

Test Report

Applicant	:	Felion Technologies Company Limited
		Room 304 3F Fuxing Building No.6 Binglang
Address	:	Road Fubao Community Futian District
		Shenzhen
Product Name	:	ColorFlux Light Strip
Brand Mark	:	ISOOCO, VOCOLINC
Model no.	:	LS3
FCC ID	:	2AXT8-LS2201
Report Number	:	BLA-EMC-202411-A3601
Date of Receipt	:	2024.11.13
Date of Test	:	2024.11.13 to 2024.12.03
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Compiled by: Mark then Review by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Address: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

The test report is effective only with both signature and specialized stamp and The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full. The results described in this report do not represent the quality or characteristics of the sampled batch, nor do they represent any similar or identical products that are not explicitly stated.

Page 2 of 67

Table of Contents

1 General information	5
1.1 General information	5
1.2 General description of EUT	
2 Test summary	7
3 Test Configuration	
3.1 Test mode	•
3.2 Operation Frequency each of channel	
3.2 Operation Frequency each of channel	
3.4 Auxiliary equipment	
	*
4 Laboratory information	
4.1 Laboratory and accreditations	
4.2 Measurement uncertainty	
5 Test equipment	
6 Test result	
6.1 Antenna requirement	
6.2 Conducted emissions at AC power line (150 kHz-30 MHz)	
6.3 Conducted peak output Power	19
6.4 Minimum 6dB bandwidth	
6.5 Power spectrum density	21
6.6 Conducted Band Edges Measurement	
6.7 Conducted spurious emissions	
6.8 Radiated spurious emissions	
6.9 Radiated emissions which fall in the restricted bands	
7 Appendix A	
7.1 Maximum Conducted Output Power	
7.2 -6dB Bandwidth	
7.3 Occupied Channel Bandwidth	47
7.4 Maximum Power Spectral Density Level	49
BlueAsia of Technical Services (Shenzhen) Co.,Ltd.	
Tel: +86-755-23059481	
Email: marketing@cblueasia.com	Version:v1.0

Page 3 of 67

7.5 Band Edge	51
7.6 Conducted RF Spurious Emission	54
Appendix B: photographs of test setup	58
Appendix C: photographs of EUT	60

Page 4 of 67

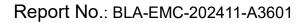
Revise Record

Version No.	Date	Description
01	2024.12.06	Original

Page 5 of 67

1 General information

1.1 General information


Applicant	Felion Technologies Company Limited		
Address	Room 304 3F Fuxing Building No.6 Binglang Road Fubao Community		
Address	Futian District Shenzhen		
Manufacturer	Felion Technologies Company Limited		
Address	Room 304 3F Fuxing Building No.6 Binglang Road Fubao Community		
Address	Futian District Shenzhen		
Factory	N/A		
Address	N/A		

1.2 General description of EUT

Product name	ColorFlux Light Strip		
Model no.	LS3		
Series model	LS2201, LS2202		
Desc of series model	The above models are identical in PCB layout, internal structure and		
Desc of series model	components, only model no, and appearance is different.		
Operation Frequency:	2402MHz-2480MHz		
Modulation Type:	GFSK		
Rate data:	1Mbps		
Channel Spacing:	2MHz		
Number of Channels:	40		
Antenna Type:	PCB antenna		
Antenna Gain:	0dBi (Provided by customer)		
	MODEL NO:CW2401000USG		
Power supply:	Adapter INPUT:100-240V,50/60Hz,0.8A MAX		
	OUTPUT:24V/1000mA		
Test Voltage:	AC 120V		
Hardware Version	N/A		
Software Version	N/A		

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

Page 6 of 67

Note: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

Page 7 of 67

2 Test summary

No.	Test item	Result	Remark
1	Antenna Requirement	Pass	
2	Conducted Emissions at AC Power Line (150kHz-30MHz)	Pass	
3	Conducted Peak Output Power	Pass	
4	Minimum 6dB Bandwidth	Pass	
5	Power Spectrum Density	Pass	
6	Conducted Band Edges Measurement	Pass	
7	Conducted Spurious Emissions	Pass	
8	Radiated Spurious Emissions	Pass	
9	Radiated Emissions which fall in the restricted bands	Pass	

N/A: Not Applicable

Page 8 of 67

3 Test Configuration

3.1 Test mode

Test Mode Note 1	Description		
TX	Keep the EUT in continuously transmitting with modulation mode.		
RX	Keep the EUT in receiving mode		
TX Low channel	Keep the EUT in continuously transmitting mode in low channel		
TX middle channel	Keep the EUT in continuously transmitting mode in middle channel		
TX high channel	Keep the EUT in continuously transmitting mode in high channel		

Note 1: The EUT was configured to measure its highest possible emission and/or immunity level. The test modes were adapted according to the operation manual for use.

Page 9 of 67

3.2 Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

3.3 Test channel

Channel	Frequency	
The lowest channel	2402MHz	
The middle channel	2442MHz	
The Highest channel	2480MHz	

3.4 Auxiliary equipment

Device Type	Manufacturer	Model Name	Serial No.	Remark	
PC	Lenovo	E460C N/A From lab (No.BLA-ZC-BS-2022		From lab (No.BLA-ZC-BS-2022005)	
Note:					
"" mean no any auxiliary device during testing.					

3.5 Test environment

Environment	Temperature	Voltage
Normal	25°C	AC 120V

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

Page 10 of 67

4 Laboratory information

4.1 Laboratory and accreditations

The test facility is recognized, certified, or accredited by the following organizations:

Company name:	BlueAsia of Technical Services(Shenzhen) Co., Ltd.				
Address:	Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China				
CNAS accredited No.:	L9788				
A2LA Cert. No.:	5071.01				
FCC Designation No.:	CN1252				
ISED CAB identifier No.:	CN0028				
Telephone:	+86-755-28682673				
FAX:	+86-755-28682673				

4.2 Measurement uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Parameter	Expanded Uncertainty
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %

Page 11 of 67

5 Test equipment

Radiated Spurious Emissions (Below 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date	
BLA-EMC-002-01	Anechoic	9*6*6	evet	NI/A	2024/3/27	2027/2/26	
BLA-EWIC-002-01	chamber	chamber	SKET	N/A	2024/3/27	2027/3/26	
BLA-EMC-002-02	Control room	966 control	SKET	NI/A	2024/3/27	2027/3/26	
BLA-EWIC-002-02	Control room	room	SKET N/A		2024/3/27	2021/3/20	
BLA-EMC-009	EMI receiver	ESR7	7 R&S 10		2024/08/08	2025/08/07	
BLA-EMC-043	Loop antenna	FMZB1519B	Schwarzbeck 00102 2024/0		2024/06/29	2026/06/28	
BLA-EMC-065	Broadband	VULB9168	Schwarzbeck	01065P	2024/06/29	2026/06/27	
BLA-EWIC-005	antenna	VULD9100	Schwarzbeck	01065P	2024/00/29	2026/06/27	
BLA-XC-01	Coaxial Cable	N/A	BlueAsia	V01	N/A	N/A	
BLA-XC-02	Coaxial Cable	N/A	BlueAsia	V02	N/A	N/A	
Dedicted Courses							

