

Report Sea

Report No.: EED32Q80830301 Page 1 of 40

TEST REPORT

Product : Smart LED Table Light

Trade mark : N/A

Model/Type reference : TB1, TB2

Serial Number : N/A

Report Number : EED32Q80830301

FCC ID : 2A3MATB

Date of Issue : Nov. 14, 2024

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

LEPRO INNOVATION INC 3651 Lindell Road Suite D1048, Las Vegas, NV 89103, USA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

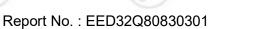
TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

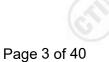
Check No.: 2108170624

Page 2 of 40 Report No.: EED32Q80830301

Content

1 CONTENT	2
2 VERSION	3
3 TEST SUMMARY	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT 4.5 DESCRIPTION OF SUPPORT UNITS 4.6 TEST LOCATION 4.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
5 EQUIPMENT LIST	9
6 TEST RESULTS AND MEASUREMENT DATA	
6.1 ANTENNA REQUIREMENT 6.2 CONDUCTED EMISSIONS 6.3 MAXIMUM CONDUCTED OUTPUT POWER 6.4 DTS BANDWIDTH 6.5 MAXIMUM POWER SPECTRAL DENSITY 6.6 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOUS EMISSION 6.7 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
7 PHOTOGRAPHS OF TEST SETUP	31
8 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	33





2 Version

Version No.	Date	Description	
00	Nov. 14, 2024	Original	
	*	60	/%
((5)	(50)	(6/1)

Report No.: EED32Q80830301 Page 4 of 40

3 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)		
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & 47 CFR Part 15 Subpart C Section 15.205/15.209		PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model: TB1, TB2

Only model TB1 was tested, the following model numbers have same electrical, PCB and layout, only the model name, TB1and TB2 are different for marketing requirements. See below for details.

Model	TB1	TB2
Electrical	Same	
PCB Layout	Same	

Report No. : EED32Q80830301 Page 5 of 40

4 General Information

4.1 Client Information

Applicant:	LEPRO INNOVATION INC	
Address of Applicant:	3651 Lindell Road Suite D1048, Las Vegas, NV 89103, USA	
Manufacturer:	LEPRO INNOVATION INC	
Address of Manufacturer:	3651 Lindell Road Suite D1048, Las Vegas, NV 89103, USA	
Factory:	Foshan Yunlu Lighting Factory	
Address of Factory:	No.1, Jiebei Road, Nanhai National Eco-industrial Zone, Danzao Town, Nanhai District, Foshan City, Guangdong Province, P.R.China	

4.2 General Description of EUT

1.47		1 44 21	1
Product Name:	Smart LED Table Light	(6,	
Model No.:	TB1, TB2		
Test Model No.:	TB1		
Trade mark:	N/A		
Product Type:	☐ Mobile ☐ Portable ☒ Fixed Location		(0)
Operation Frequency:	2402MHz~2480MHz		
Modulation Type:	GFSK		
Transfer Rate:	⊠1Mbps ⊠2Mbps		
Number of Channel:	40	(0,5)	
Antenna Type:	PCB Antenna		
Antenna Gain:	4.54 dBi		
Power Supply:	Model: XY24SR-050300VQ-UW INPUT: 100-240V~ 50/60Hz 0.6A Max OUTPUT: 5V/3.0A		
Test Voltage:	DC 5V		
Number of prototypes:	EED32Q80830301 EED32Q80830302		
Sample Received Date:	Jul. 01, 2024		
Sample tested Date:	Jul. 01, 2024 to Nov. 14, 2024	(0,	

Page 6 of 40 Report No.: EED32Q80830301

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Test Configuration

EUT Test Software Settings:						
Test Software:	EspRFTest	EspRFTestTool_v3.6_Manual				
EUT Power Grade:	Default (Posselected)	Default (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to transmitting of the E	set the lowest frequency UT.	, the middle freque	ncy and the highest f	requency keep		
Test Mode Modulation		Rate	Channel	Frequency(MHz)		
Mode a	Mode a GFSK		CH0	2402		
Mode b	Mode b GFSK		CH19	2440		
Mode c	GFSK	1Mbps	CH39	2480		

