

Report No.: CQASZ20230500829E-03

Test Result:

TestMode	ChName	Freq(MHz)	Result[dBm]	Limit[dBm]	Verdict
	Low	5180	-45.03	≤-27	PASS
11A	High	5240	-46.12	≤-27	PASS
	Low	5180	-44.98	≤-27	PASS
11N20SISO	High	5240	-46.02	≤-27	PASS
	Low	5190	-45.37	≤-27	PASS
11N40SISO	High	5230	-46.52	≤-27	PASS
	Low	5180	-46.03	≤-27	PASS
11AC20SISO	High	5240	-46.79	≤-27	PASS
	Low	5190	-45.55	≤-27	PASS
11AC40SISO	High	5230	-45.41	≤-27	PASS
	Low	5210	-45.69	≤-27	PASS
11AC80SISO	High	5210	-46.51	≤-27	PASS

Report No.: CQASZ20230500829E-03

Appendix E): Frequency Stability

Test Requirement 47 CFR Part 15, Subpart C 15.407 (g)

Test Method: ANSI C63.10 (2013) Section 6.8

Limit:The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

Test Setup Diagram

Ground Reference Plane

Report No.: CQASZ20230500829E-03

Measurement Data

				Voltage				
TestMode	Antenna	Freq(MHz)	Voltage [Vdc]	Temperat ure (℃)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
			NV	NT	27000.00	5.212355	20	PASS
		5180	LV	NT	27000.00	5.212355	20	PASS
			HV	NT	27000.00	5.212355	20	PASS
			NV	NT	28000.00	5.384615	20	PASS
11A	Ant1	5200	LV	NT	27000.00	5.192308	20	PASS
			HV	NT	28000.00	5.384615	20	PASS
			NV	NT	28000.00	5.343511	20	PASS
		5240	LV	NT	27000.00	5.152672	20	PASS
			HV	NT	27000.00	5.152672	20	PASS
			NV	NT	27000.00	5.212355	20	PASS
		5180	LV	NT	28000.00	5.405405	20	PASS
			HV	NT	27000.00	5.212355	20	PASS
	O Ant1	5200	NV	NT	28000.00	5.384615	20	PASS
11N20SISO			LV	NT	27000.00	5.192308	20	PASS
			HV	NT	27000.00	5.192308	20	PASS
			NV	NT	28000.00	5.343511	20	PASS
		5240	LV	NT	28000.00	5.343511	20	PASS
			HV	NT	28000.00	5.343511	20	PASS
			NV	NT	28000.00	5.394990	20	PASS
		5190	LV	NT	27000.00	5.202312	20	PASS
11N40SISO	Ant1		HV	NT	27000.00	5.202312	20	PASS
1111400100	Allti		NV	NT	29000.00	5.544933	20	PASS
		5230	LV	NT	28000.00	5.353728	20	PASS
			HV	NT	28000.00	5.353728	20	PASS
			NV	NT	28000.00	5.405405	20	PASS
		5180	LV	NT	27000.00	5.212355	20	PASS
			HV	NT	27000.00	5.212355	20	PASS
11AC20SIS			NV	NT	27000.00	5.192308	20	PASS
0	Ant1	5200	LV	NT	27000.00	5.192308	20	PASS
			HV	NT	28000.00	5.384615	20	PASS
			NV	NT	28000.00	5.343511	20	PASS
		5240	LV	NT	28000.00	5.343511	20	PASS
			HV	NT	28000.00	5.343511	20	PASS

			NV	NT	28000.00	5.394990	20	PASS
		5190	LV	NT	28000.00	5.394990	20	PASS
11AC40SIS			HV	NT	27000.00	5.202312	20	PASS
0	Ant1	Ant1 5230	NV	NT	28000.00	5.353728	20	PASS
			LV	NT	28000.00	5.353728	20	PASS
			HV	NT	28000.00	5.353728	20	PASS
			NV	NT	28000.00	5.374280	20	PASS
11AC80SIS Ant1	Ant1	5210	LV	NT	28000.00	5.374280	20	PASS
			HV	NT	28000.00	5.374280	20	PASS