Radiated Spurious Emissions (Above 1GHz)

-									
Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date			
BLA-EMC-001 -01	Anechoic chamber	9*6*6 chamber	SKET	N/A	2023/11/16	2026/11/15			
	onambor								
BLA-EMC-001 -02	Control Room	966 control room	SKET	N/A	2023/11/16	2025/11/15			
BLA-EMC-008	Spectrum	FSP40	R&S	100817	2024/08/08	2025/08/07			
BLA-EMC-012	Broadband	VULB9168	Schwarzbeck	00836	2022/10/12	2025/10/11			
BLA-ENIC-012	antenna	VULB9100	Schwarzbeck	P:00227	2022/10/12	2023/10/11			
BLA-EMC-013	Horn Antenna	orn Antenna BBHA9120D Schwarzbeck 01892		01892	2024/06/29	2026/06/28			
BLA-EMC-014	Amplifier	PA_000318G-	SKET	PA201804300	2024/08/08	2025/08/07			
BLA-ENIC-014		45 SKET		3	2024/08/08	2020/00/07			
BLA-EMC-046	Filter bank	2.4G/5G Filter bank	SKET	N/A	2024/06/28	2025/06/27			
BLA-EMC-061	Receiver	ESPI7	R&S	101477	2024/06/28	2025/06/27			
	Amplifier	LNPA_30M01	SKET	SK202106080	2024/06/28	2025/06/27			
BLA-EMC-066	Amplifier	G-30	SNEI	1	2024/06/28	2025/06/27			
BLA-EMC-086	Amplifier	LNPA_18G40	SKET	SK202207130	2024/06/28	2025/06/27			
	Ampimer	G-50dB	JNEI	1	2024/00/28	2025/06/27			
BLA-EMC-087	Horn Antenna	BBHA 9170	Schwarzbeck	1106	2024/06/29	2026/06/28			

Page 12 of 67

				-				
BLA-XC-03	Coaxial Cable	N/	A	BI	ueAsia	V03	N/A	N/A
BLA-XC-04	Coaxial Cable	able N/A B		BI	ueAsia	V04	N/A	N/A
RF conducted		·						
Equipment	Name	Mo	del	Mar	nufacture	S/N	Cal. Date	Due. Date
BLA-EMC-00 3-003	Shield room	5*3	8*3	SKET		N/A	2023/11/16	2025/11/15
BLA-EMC-01 6	Signal Generator	N51	82A	4	gilent	MY52420567	2024/06/28	2025/06/27
BLA-EMC-03 8	Spectrum	ım N9020A			gilent	MY49100060	2024/08/08	2025/08/07
BLA-EMC-04 2	Power senso	RPR3	006W			14I00889SN0 42	2024/08/08	2025/08/07
BLA-EMC-04 4	Radio communicatio n tester	o CMW	/500			132429	2024/08/08	2025/08/07
BLA-EMC-06 4	Signal Generator	N51	82B	KE	YSIGHT	MY58108892	2024/06/28	2025/06/27
BLA-EMC-07 9	C-07 Spectrum N9020A Agilent		gilent	MY54420161	2024/08/08	2025/08/07		
BLA-EMC-08 8	_A-EMC-08 Audio ATS-1		5-1	Audio Precision		ATS141094	2024/06/28	2025/06/27
Conducted En	nissions						· · · ·	
Equipment	N	ame	Мос	del	Manufact re	u S/N	Cal. Date	Due. Date

Equipment	Name	Model	re	S/N	Cal. Date	Due. Date
BLA-EMC-003-001	Shield room	8*3*3	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07
BLA-EMC-011	LISN	ENV216	R&S	101372	2024/08/08	2025/08/07
BLA-EMC-033	Impedance transformer	DC-2GHz	DFXP	N/A	2024/06/28	2025/06/27
BLA-EMC-041	LISN	AT166-2	ATTEN	AKK180600 0003	2024/08/08	2025/08/07
BLA-EMC-045	Impedance stable network	ISNT8-cat 6	TESEQ	53580	2024/08/08	2025/08/07
BLA-EMC-095	Single-channel	NNBM	Schwarzbe	01045	2024/06/28	2025/06/27

Page 13 of 67

	vehicle artificial power network	8124	ck			
BLA-EMC-096	Single-channel vehicle artificial power network	NNBM 8124	Schwarzbe ck	01075	2024/06/28	2025/06/27
BLA-XC-05	Coaxial Cable	N/A	BlueAsia	V05	N/A	N/A

Test Software Record:

Software No.	Software Name	Manufacture	Software version	Test site
BLA-EMC-S001	EZ-EMC	EZ	EEMC-3A1+	RE
BLA-EMC-S002	EZ-EMC	EZ	EEMC-3A1+	RE
BLA-EMC-S003	EZ-EMC	EZ	EEMC-3A1+	CE
BLA-EMC-S010	MTS 8310	MW	2.0.0.0	RF

Page 14 of 67

6 Test result

6.1 Antenna requirement

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

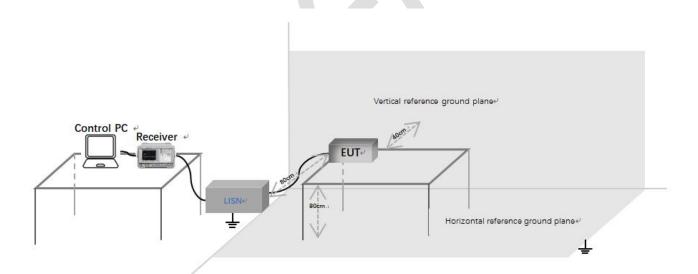
6.1.1 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of a so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 15 of 67


6.2 Conducted emissions at AC power line (150 kHz-30 MHz)

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	TX

6.2.1 Limit

	Conducted limit(dBµV)							
Frequency of emission(MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						
*Decreases with the logarithm of the frequency.								

6.2.2 Test setup

Description of test setup connection:

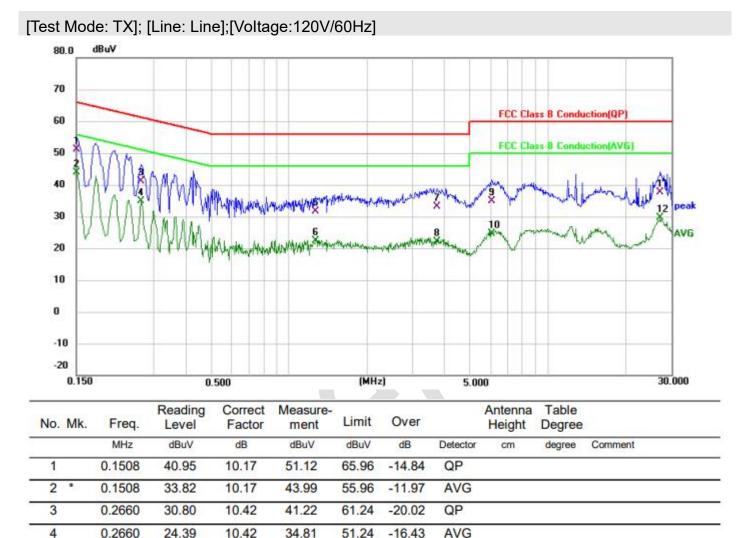
- a) Connect the control PC to the receiver through a USB to GPIB cable;
- b) The receiver is connected to the LISN through a coaxial line;
- c) Connect the power port of LISN to the EUT.

