | 5561 | 5289 | 5680 | 5580 | 5571 | | | | | 40 | 5257 | 5255 | 5298 | 5666 | 5576 | | | | | 45 | 5713 | 5586 | 5647 | 5694 | 5506 | | | | | 50 | 5453 | 5710 | 5504 | 5646 | 5446 | | | | | 55 | 5304 | 5456 | 5538 | 5611 | 5565 | | | | | 60 | 5491 | 5447 | 5512 | 5301 | 5299 | | | | | 65 | 5281 | 5654 | 5632 | 5259 | 5602 | | | | | 70 | 5411 | 5697 | 5590 | 5515 | 5431 | | | | | 75 | 5470 | 5396 | 5546 | 5263 | 5445 | | | | | 80 | 5518 | 5704 | 5309 | 5347 | 5665 | | | | | 85 | 5723 | 5471 | 5380 | 5371 | 5629 | | | | | 90 | 5566 | 5314 | 5284 | 5537 | 5341 | | | | | 95 | 5340 | 5312 | 5594 | 5256 | 5360 | | | | Trial Id | Radar
Type | Pulse
Width
(us) | PRI (us) | Pulses
per Hop | Hopping
Rate
(kHz) | Hopping
Sequence
Length
(ms) | Visible
Frequency
Number | |----------|----------|-------------------------|------------------------|----------|-------------------|--------------------------|---------------------------------------|--------------------------------| | Download | 23 | Туре 6 | 1.0 | 333.3 | 9 | 0.3333 | 300.0000000 | 5 | | | | Frequency
List (MHz) | o | 1 | 2 | 3 | 4 | | | | | 0 | 5372 | 5516 | 5323 | 5650 | 5708 | | | | | 5 | 5457 | 5291 | 5362 | 5612 | 5526 | | | | | 10 | 5301 | 5684 | 5416 | 5363 | 5429 | | | | | 15 |
5630 | 5520 | 5677 | 5259 | 5649 | | | | | 20 | 5643 | 5298 | 5536 | 5652 | 5723 | | | | | 25 | 5655 | 5310 | 5675 | 5694 | 5618 | | | | | 30 | 5590 | 5328 | 5463 | 5654 | 5272 | | | | | 35 | 5657 | 5455 | 5591 | 5410 | 5340 | | | | | 40 | 5668 | 5538 | 5663 | 5408 | 5693 | | | | | 45 | 5669 | 5333 | 5700 | 5484 | 5382 | | | | | 50 | 5629 | 5371 | 5421 | 5327 | 5493 | | | | | 55 | 5400 | 5494 | 5275 | 5509 | 5265 | | | | | 60 | 5255 | 5533 | 5279 | 5435 | 5722 | | | | | 65 | 5597 | 5705 | 5593 | 5367 | 5626 | | | | | 70 | 5405 | 5483 | 5683 | 5364 | 5407 | | | | | 75 | 5497 | 5342 | 5592 | 5719 | 5384 | | | | | 80 | 5458 | 5373 | 5682 | 5389 | 5577 | | | | | 85 | 5601 | 5250 | 5507 | 5308 | 5422 | | | | | 90 | 5285 | 5352 | 5256 | 5320 | 5318 | | | | | 95 | 5322 | 5353 | 5357 | 5578 | 5474 | | ## Type 6 Radar Waveform_25 | | Trial Id | Radar
Type | Pulse
Tidth
(us) | PRI (us) | Pulses
per Hop | Hopping
Rate
(kHz) | Hopping
Sequence
Length
(ms) | Visible
Frequency
Number | |----------|----------|-------------------------|------------------------|----------|-------------------|--------------------------|---------------------------------------|--------------------------------| | Download | 24 | Type 6 | 1.0 | 333.3 | 9 | 0.3333 | 300.0000000 | 2 | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | 0 | 5627 | 5377 | 5259 | 5336 | 5550 | | | | | 5 | 5499 | 5691 | 5437 | 5300 | 5258 | | | | | 10 | 5707 | 5473 | 5457 | 5558 | 5450 | | | | | 15 | 5718 | 5647 | 5305 | 5304 | 5366 | | | | | 20 | 5651 | 5464 | 5477 | 5644 | 5696 | | | | | 25 | 5446 | 5637 | 5566 | 5253 | 5660 | | | | | 30 | 5479 | 5612 | 5615 | 5411 | 5268 | | | | | 35 | 5453 | 5608 | 5505 | 5346 | 5423 | | | | | 40 | 5606 | 5303 | 5337 | 5673 | 5277 | | | | | 45 | 5294 | 5656 | 5371 | 5330 | 5422 | | | | | 50 | 5510 | 5625 | 5365 | 5354 | 5587 | | | | | 55 | 5472 | 5480 | 5394 | 5420 | 5478 | | | | | 60 | 5586 | 5261 | 5668 | 5323 | 5654 | | | | | 65 | 5629 | 5674 | 5421 | 5683 | 5652 | | | | | 70 | 5291 | 5693 | 5688 | 5383 | 5456 | | | | | 75 | 5311 | 5636 | 5260 | 5322 | 5568 | | | | | 80 | 5452 | 5574 | 5321 | 5250 | 5271 | | | | | 85 | 5283 | 5376 | 5533 | 5326 | 5255 | | | | | 90 | 5679 | 5462 | 5374 | 5562 | 5469 | | | | | 95 | 5592 | 5657 | 5474 | 5329 | 5720 | | | Type 6 Radar Waveform_26 | | | | | | | | | | | | | | |--------------------------|----------|----------|-------------------------|------------------------|----------|-------------------|--------------------------|---------------------------------------|--------------------------------|--|--|--|--| | | | Trial Id | Radar
Type | Pulse
Tidth
(us) | PRI (us) | Pulses
per Hop | Hopping
Rate
(kHz) | Hopping
Sequence
Length
(ms) | Visible
Frequency
Humber | | | | | | = | Download | 25 | Туре 6 | 1.0 | 333.3 | 9 | 0. 3333 | 300,0000000 | 3 | | | | | | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | | | | | | 0 | 5407 | 5616 | 5670 | 5497 | 5295 | | | | | | | | | | 5 | 5541 | 5713 | 5512 | 5366 | 5562 | | | | | | | | | | 10 | 5262 | 5498 | 5656 | 5471 | 5331 | | | | | | | | | | 15 | 5299 | 5408 | 5252 | 5558 | 5533 | | | | | | | | | | 20 | 5515 | 5258 | 5669 | 5334 | 5586 | | | | | | | | | | 25 | 5672 | 5665 | 5702 | 5465 | 5569 | | | | | | | | | | 30 | 5661 | 5389 | 5550 | 5456 | 5724 | | | | | | | | | | 35 | 5286 | 5419 | 5660 | 5603 | 5544 | | | | | | | | | | 40 | 5446 | 5657 | 5266 | 5653 | 5360 | | | | | | | | | | 45 | 5352 | 5709 | 5636 | 5609 | 5506 | | | | | | | | | | 50 | 5473 | 5599 | 5351 | 5284 | 5553 | | | | | | | | | | 55 | 5308 | 5302 | 5291 | 5354 | 5523 | | | | | | | | | | 60 | 5585 | 5423 | 5418 | 5614 | 5621 | | | | | | | | | | 65 | 5568 | 5409 | 5313 | 5486 | 5277 | | | | | | | | | | 70 | 5696 | 5537 | 5415 | 5658 | 5659 | | | | | | | | | | 75 | 5306 | 5303 | 5413 | 5581 | 5410 | | | | | | | | | | 80 | 5535 | 5571 | 5516 | 5628 | 5288 | | | | | | | | | | 85 | 5475 | 5556 | 5427 | 5370 | 5429 | | | | | | | | | | 90 | 5289 | 5561 | 5391 | 5477 | 5643 | | | | | | | | | | 95 | 5367 | 5474 | 5715 | 5369 | 5357 | | | | | | | | Trial Id | Radar
Type | Pulse
Width
(us) | PRI (us) | Pulses
per Hop | Hopping
Rate