	Temperature										
TestMode	Antenna	Freq(MHz)	Voltage [Vdc]	Temperat ure (℃)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict			
			NV	-30	27000.00	5.212355	20	PASS			
			NV	-20	27000.00	5.212355	20	PASS			
			NV	-10	27000.00	5.212355	20	PASS			
			NV	0	28000.00	5.405405	20	PASS			
		5180	NV	10	27000.00	5.212355	20	PASS			
			NV	20	27000.00	5.212355	20	PASS			
			NV	30	28000.00	5.405405	20	PASS			
			NV	40	27000.00	5.212355	20	PASS			
			NV	50	27000.00	5.212355	20 PASS 20 PASS 20 PASS				
			NV	-30	28000.00	5.384615	20	PASS			
			NV	-20	27000.00	5.192308	20	PASS			
			NV	-10	28000.00	5.384615	20	PASS			
11A	Ant1	1	NV	0	28000.00	5.384615	20	PASS			
		5200	NV	10	28000.00	5.384615	20	PASS			
			NV	20	28000.00	5.384615	20	PASS			
			NV	30	27000.00	5.192308	20	PASS			
			NV	40	28000.00	5.384615	20	PASS			
			NV	50	28000.00	5.384615	20	PASS			
			NV	-30	28000.00	5.343511	20	PASS			
			NV	-20	27000.00	5.152672	20	PASS			
			NV	-10	28000.00	5.343511	20	PASS			
		5240	NV	0	28000.00	5.343511	20	PASS			
			NV	10	28000.00	5.343511	20	PASS			
			NV	20	27000.00	5.152672	20	PASS			

			NV	30	28000.00	5.343511	20	PASS
			NV	40	28000.00	5.343511	20	PASS
			NV	50	28000.00	5.343511	20	PASS
			NV	-30	28000.00	5.405405	20	PASS
			NV	-20	28000.00	5.405405	20	PASS
			NV	-10	27000.00	5.212355	20	PASS
			NV	0	27000.00	5.212355	20	PASS
		5180	NV	10	27000.00	5.212355	20	PASS
			NV	20	27000.00	5.212355	20	PASS
			NV	30	27000.00	5.212355	20	PASS
			NV	40	28000.00	5.405405	20	PASS
			NV	50	27000.00	5.212355	20	PASS
			NV	-30	28000.00	5.384615	20	PASS
			NV	-20	27000.00	5.192308	20	PASS
			NV	-10	28000.00	5.384615	20	PASS
			NV	0	28000.00	5.384615	20	PASS
11N20SISO Ant1	Ant1	5200	NV	10	28000.00	5.384615	20	PASS
			NV	20	28000.00	5.384615	20	PASS
			NV	30	28000.00	5.384615	20	PASS
			NV	40	28000.00	5.384615	20	PASS
			NV	50	28000.00	5.384615	20	PASS
			NV	-30	28000.00	5.343511	20	PASS
			NV	-20	28000.00	5.343511	20	PASS
			NV	-10	28000.00	5.343511	20	PASS
			NV	0	28000.00	5.343511	20	PASS
		5240	NV	10	28000.00	5.343511	20	PASS
			NV	20	28000.00	5.343511	20	PASS
			NV	30	28000.00	5.343511	20	PASS
			NV	40	28000.00	5.343511	20	PASS
			NV	50	28000.00	5.343511	20	PASS
			NV	-30	27000.00	5.202312	20	PASS
			NV	-20	27000.00	5.202312	20	PASS
			NV	-10	27000.00	5.202312	20	PASS
11N40SISO	Ant1	5190	NV	0	28000.00	5.394990	20	PASS
			NV	10	28000.00	5.394990	20	PASS
			NV	20	28000.00	5.394990	20	PASS
			NV	30	27000.00	5.202312	20	PASS