BlueAsia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u>

Page 16 of 67

6.2.3 Procedure


- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

LISN=Read Level+ Cable Loss+ LISN Factor

Page 17 of 67

6.2.4 Test data

Test Result: Pass

1.2660

1.2660

3.7260

3.7260

6.0739

6.0739

27.1860

27.1860

21.79

12.52

23.00

12.13

24.58

14.52

24.59

16.40

9.81

9.81

10.09

10.09

10.21

10.21

13.16

13.16

31.60

22.33

33.09

22.22

34.79

24.73

37.75

29.56

56.00

46.00

56.00

46.00

60.00

50.00

60.00

50.00

-24.40

-23.67

-22.91

-23.78

-25.21

-25.27

-22.25

-20.44

QP

AVG

QP

AVG

QP

AVG

QP

AVG

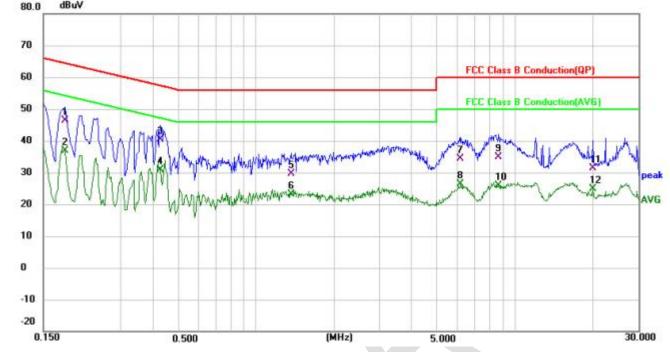
5

6

7

8

9


10

11

12

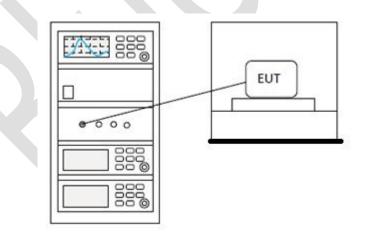
Page 18 of 67

[Test Mode: TX]; [Line: Neutral] ;[Voltage:120V/60Hz]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	al l
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1		0.1819	36.15	10.22	46.37	64.40	-18.03	QP			
2		0.1819	26.57	10.22	36.79	54.40	-17.61	AVG			
3		0.4260	30.64	9.79	40.43	57.33	-16.90	QP			
4	*	0.4260	21.13	9.79	30.92	47.33	-16.41	AVG			
5		1.3660	19.98	9.75	29.73	56.00	-26.27	QP			
6		1.3660	13.42	9.75	23.17	46.00	-22.83	AVG			
7		6.1740	24.25	10.21	34.46	60.00	-25.54	QP			
8		6.1740	16.22	10.21	26.43	50.00	-23.57	AVG			
9		8.6459	24.33	10.49	34.82	60.00	-25.18	QP			
10		8.6459	15.30	10.49	25.79	50.00	-24.21	AVG			
11	8	19.9940	18.42	13.00	31.42	60.00	-28.58	QP			
12		19.9940	11.80	13.00	24.80	50.00	-25.20	AVG			
1211		0.000.000.000.000		900001007	The second second	10000	10041-002-2	24.00			

Test Result: Pass

Page 19 of 67


6.3 Conducted peak output Power

Test Standard	47 CFR Part 15, Subpart C 15.247	
Test Method	ANSI C63.10 (2013) Section 7.8.5	
Test Mode (Pre-Scan)	ТХ	
Test Mode (Final Test)	TX	

6.3.1 Limit

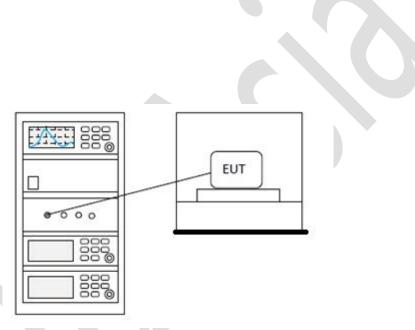
6.3.1 Limit		
Frequency range(MHz)	Output power of the intentional radiator(watt)	
	1 for ≥50 hopping channels	
902-928	0.25 for 25≤ hopping channels <50	
	1 for digital modulation	
	1 for ≥75 non-overlapping hopping channels	
2400-2483.5	0.125 for all other frequency hopping systems	
	1 for digital modulation	
5725-5850	1 for frequency hopping systems and digital modulation	

6.3.2 Test setup

6.3.3 Test data

Pass: Please refer to appendix A for details

Page 20 of 67


6.4 Minimum 6dB bandwidth

Test Standard	47 CFR Part 15, Subpart C 15.247	
Test Method	ANSI C63.10 (2013) Section 11.8.1	
Test Mode (Pre-Scan)	ТХ	
Test Mode (Final Test)	ТХ	

6.4.1 Limit

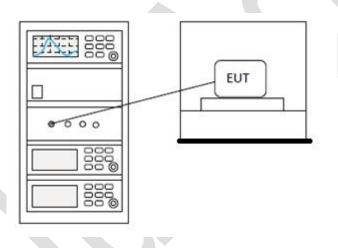
≥500 kHz

6.4.2 Test setup

6.4.3 Test data

Pass: Please refer to appendix A for details

Page 21 of 67


6.5 Power spectrum density

Test Standard	47 CFR Part 15, Subpart C 15.247	
Test Method	NSI C63.10 (2013) Section 11.10.2	
Test Mode (Pre-Scan)	ТХ	
Test Mode (Final Test)	TX	

6.5.1 Limit

≤8dBm in any 3 kHz band during any time interval of continuous transmission

6.5.2 Test setup

6.5.3 Test data

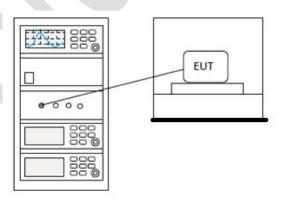
Pass: Please refer to appendix A for details

Page 22 of 67

6.6 Conducted Band Edges Measurement

Test Standard	47 CFR Part 15, Subpart C 15.247	
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	
Test Mode (Pre-Scan)	ТХ	
Test Mode (Final Test)	TX	

6.6.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.6.2 Test setup

6.6.3 Test data

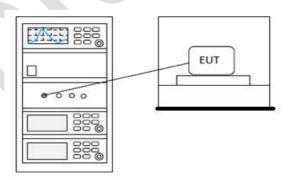
Pass: Please refer to appendix A for details

Page 23 of 67

6.7 Conducted spurious emissions

Test Standard	47 CFR Part 15, Subpart C 15.247	
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	
Test Mode (Pre-Scan)	ТХ	
Test Mode (Final Test)	TX	