(kHz) | Hopping
Sequence
Length
(ms) | Visible
Frequency
Humber | |----------|----------|-------------------------|------------------------|----------|-------------------|--------------------------|---------------------------------------|--------------------------------| | Download | 26 | Туре б | 1.0 | 333.3 | 9 | 0.3333 | 300.0000000 | 3 | | | | Frequency
List (MHz) | o | 1 | 2 | 3 | 4 | | | | | 0 | 5565 | 5380 | 5606 | 5658 | 5612 | | | | | 5 | 5680 | 5260 | 5587 | 5529 | 5294 | | | | | 10 | 5472 | 5526 | 5539 | 5376 | 5492 | | | | | 15 | 5419 | 5329 | 5511 | 5297 | 5372 | | | | | 20 | 5570 | 5699 | 5456 | 5250 | 5642 | | | | | 25 | 5600 | 5438 | 5400 | 5512 | 5366 | | | | | 30 | 5354 | 5401 | 5541 | 5395 | 5592 | | | | | 35 | 5547 | 5617 | 5439 | 5430 | 5499 | | | | | 40 | 5686 | 5482 | 5654 | 5573 | 5633 | | | | | 45 | 5443 | 5410 | 5287 | 5523 | 5388 | | | | | 50 | 5682 | 5524 | 5688 | 5649 | 5703 | | | | | 55 | 5266 | 5262 | 5585 | 5325 | 5555 | | | | | 60 | 5275 | 5368 | 5485 | 5657 | 5347 | | | | | 65 | 5552 | 5604 | 5716 | 5583 | 5667 | | | | | 70 | 5321 | 5263 | 5289 | 5713 | 5374 | | | | | 75 | 5627 | 5304 | 5449 | 5284 | 5665 | | | | | 80 | 5691 | 5666 | 5602 | 5578 | 5568 | | | | | 85 | 5711 | 5531 | 5605 | 5424 | 5381 | | | | | 90 | 5457 | 5276 | 5435 | 5701 | 5346 | | | | | 95 | 5505 | 5532 | 5265 | 5453 | 5675 | | ## Type 6 Radar Waveform_28 | | Trial Id | Radar
Type | Pulse
Width
(us) | PRI (us) | Pulses
per Hop | Hopping
Rate
(kHz) | Hopping
Sequence
Length
(ms) | Visible
Frequency
Humber | |----------|----------|-------------------------|------------------------|----------|-------------------|--------------------------|---------------------------------------|--------------------------------| | Download | 27 | Туре 6 | 1.0 | 333.3 | 9 | 0.3333 | 300.0000000 | 3 | | | | Frequency
List (MHz) | o | 1 | 2 | 3 | 4 | | | | | 0 | 5345 | 5619 | 5542 | 5344 | 5357 | | | | | 5 | 5722 | 5660 | 5662 | 5692 | 5501 | | | | | 10 | 5306 | 5412 | 5580 | 5571 | 5513 | | | | | 15 | 5410 | 5456 | 5614 | 5342 | 5564 | | | | | 20 | 5578 | 5293 | 5397 | 5339 | 5615 | | | | | 25 | 5488 | 5290 | 5603 | 5616 | 5258 | | | | | 30 | 5408 | 5718 | 5483 | 5315 | 5690 | | | | | 35 | 5256 | 5638 | 5413 | 5689 | 5338 | | | | | 40 | 5294 | 5420 | 5451 | 5273 | 5502 | | | | | 45 | 5516 | 5526 | 5371 | 5340 | 5313 | | | | | 50 | 5264 | 5383 | 5575 | 5302 | 5472 | | | | | 55 | 5550 | 5454 | 5691 | 5682 | 5307 | | | | | 60 | 5296 | 5684 | 5440 | 5654 | 5311 | | | | | 65 | 5548 | 5640 | 5378 | 5470 | 5490 | | | | | 70 | 5724 | 5324 | 5613 | 5333 | 5596 | | | | | 75 | 5424 | 5495 | 5265 | 5326 | 5447 | | | | | 80 | 5291 | 5263 | 5565 | 5431 | 5531 | | | | | 85 | 5544 | 5257 | 5287 | 5389 | 5335 | | | | | 90 | 5705 | 5388 | 5441 | 5260 | 5703 | | | | | 95 | 5522 | 5587 | 5611 | 5432 | 5303 | | | | Type 6 Radar Waveform_29 | | | | | | | | | | | | | |------------|--------------------------|-------------------------|------------------------|----------|-------------------|--------------------------|---------------------------------------|--------------------------------|--|--|--|--|--| | | Triel Id | Radar
Type | Pulse
Tidth
(us) | PRI (us) | Pulses
per Hop | Hopping
Rate
(kHz) | Hopping
Sequence
Length
(ms) | Visible
Frequency
Number | | | | | | | ■ Download | 28 | Type 6 | 1.0 | 333. 3 | 9 | 0. 3333 | 300,0000000 | 4 | | | | | | | | | Frequency
List (MHz) | 0 | 1 | 2 | 3 | 4 | | | | | | | | | | 0 | 5600 | 5383 | 5478 | 5408 | 5674 | | | | | | | | | | 5 | 5289 | 5682 | 5262 | 5380 | 5708 | | | | | | | | | | 10 | 5712 | 5676 | 5621 | 5291 | 5534 | | | | | | | | | | 15 | 5498 | 5583 | 5620 | 5290 | 5281 | | | | | | | | | | 20 | 5489 | 5459 | 5435 | 5331 | 5588 | | | | | | | | | | 25 | 5376 | 5714 | 5342 | 5292 | 5450 | | | | | | | | | | 30 | 5704 | 5440 | 5259 | 5467 | 5510 | | | | | | | | | | 35 | 5395 | 5254 | 5684 | 5367 | 5258 | | | | | | | | | | 40 | 5274 | 5377 | 5261 | 5691 | 5270 | | | | | | | | | | 45 | 5334 | 5496 | 5609 | 5429 | 5393 | | | | | | | | | | 50 | 5578 | 5615 | 5559 | 5626 | 5488 | | | | | | | | | | 55 | 5295 | 5494 | 5642 | 5645 | 5397 | | | | | | | | | | 60 | 5601 | 5267 | 5338 | 5605 | 5355 | | | | | | | | | | 65 | 5486 | 5709 | 5549 | 5371 | 5579 | | | | | | | | | | 70 | 5283 | 5273 | 5562 | 5332 | 5424 | | | | | | | | | | 75 | 5462 | 5665 | 5468 | 5544 | 5638 | | | | | | | | | | 80 | 5721 | 5597 | 5339 | 5703 | 5455 | | | | | | | | | | 85 | 5326 | 5465 | 5723 | 5434 | 5386 | | | | | | | | | | 90 | 5317 | 5479 | 5257 | 5586 | 5509 | | | | | | | | | | 95 | 5447 | 5672 | 5539 | 5692 | 5536 | | | | | | | ### Type 6 Radar Waveform_30 Hopping Sequence Length (ms) Hopping Rate (kHz) Visible Frequency Humber Pulse Width (us) Trial Id Radar Type PRI (us) Pulses per Hop Download Frequency List (MHz) o 15 5586 5561 5376 25 40 50 **549**1 5677 5295 5300 5535 5592 70 5427 5567 80 ## 6. CONCLUSION | The data collec | ted relate only | the item(s) teste | d and show that | t the device is o | compliance with FCC | |-----------------|-----------------|-------------------|-----------------|-------------------|---------------------| | Rules. | | | | | | _____ The End _____ Report No.: 2105RSU006-U7 # Appendix A - Test Setup Photograph Refer to "2105RSU006-UT" file. Page Number: 51 of 52 Report No.: 2105RSU006-U7 # Appendix B - EUT Photograph Refer to "2105RSU006-UE" file. Page Number: 52 of 52