			NV	40	27000.00	5.202312	20	PASS
			NV	50	27000.00	5.202312	20	PASS
			NV	-30	28000.00	5.353728	20	PASS
			NV	-20	28000.00	5.353728	20	PASS
			NV	-10	27000.00	5.162524	20	PASS
			NV	0	28000.00	5.353728	20	PASS
		5230	NV	10	28000.00	5.353728	20	PASS
			NV	20	28000.00	5.353728	20	PASS
			NV	30	27000.00	5.162524	20	PASS
			NV	40	28000.00	5.353728	20	PASS
			NV	50	28000.00	5.353728	20	PASS
			NV	-30	27000.00	5.212355	20	PASS
			NV	-20	28000.00	5.405405	20	PASS
			NV	-10	27000.00	5.212355	20	PASS
			NV	0	27000.00	5.212355	20	PASS
		5180	NV	10	28000.00	5.405405	20	PASS
			NV	20	27000.00	5.212355	20	PASS
			NV	30	27000.00	5.212355	20	PASS
			NV	40	27000.00	5.212355	20	PASS
			NV	50	28000.00	5.405405	20	PASS
			NV	-30	28000.00	5.384615	20	PASS
			NV	-20	27000.00	5.192308	20	PASS
			NV	-10	27000.00	5.192308	20	PASS
11AC20SIS	A 44		NV	0	27000.00	5.192308	20	PASS
0	Ant1	5200	NV	10	27000.00	5.192308	20	PASS
			NV	20	27000.00	5.192308	20	PASS
			NV	30	28000.00	5.384615	20	PASS
			NV	40	28000.00	5.384615	20	PASS
			NV	50	28000.00	5.384615	20	PASS
			NV	-30	28000.00	5.343511	20	PASS
			NV	-20	28000.00	5.343511	20	PASS
			NV	-10	27000.00	5.152672	20	PASS
		F240	NV	0	28000.00	5.343511	20	PASS
		5240	NV	10	28000.00	5.343511	20	PASS
			NV	20	28000.00	5.343511	20	PASS
			NV	30	28000.00	5.343511	20	PASS
			NV	40	28000.00	5.343511	20	PASS

Report No.: CQASZ20230500829E-03

			NV	50	28000.00	5.343511	20	PASS
			NV	-30	28000.00	5.394990	20	PASS
			NV	-20	28000.00	5.394990	20	PASS
			NV	-10	28000.00	5.394990	20	PASS
			NV	0	28000.00	5.394990	20	PASS
		5190	NV	10	27000.00	5.202312	20	PASS
			NV	20	27000.00	5.202312	20	PASS
			NV	30	28000.00	5.394990	20	PASS
			NV	40	27000.00	5.202312	20	PASS
11AC40SIS			NV	50	28000.00	5.394990	20	PASS
0	Ant1		NV	-30	28000.00	5.353728	20	PASS
			NV	-20	28000.00	5.353728	20	PASS
			NV	-10	28000.00	5.353728	20	PASS
			NV	0	28000.00	5.353728	20	PASS
		5230	NV	10	28000.00	5.353728	20	PASS
			NV	20	28000.00	5.353728	20	PASS
			NV	30	28000.00	5.353728	20	PASS
			NV	40	28000.00	5.353728	20	PASS
			NV	50	28000.00	5.353728	20	PASS
			NV	-30	27000.00	5.182342	20	PASS
			NV	-20	28000.00	5.374280	20	PASS
			NV	-10	28000.00	5.374280	20	PASS
			NV	0	28000.00	5.374280	20	PASS
11AC80SIS	Ant1	5210	NV	10	28000.00	5.374280	20	PASS
0			NV	20	28000.00	5.374280	20	PASS
			NV	30	27000.00	5.182342	20	PASS
			NV	40	28000.00	5.374280	20	PASS
			NV	50	28000.00	5.374280	20	PASS

Note: All the modulation and channels had been tested, but only the worst data recorded in the report.

Report No.: CQASZ20230500829E-03

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is FPC antenna.

The connection/connection type between the antenna to the EUT's antenna port is: unique coupling. This is either permanently attachment or a unique coupling that satisfies the requirement.