6.7.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.7.2 Test setup

6.7.3 Test data

Pass: Please refer to appendix A for details

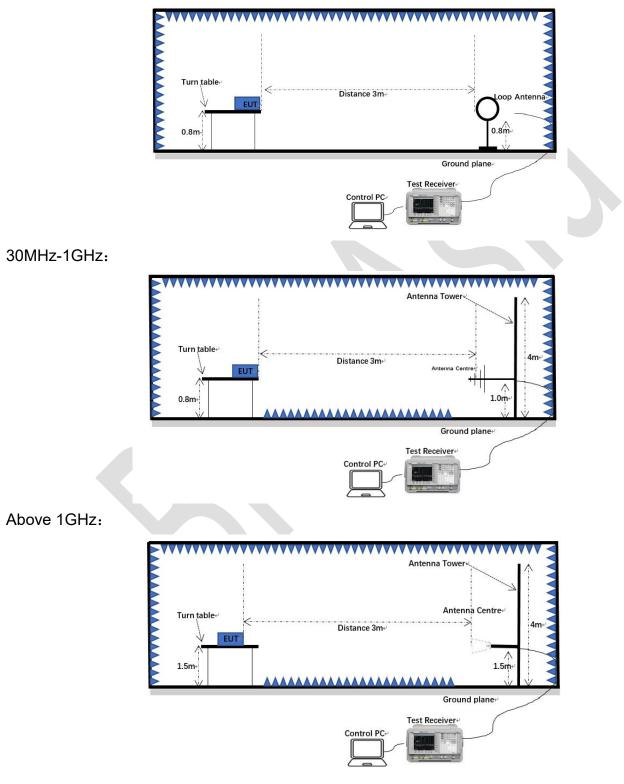
Page 24 of 67

6.8 Radiated spurious emissions

Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6		
Test Mode (Pre-Scan)	ТХ		
Test Mode (Final Test)	ТХ		

6.8.1 Limit

1 Limit			
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)	
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	
30-88	100	3	
88-216	150	3	
216-960	200	3	
Above 960	500	3	


Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Page 25 of 67

6.8.2 Test setup

Below 1GHz:

Page 26 of 67

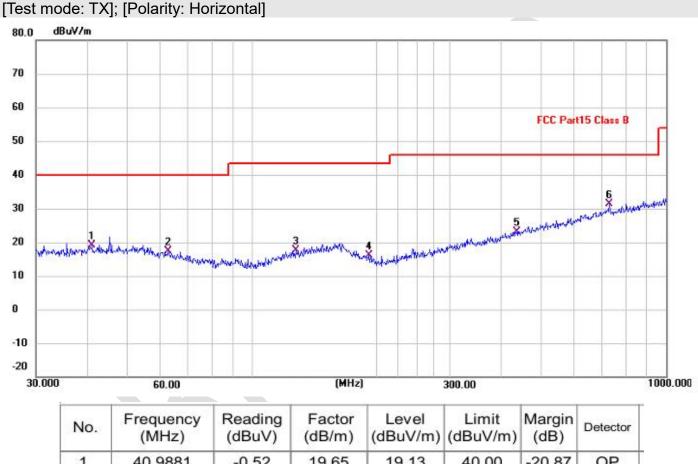
6.8.3 Procedure

- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Scan from 9 kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown. Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Note 3: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic **BlueAsia** of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u>

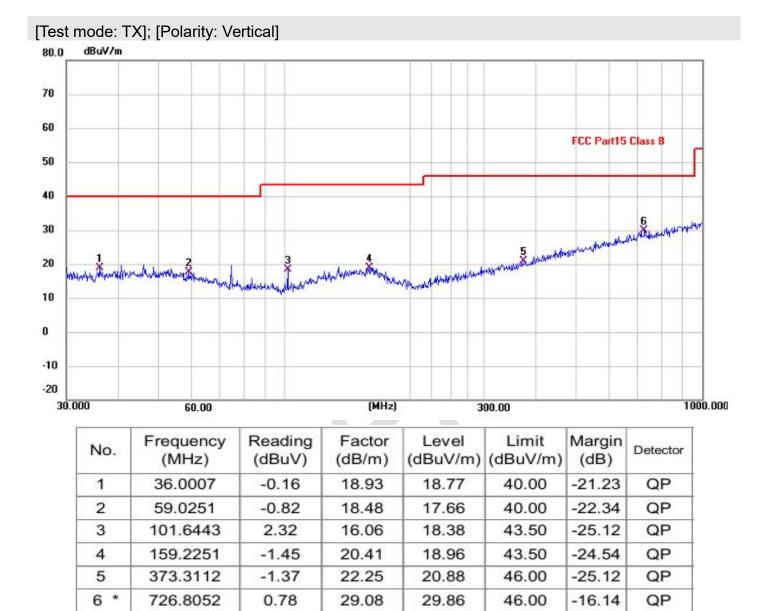

Page 27 of 67

equation with a sample calculation is as follows:

Level (dBuV) = Reading (dBuV) + Factor (dB/m)

6.8.4 Test data

Below 1GHz

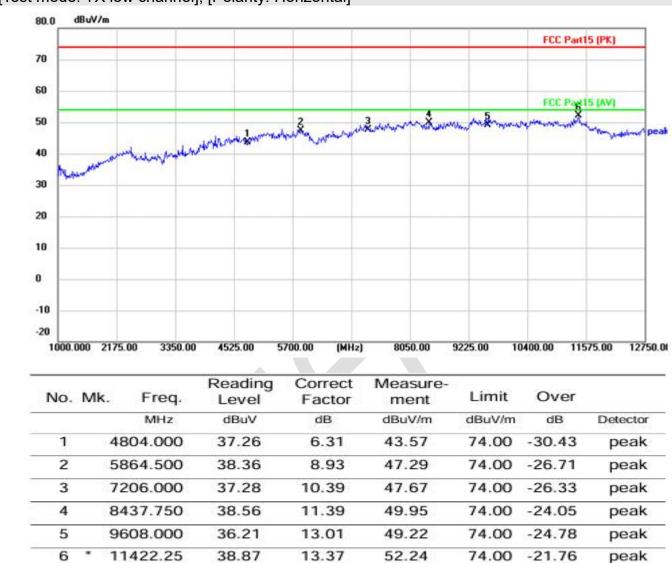


		52 23	2.2.2 Control 1.2.2 Control 1.	C.W. 2021				
1	40.9881	-0.52	19.65	19.13	40.00	-20.87	QP	T
2	62.6507	-0.79	18.11	17.32	40.00	-22.68	QP	T
3	127.2176	-1.34	19.07	17.73	43.50	-25.77	QP	Ţ
4	191.0738	-0.73	16.97	16.24	43.50	-27.26	QP	T
5	437.1199	-0.53	23.65	23.12	46.00	-22.88	QP	T
6 *	729.3583	2.50	29.00	31.50	46.00	-14.50	QP	T