Report No.: CQASZ20230500829E-03

Appendix G): Operation in the absence of information to the transmit

15.407(c) requirement:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signal ling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

Operation in the absence of information to the transmit

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ASK message transmitting from remote device and verify whether it shall resend or discontinue transmission. (manufacturer declare)

Report No.: CQASZ20230500829E-03

Appendix H): AC Power Line Conducted Emission

Appendix 11). A	5 Fower Line Condu		1					
Test Procedure:	Test frequency range :150KHz 1)The mains terminal disturba 2) The EUT was connected to Stabilization Network) which power cables of all other to which was bonded to the growth for the unit being measure multiple power cables to a exceeded. 3)The tabletop EUT was place reference plane. And for fix horizontal ground reference 4) The test was performed we EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 5) In order to find the maximulal of the interface cable conducted measurement.	nce voltage test was con AC power source through provides a 50Ω/50μ units of the EUT were ground reference plane and A multiple socket of single LISN provided the dupon a non-metalling por-standing arrangement and vertical ground reference to the horizontal ground associated equipment and associated equipment with the provided provided and associated equipment with the provided provid	rough a LISN 1 (Line In In H + 5Ω linear impedition on the same way as utlet strip was used the rating of the LISN of table 0.8m above the table 0.8m above the table 0.8m above the table of the EUT was plant of the EUT was plant of the table of the ground of the ground of the ground of the LISN 1 and the table of the LISN 1 and table of table of the LISN 1 and table of table	mpedance lance. The hd LISN 2, the LISN 1 to connect was not the ground ced on the rear of the cal ground. The LISN onded to a reference d the EUT. In from the pment and				
Limit:		Limit (d	BμV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56* 56 to 46*						
	0.5-5	56 46						
	5-30	60 50						
	* The limit decreases linearly MHz to 0.50 MHz. NOTE : The lower limit is appl	_		range 0.15				

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

			Read			Limit	Over	61	0 1 /01
		Freq	rever	Factor	Level	Line	Limit	Remark	Pol/Phase
	8	MHz	dBuV	dB	dBuV	dBuV	dB		:
1		0.160	28.55	9.68	38.23	55.46	-17.23	Average	Line
2		0.160	48.12	9.68	57.80	65.46	-7.66	QP	Line
3		0.185	29.19	9.64	38.83	54.26	-15.43	Average	Line
4		0.185	46.34	9.64	55.98	64.26	-8.28	QP	Line
5		0.205	29.23	9.61	38.84	53.41	-14.57	Average	Line
6		0.205	45.88	9.61	55.49	63.41	-7.92	QP	Line
7		0.250	26.75	9.55	36.30	51.76	-15.46	Average	Line
7 8 9		0.250	43.81	9.55	53.36	61.76	-8.40	QP	Line
9		0.510	30.30	9.71	40.01	46.00	-5.99	Average	Line
10		0.510	38.10	9.71	47.81	56.00	-8.19	QP	Line
11	PP	0.535	31.52	9.74	41.26	46.00	-4.74	Average	Line
12	QP	0.535	39.19	9.74	48.93	56.00	-7.07	QP	Line

Report No.: CQASZ20230500829E-03

Neutral line:

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. The 6Mbps of rate of 802.11A_5240 is the worst case, only the worst data recorded in the report.

Report No.: CQASZ20230500829E-03

Appendix I): Restricted bands around fundamental frequency (Radiated Emission)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak			
	Ab 4011-	Peak	1MHz	3MHz	Peak			
	Above 1GHz	Peak	1MHz	10Hz	Average			
Test Procedure:	Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-aneod determine the position. b. The EUT was set 3 me was mounted on the to. c. The antenna height is was determine the maximum polarizations of the antenna was tuned was turned from 0 degree. The test-receiver systems Bandwidth with Maximum f. Place a marker at the effequency to show combands. Save the spectre for lowest and highest of the fire test procedum g. Different between about to fully Anechoic Chammetre (Above 18GHz the EUT in the lowest in the lowest and highest of the EUT in the lowest in the lowest and highest of the EUT in the lowest in the lowest and highest of the EUT in the lowest in the lowest and highest of the EUT in the lowest in the lowest and highest of the EUT in the lowest in the EUT in the lowest in the lowest and highest of the EUT in the lowest in the EUT in the	n the top of a rochoic camber. The highest raters away from a pof a variable-haried from one movalue of the file enna are set to hission, the EUT to heights from a set to a 360 degram was set to Peum Hold Mode. End of the restrict pliance. Also move an analyzer place is the test site aber and change the distance is 1 west channel, the ments are perford found the X axis and change and found the X axis are perford found the X axis are performed for a xis are performed	ne table was adiation. the interfer neight anter meter to fo eld strength make the n was arran 1 meter to rees to find eak Detect ted band of easure any ot. Repeat f e, change fr e form table meter and the Highest rmed in X, kis positioni	ence-receinna tower. ur meters n. Both horneasureme ged to its the maxin Function a closest to the emissions for each por com Semi- 0.8 metre table is 1.9 channel Y, Z axis p ng which i	above the gro- rizontal and verset. worst case an and the rotata num reading. nd Specified the transmit is in the restrict ower and mod Anechoic Chato 1.5 metre).	which und to ertical d then ble ted ulation		
Limit:	Frequency 30MHz-88MHz	Limit (dBµV/i			mark eak Value			
	30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value							
	216MHz-960MHz	46.0		· ·	eak Value			
	960MHz-1GHz	54.0		<u> </u>	eak Value			
	54.0 Average Value							
	Above 1GHz	74.0		Peak Value				