Test Result: Pass

Page 28 of 67

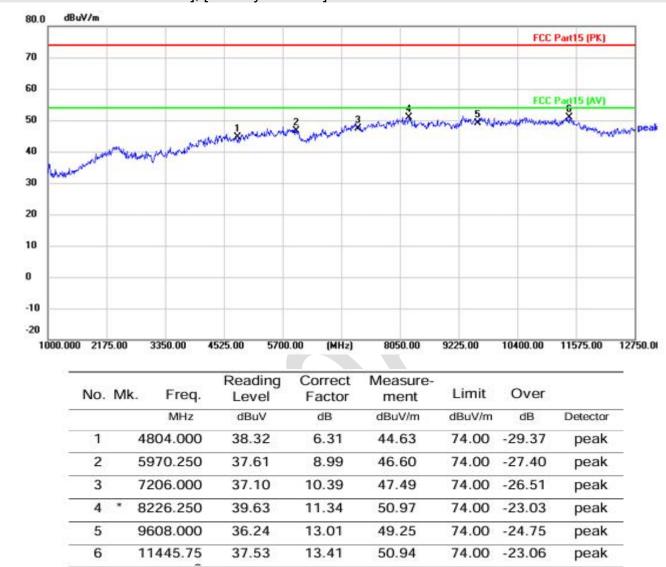
Test Result: Pass


BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

Page 29 of 67

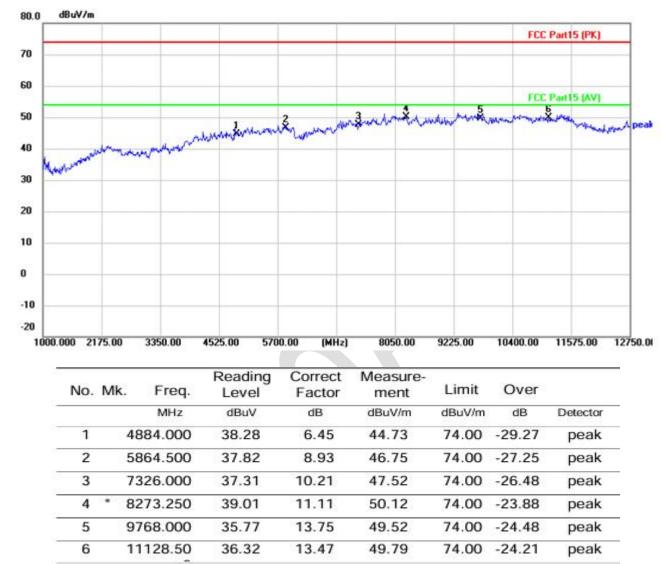
Above 1GHz:



[Test mode: TX low channel]; [Polarity: Horizontal]

Test Result: Pass

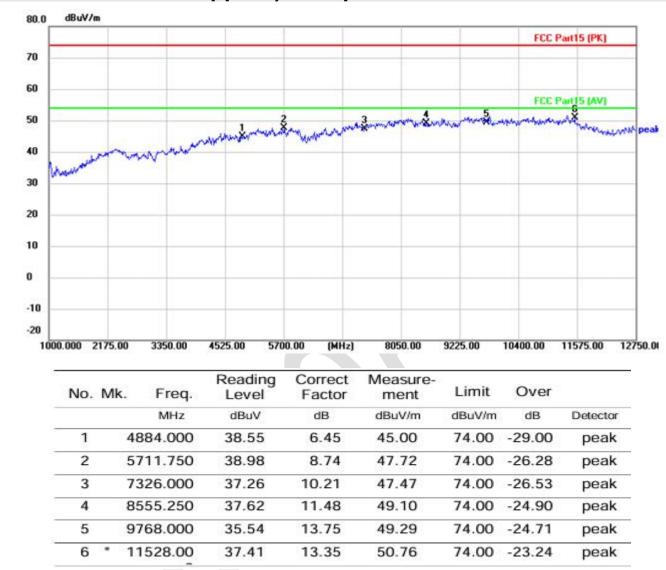
Page 30 of 67



[Test mode: TX low channel]; [Polarity: Vertical]

Test Result: Pass

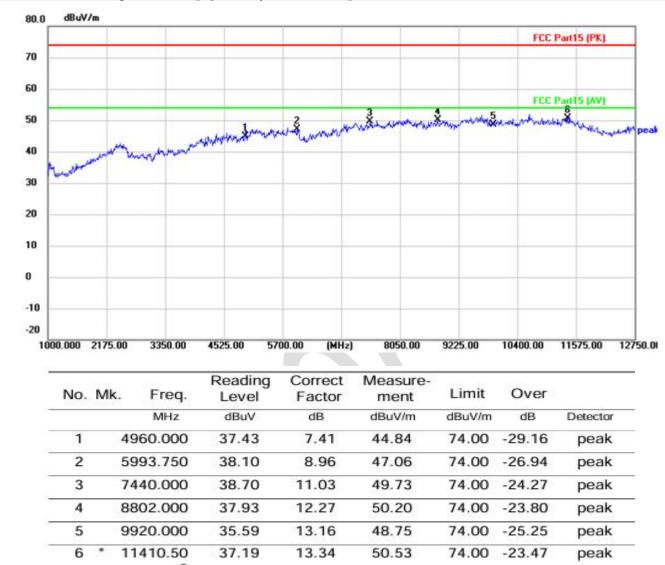
Page 31 of 67



[Test mode: TX middle channel]; [Polarity: Horizontal]

Test Result: Pass

Page 32 of 67

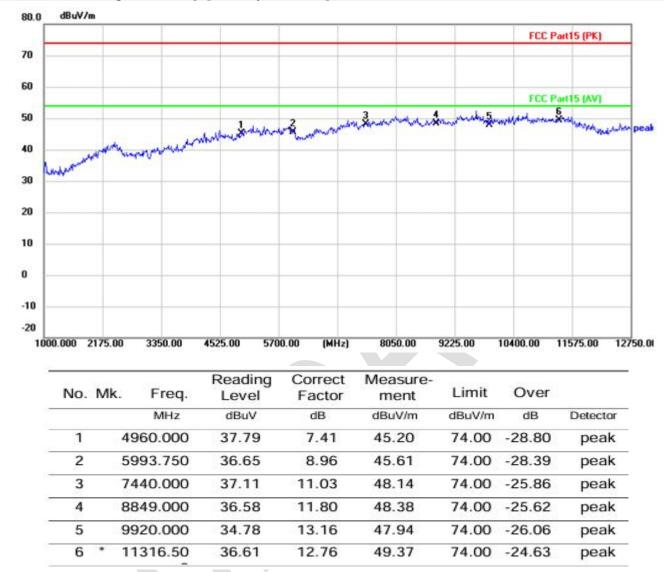


[Test mode: TX middle channel]; [Polarity: Vertical]

Test Result: Pass

Page 33 of 67

[Test mode: TX High channel]; [Polarity: Horizontal]


Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

Page 34 of 67

[Test mode: TX High channel]; [Polarity: Vertical]

Test Result: Pass

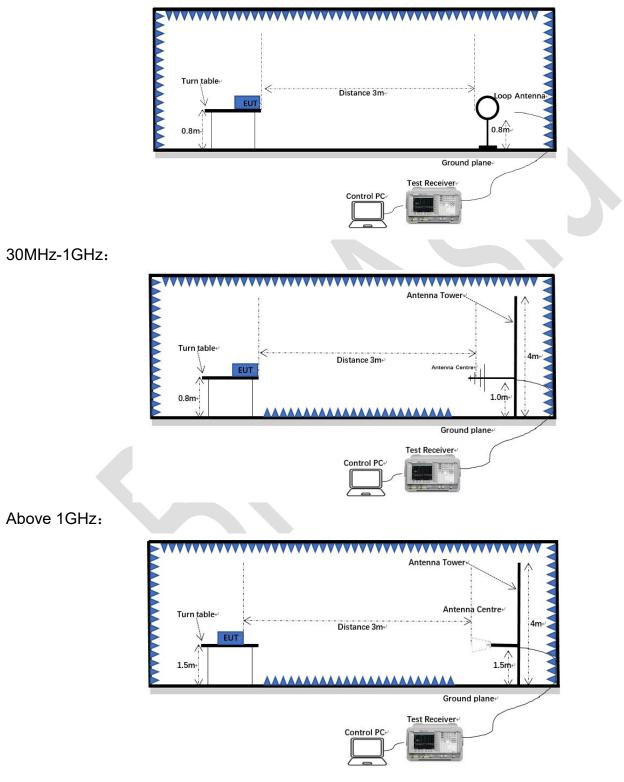
Page 35 of 67

6.9 Radiated emissions which fall in the restricted bands

Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method	ANSI C63.10 (2013) Section 6.10.5		
Test Mode (Pre-Scan)	ТХ		
Test Mode (Final Test)	TX		

6.9.1 Limit

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Page 36 of 67

6.9.2 Test setup

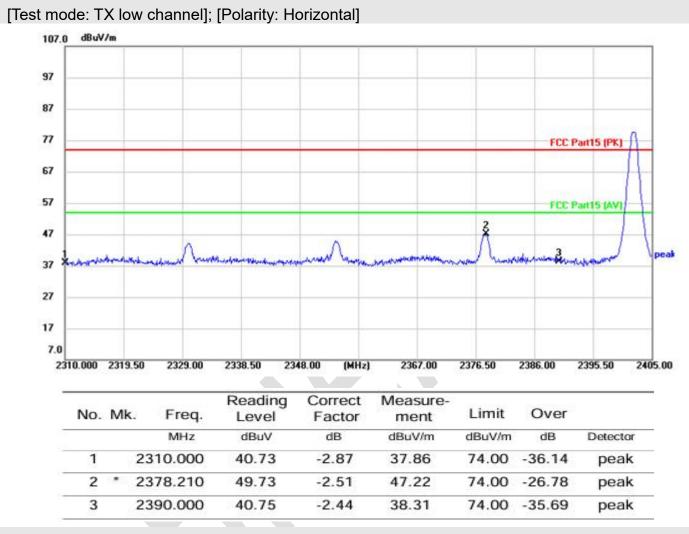
Below 1GHz:

Page 37 of 67

6.9.3 Procedure

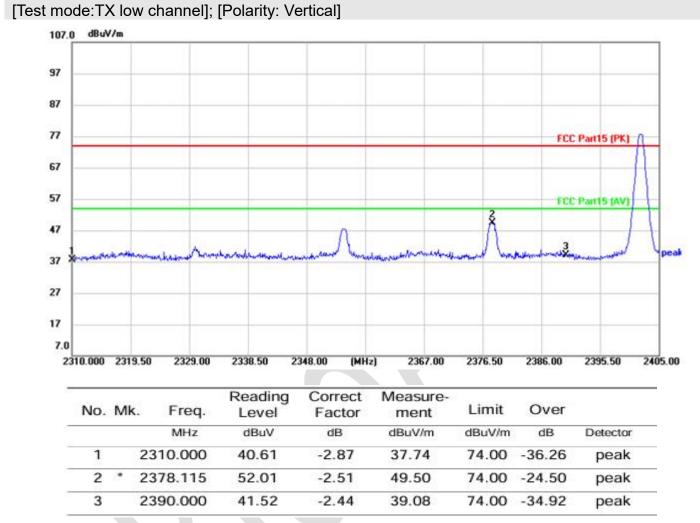
- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Level (dBuV) = Reading (dBuV) + Factor (dB/m)


Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

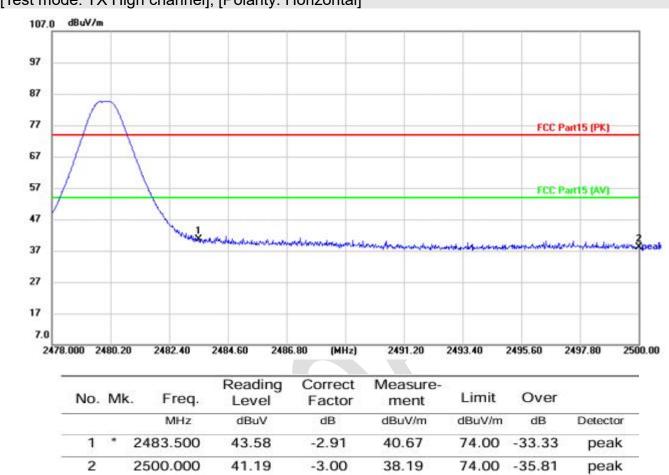
BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Page 38 of 67


6.9.4 Test data

Test Result: Pass

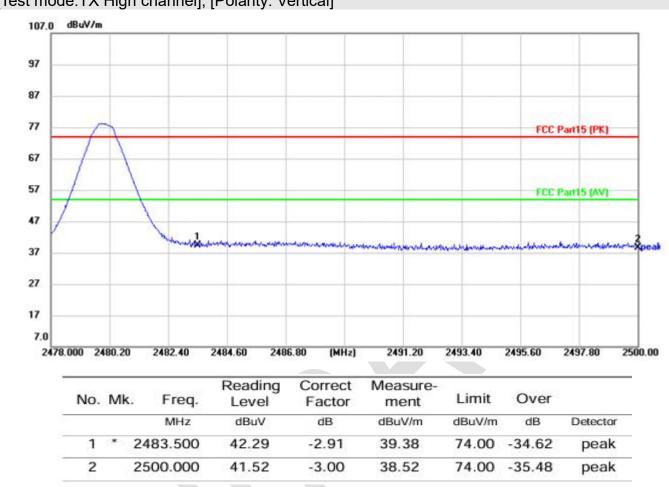
Page 39 of 67


Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Email: <u>marketing@cblueasia.com</u> <u>ww</u>w.cblueasia.com

Page 40 of 67


[Test mode: TX High channel]; [Polarity: Horizontal]

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

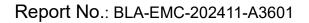
Page 41 of 67

[Test mode:TX High channel]; [Polarity: Vertical]

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481

Page 42 of 67


7 Appendix A

7.1 Maximum Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	-4.101	30	Pass
NVNT	BLE 1M	2442	Ant1	-5.207	30	Pass
NVNT	BLE 1M	2480	Ant1	-7.59	30	Pass