Report No.: CQASZ20230500829E-03

Test plot as follows:

Worse case	mode:	802.11a(6Mbps)		Test channel:		36	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
5150.00	61.38	-3.63	57.75	74	-16.25	peak	Н
5150.00	44.20	-3.63	40.57	54	-13.43	AVG	Н
5150.00	45.38	-3.63	41.75	74	-32.25	peak	V
5150.00	43.99	-3.63	40.36	54	-13.64	AVG	V

Worse case	mode:	802.11a(6Mbps)		Test chann	el:	48		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V	
5350.00	55.23	-3.59	51.64	74	-22.36	peak	Н	
5350.00	42.14	-3.59	38.55	54	-15.45	AVG	Н	
5350.00	52.70	-3.59	49.11	74	-24.89	peak	V	
5350.00	38.60	-3.59	35.01	54	-18.99	AVG	V	

Worse case	mode:	802.11n(HT20)(6.5Mbps) Test channel:		el:	36		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	62.07	-3.63	58.44	74	-15.56	peak	Н
5150.00	44.55	-3.63	40.92	54	-13.08	AVG	Н
5150.00	44.31	-3.63	40.68	74	-33.32	peak	V
5150.00	45.53	-3.63	41.90	54	-12.10	AVG	V

Worse case mode:		802.11n(HT20)(6.5Mbps)		Test channel:		48	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	56.92	-3.59	53.33	74	-20.67	peak	Н
5350.00	43.16	-3.59	39.57	54	-14.43	AVG	Н
5350.00	53.45	-3.59	49.86	74	-24.14	peak	V
5350.00	38.33	-3.59	34.74	54	-19.26	AVG	V

Worse case	Worse case mode: 802.11n(HT40)(13.5Mbps)		/lbps)	Test channel:		38	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150	62.02	-3.63	58.39	74	-15.61	peak	Н
5150	46.27	-3.63	42.64	54	-11.36	AVG	Н
5150	44.42	-3.63	40.79	74	-33.21	peak	V
5150	44.77	-3.63	41.14	54	-12.86	AVG	V

Worse case	mode:	802.11n(HT40)(13.5Mbps)		Test channel:		46	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	55.52	-3.59	51.93	74	-22.07	peak	Н
5350.00	41.39	-3.59	37.80	54	-16.20	AVG	Н
5350.00	51.78	-3.59	48.19	74	-25.81	peak	V
5350.00	38.27	-3.59	34.68	54	-19.32	AVG	V

Worse case	mode:	802.11ac(HT20)(6.5N	5Mbps) Test channel:		36		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	60.39	-3.63	56.76	74	-17.24	peak	Н
5150.00	44.63	-3.63	41.00	54	-13.00	AVG	Н
5150.00	44.76	-3.63	41.13	74	-32.87	peak	V
5150.00	44.27	-3.63	40.64	54	-13.36	AVG	V

Worse case	mode:	802.11ac(HT20)(6.5Mbps) Test channel		el:	48		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	57.07	-3.59	53.48	74	-20.52	peak	Н
5350.00	41.43	-3.59	37.84	54	-16.16	AVG	Н
5350.00	52.20	-3.59	48.61	74	-25.39	peak	V
5350.00	37.58	-3.59	33.99	54	-20.01	AVG	V