Power NVNT BLE 1M 2402MHz Ant1

Page 43 of 67

Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1

Page 44 of 67

Page 45 of 67

7.2-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE 1M	2402	Ant1	0.51	0.5	Pass
NVNT	BLE 1M	2442	Ant1	0.504	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.509	0.5	Pass

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

Page 46 of 67

RT RF 50Ω A	c	SI	ENSE:INT		ALIGN AUTO			10:43:46 AM	Nov 14, 2024
nter Freq 2.4420000		iain:Low	Center Fre Trig: Free #Atten: 30		000 GHz Avg Hold: 1	100/100		o Std: Non Device: E	
Ref Offset 2.8 IB/div Ref 22.89 d							Mkr3	2.442 -11.31	24 GHz 4 dBm
		2		1	A3				
	<u>.</u>	Dz-	¥		m			-	
	more	-		-	Nourset	mon			
	North I						and the second		
manna and and and and and and								man manin	wwwww
A.									
nter 2.442 GHz								Sna	n 2 MHz
es BW 100 kHz			#VE	300 k	Hz		S	Sweep 1	
Occupied Bandwi	dth		Total P	ower	0.27 dl	Bm			
	938.25	kHz							
ransmit Freq Error	-12.54	5 kHz	OBW P	ower	99.00	0 %			
dB Bandwidth	504.	3 kHz	x dB		-6.00	dB			

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u>

Page 47 of 67

7.3 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	0.88931
NVNT	BLE 1M	2442	Ant1	0.89641
NVNT	BLE 1M	2480	Ant1	0.89811

OBW NVNT BLE 1M 2402MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

Page 48 of 67

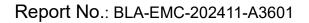
R T RF 50Ω AC Center Freg 2.442000000		SENSE:INT Center Freg: 2.4420000		10:43:40 AMNov 14, 2024 Radio Std: None
enter Freq 2.44200000		Trig: Free Run #Atten: 30 dB	Avg Hold: 100/100	Radio Device: BTS
	#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
0 dB/div Ref Offset 2.89 d Ref 22.89 dBn				
og				
2.89				
11				
7.1		Martin marting		
7.1		V	Managemen	
7.1	and the second s		- ha	
7.1	m		- m	more
7.1 mm Man Mark	~~		\	mannen
7.1	0.00			
enter 2.442 GHz		#) (D) W (400 L)		Span 3 MHz
Res BW 30 kHz		#VBW 100 k	HZ	Sweep 3.333 ms
Occupied Bandwidt	h	Total Power	1.18 dBm	
8	96.41 kHz			
Transmit Freq Error	-15.666 kHz	OBW Power	99.00 %	
x dB Bandwidth	1.120 MHz	x dB	-26.00 dB	
sg			STATUS	

OBW NVNT BLE 1M 2442MHz Ant1

OBW NVNT BLE 1M 2480MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

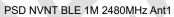
Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u>

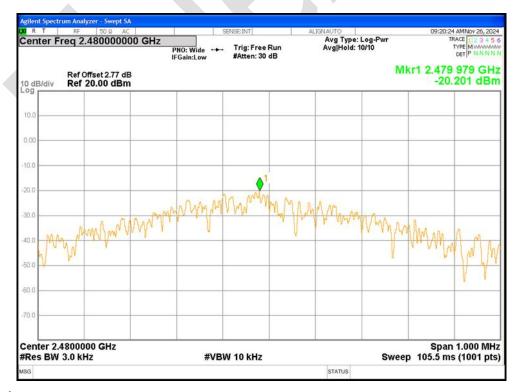


Page 49 of 67

7.4 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-17.064	8	Pass
NVNT	BLE 1M	2442	Ant1	-17.971	8	Pass
NVNT	BLE 1M	2480	Ant1	-20.201	8	Pass





Page 50 of 67

PSD NVNT BLE 1M 2442MHz Ant1



Page 51 of 67

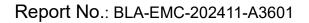
7.5 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-39.48	-20	Pass
NVNT	BLE 1M	2480	Ant1	-34.51	-20	Pass

Band Edge NVNT BLE 1M 2402MHz Ant1 Ref

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com


Page 52 of 67

		= 50 Ω AC		SE	NSE:INT	ALIGN AUTO			AMNov 14, 2024
enter	· Freq	2.3560000	PN	0: Fast ↔ ain:Low	Trig: Free Run #Atten: 30 dB	Avg Type Avg Hold	e: Log-Pwr : 100/100	1	ACE 1 2 3 4 5 6 TYPE M MANAAAAA DET P N N N N N
) dB/di		f Offset 2.93 d f 20.00 dBn						Mkr1 2.40 -4.1	02 0 GHz 119 dBm
1.00									A1
0.0									X
0.0									
									-24.15 dBm
0.0							\wedge^4		
0.0					n		1 Å		12
5.00 L	-mut Nine	manymouth	mentalandorman	mennenter	conner house	Munowyman	man bearsons	an many my how	unapped for
0.0									
	20600			#VBW	/ 300 kHz		Swee	Stop 2.4 p 9.600 ms	10600 GHz (1001 pts)
tart 2. Res B	.30000 W 100	kHz						FUNCTION VALUE	
Res B	SW 100		×	Y	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	100
Res B 88 14008 1 N 2 N	W 100		2.402 0 GHz 2.400 0 GHz	-4.119 d -56.775 d	Bm Bm	FUNCTION WIDTH		FUNCTION VALUE	
Res B 1 N 2 N 3 N	W 100		2.402 0 GHz 2.400 0 GHz 2.390 0 GHz	-4.119 d -56.775 d -59.118 d	Bm Bm Bm	FUNCTION WIDTH		FONCTION VALUE	
Res B 1 N 2 N 3 N 4 N 5	SW 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.402 0 GHz 2.400 0 GHz	-4.119 d -56.775 d	Bm Bm Bm	FUNCTION WIDTH		FUNCTION VALUE	
Res B 1 N 2 N 3 N 4 N 5 6 7	W 100		2.402 0 GHz 2.400 0 GHz 2.390 0 GHz	-4.119 d -56.775 d -59.118 d	Bm Bm Bm	FUNCTION WIDTH		FUNCTION VALUE	1
Res B 1 N 2 N 3 N 4 N 5 6 7 8	W 100		2.402 0 GHz 2.400 0 GHz 2.390 0 GHz	-4.119 d -56.775 d -59.118 d	Bm Bm Bm	FUNCTION WIDTH		FUNCTION VALUE	
Res B 1 N 2 N 3 N 4 N 5 6 7	W 100		2.402 0 GHz 2.400 0 GHz 2.390 0 GHz	-4.119 d -56.775 d -59.118 d	Bm Bm Bm	FUNCTION WIDTH		FUNLTION VALUE	

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission

Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

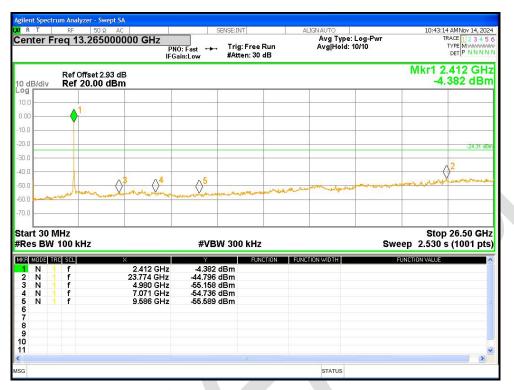
Page 53 of 67

R	Т		RF	50 Ω A	C .			SENSE:IN	Т	A	.IGN AUTO		10:50	:48 AM Nov 14, 202
ent	er	Fred	2.52	260000	00 GH	PN	0: Fast ain:Low		: Free Run en: 30 dB		Avg Type Avg Hold:			TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
dE	/div			set 2.77 d .00 dBr		î								480 0 GH: 7.716 dBn
0.0												-	-	
00		≬ 1–	_		-							-	-	_
0.0		Ň			-	-						0	-	-
0.		1												-27.80 dB
0						\Diamond^4								
.0	1	1,	2			1AB								
.0	erest.	Lether	mon	many	-	and Show	manyaruhan	ingles the level	mound	Norwahle	una mandah	man marshaw		montryhand
.0	0				-									
			0 GH: 0 kHz				#\	/BW 300	kHz			Swee		2.57600 GH ns (1001 pts
		TRC 9			×		Ŷ		FUNCTION	FUNC	TION WIDTH		FUNCTION VALUE	
2	N N N N		f f f f		2.480 0 2.483 5 2.505 0 2.503 8	GHz	-57.2 -56.7	16 dBm 88 dBm 52 dBm 14 dBm						
5	IN				2.003 6	9872	-42.3							
1														

Band Edge NVNT BLE 1M 2480MHz Ant1 Emission

Page 54 of 67

7.6 Conducted RF Spurious Emission


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-40.49	-20	Pass
NVNT	BLE 1M	2442	Ant1	-39.16	-20	Pass
NVNT	BLE 1M	2480	Ant1	-37	-20	Pass

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Ref

Page 55 of 67

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Ref

Page 56 of 67

	RF			S	ENSE:INT	AL	IGN AUTO			7 AMNov 14, 2024
enter	· Freq ′	13.265000	PN	0: Fast ↔→ ain:Low	Trig: Free Ru #Atten: 30 dB		Avg Type: Avg Hold:	Log-Pwr 10/10	т	RACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNN
) dB/di		Offset 2.89 di f 20.00 dBn								.439 GHz 880 dBm
.00		1								
0.0										
0.0										
										-25.42 dBm
0.0										\wedge^2
]	A .	3 ()4	5			- Velantinohin	and a start of the	whether	manun
0.0	an all a land	marine	and a second and a	montheman	any indimension and a start as	Normalination				
0.0									5	
										26.50 GHz
	0 MHz SW 100	kHz		#VBV	V 300 kHz			Swe		s (1001 pts)
Res B	SW 100	kHz	×	Y	FUNCT	ION FUNCT	ION WIDTH			
Res B R Mode	W 100	kHz	× 2.439 GHz 25.071 GHz	Y -5.880 c	FUNCT	ION FUNCT	ION WIDTH		ep 2.530	
Res B 1 N 2 N 3 N	SW 100 3 TRC SCL 1 f 1 f 1 f	kHz	25.071 GHz 4.874 GHz	-5.880 c -44.585 c -55.673 c	IBm IBm IBm	ion Funct	ION WIDTH		ep 2.530	
Res B 1 N 2 N 3 N 4 N 5 N	3W 100 3 TRC SCU 1 f 1 f	kHz	25.071 GHz	-5.880 c -44.585 c	FUNCT IBm IBm IBm IBm	ION FUNCT	ION WIDTH		ep 2.530	
Res B (1 N 2 N 3 N 4 N 5 N 6 7	SW 100 TRC SCL 1 f 1 f 1 f 1 f 1 f	kHz	25.071 GHz 4.874 GHz 7.336 GHz	-5.880 c -44.585 c -55.673 c -54.883 c	FUNCT IBm IBm IBm IBm	ION FUNCT	ION WIDTH		ep 2.530	
Res B (1 N 2 N 3 N 4 N 5 N 6 7	SW 100 TRC SCL 1 f 1 f 1 f 1 f 1 f	kHz	25.071 GHz 4.874 GHz 7.336 GHz	-5.880 c -44.585 c -55.673 c -54.883 c	FUNCT IBm IBm IBm IBm	ion Funct	ION WIDTH		ep 2.530	
Res B 1 N 2 N 3 N 4 N 5 N 6	SW 100 TRC SCL 1 f 1 f 1 f 1 f 1 f	kHz	25.071 GHz 4.874 GHz 7.336 GHz	-5.880 c -44.585 c -55.673 c -54.883 c	FUNCT IBm IBm IBm IBm	ION FUNCT	ION WIDTH		ep 2.530	

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Emission

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref

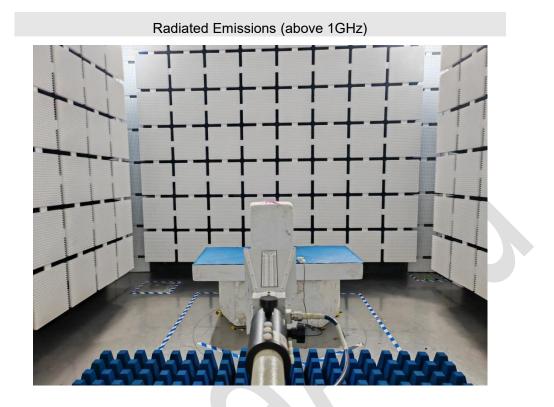
Page 57 of 67

R T RF	50 Ω AC	S S	ENSE:INT	ALIGN AUTO		10:45:41 AMNov 14, 2024
enter Freq 13.	265000000 GHz	PNO: Fast ↔→ IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type Avg Hold:		TRACE 1 2 3 4 5 TYPE MWWWWW DET P N N N N
dB/div Ref 2	set 2.77 dB 0.00 dBm					Vkr1 2.492 GH -8.585 dBm
20						
00						
0.0 0.0					-	
0.0		-				-27.82 dBr
0.0						-27.62 00
0.0		4 . 5				
0.0	mentioned	4	All and the second second	wheeling men and all a	And a second of the second sec	and the second of the second of the second s
).0						
.0	2					
art 30 MHz Res BW 100 kH	z	#VBV	V 300 kHz		Sweep	Stop 26.50 GH 2.530 s (1001 pts
R MODE TRC SCL	× 2.492 GH	z -8,585 c	FUNCTION	FUNCTION WIDTH	FUNCT	TION VALUE
2 N 1 F	24.250 GH	z -44.824 c	lBm			
3 N 1 f 4 N 1 f	4.953 GH 7.468 GH	z -55.459 d	dBm			
5 N <mark>1</mark> f 5	9.983 GH	z -55.559 c	iBm			
7 3						
9						
						8
1						>

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Page 58 of 67


Appendix B: photographs of test setup

<image>

Radiated Emissions (30MHz-1GHz)

Page 59 of 67

Page 60 of 67

Appendix C: photographs of EUT

View of Product-1

View of Product-2