Worse case	mode:	le: 802.11ac(VHT40)(13.5Mbps) Test char		Test chann	el:	38	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	60.90	-3.63	57.27	74	-16.73	peak	Н
5150.00	45.59	-3.63	41.96	54	-12.04	AVG	Τ
5150.00	44.39	-3.63	40.76	74	-33.24	peak	V
5150.00	45.88	-3.63	42.25	54	-11.75	AVG	V

Report No.: CQASZ20230500829E-03

Worse case	e case mode: 802.11ac(VHT40)(13.5Ml		.5Mbps)	Test channel:		46	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	55.52	-3.59	51.93	74	-22.07	peak	Н
5350.00	42.91	-3.59	39.32	54	-14.68	AVG	Н
5350.00	51.88	-3.59	48.29	74	-25.71	peak	V
5350.00	36.36	-3.59	32.77	54	-21.23	AVG	V

Worse case	mode:	802.11ac(VHT80)(29	.3Mbps)	Test chann	el:	42	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	60.46	-3.63	56.83	74	-17.17	peak	Н
5150.00	43.89	-3.63	40.26	54	-13.74	AVG	Н
5150.00	44.82	-3.63	41.19	74	-32.81	peak	V
5150.00	46.34	-3.63	42.71	54	-11.29	AVG	V
5350.00	54.83	-3.59	51.24	74	-21.15	peak	Н
5350.00	41.59	-3.59	38.00	54	-14.77	AVG	Н
5350.00	52.59	-3.59	49.00	74	-20.04	peak	V
5350.00	37.64	-3.59	34.05	54	-13.43	AVG	V

Note:

Final Test Level =Receiver Reading - Correct Factor
Correct Factor = Preamplifier Factor—Antenna Factor—Cable Factor

¹⁾ Through Pre-scan transmitting mode with all kind of modulation and data rate, Only the worst case is recorded in the report.

²⁾ The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Report No.: CQASZ20230500829E-03

Appendix J): Radiated Spurious Emissions

Receiver Setup:

_		1		
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre)
- h. Test the EUT in the lowest channel .the middle channel .the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

L	ir	n	it:	
_	••	٠.	•••	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/cm)	Remark	Measurement distance (cm)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test result: PASS

Test Data: Radiated Emission below 1GHz

30MHz~1GHz		
Test mode:	Transmitting (802.11a 36CH)	Vertical

Report No.: CQASZ20230500829E-03

Transmitter Emission above 1GHz

Transmitter Emission above Tonz								
Test mode:	802.11a(6Mbps)		Test channel:		36 CH			
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol.	
10360	53.04	2.26	55.30	74	-18.70	peak	Н	
10360	36.92	2.26	39.18	54	-14.82	AVG	Н	
15540	51.94	3.75	55.69	74	-18.31	peak	Н	
15540	38.69	3.75	42.44	54	-11.56	AVG	Н	
10360	55.80	2.26	58.06	74	-15.94	peak	V	
10360	38.22	2.26	40.48	54	-13.52	AVG	V	
15540	51.87	3.75	55.62	74	-18.38	peak	V	
15540	36.10	3.75	39.85	54	-14.15	AVG	V	

Test mode:	802.11a(6Mbps)			Test channel:		48 CH	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
10480	52.62	2.31	54.93	74	-19.07	peak	Н
10480	36.96	2.31	39.27	54	-14.73	AVG	Н
15720	49.93	3.79	53.72	74	-20.28	peak	Н
15720	35.71	3.79	39.50	54	-14.50	AVG	Н
10480	53.49	2.31	55.80	74	-18.20	peak	V
10480	36.97	2.31	39.28	54	-14.72	AVG	V
15720	49.23	3.79	53.02	74	-20.98	peak	V
15720	36.04	3.79	39.83	54	-14.17	AVG	V

Remark:

- 1) The 802.11a 6Mbps of rate is the worst case, only the worst data recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 40GHz, The disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: CQASZ20230500829E-03

8 Photographs - EUT Test Setup

8.1 Radiated Spurious Emission

Report No.: CQASZ20230500829E-03

8.2 Conducted Emissions Test Setup

Report No.: CQASZ20230500829E-03

9 Photographs - EUT Constructional Details

Refer to PHOTOGRAPHS OF EUT for CQASZ20230500829E-01.

*** END OF REPORT ***