Page 7 of 40 Report No.: EED32Q80830301

4.4 Test Environment

	Operating Environment	t:					
	Radiated Spurious Emi	ssions:					
11	Temperature:	22~25.0 °C	(20)		(41)		(41)
1	Humidity:	50~55 % RH	0		(0)		6
	Atmospheric Pressure:	1010mbar					
	Conducted Emissions:						
	Temperature:	22~25.0 °C		(3)		(20)	
	Humidity:	50~55 % RH		(0,		(0,)	
	Atmospheric Pressure:	1010mbar					
	RF Conducted:						
	Temperature:	22~25.0 °C					
(")	Humidity:	50~55 % RH	(6,2)		(6,2,2)		(6.2.)
	Atmospheric Pressure:	1010mbar					

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	HP	14-ce0061TX	FCC&CE	СТІ
Netbook	НР	HP ZHAN 66 Pro 14 G4 Notebook PC	FCC&CE	СТІ

4.6 Test Location

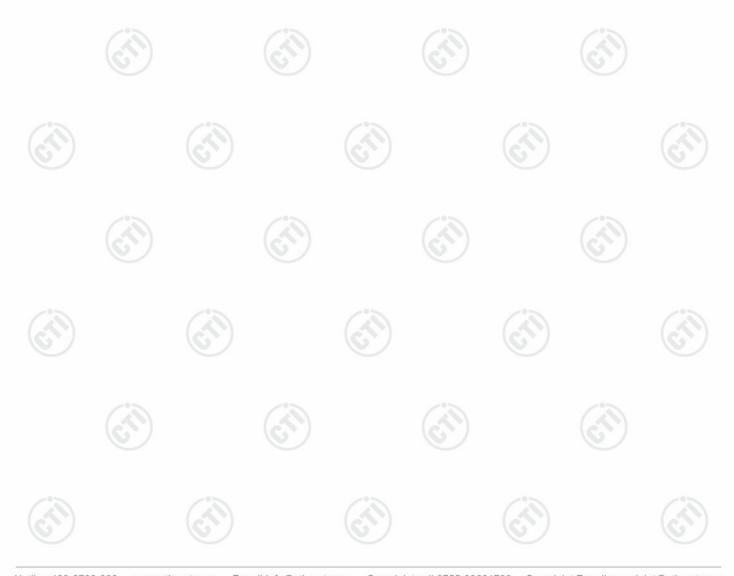
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dadiated Spurious amission test	4.3dB (30MHz-1GHz)
J	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
(P)		3.4dB (18GHz-40GHz)
97	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32Q80830301 Page 9 of 40

5 Equipment List

		RF test	system			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-14-2023	12-13-2024	
Signal Generator	Keysight	N5182B	MY53051549	12-11-2023	12-10-2024	
DC Power	Keysight	E3642A	MY56376072	12-11-2023	12-10-2024	
Communication test	R&S	CMW500	169004	03-08-2024	03-07-2025	
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	08-04-2023 07-22-2024	08-03-2024 07-21-2025	
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	05-31-2024	05-30-2025	
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-11-2023	12-10-2024	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-01-2023 05-29-2024	05-31-2024 05-28-2025	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20			
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025	

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025			
Temperature/ Humidity Indicator	Defu	TH128		04-25-2024	04-24-2025			
LICAL	R&S	ENIV/046	400000	09-22-2023	09-21-2024			
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025			
Barometer	changchun	DYM3	1188	(C)-1	(6)			
Test software	Fara	EZ-EMC	EMC-CON					

Report No.: EED32Q80830301 Page 10 of 40

(2)	(3)	/	3A1.1	/	a constant
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025
ISN	TESEQ	ISN T800	30297	12-14-2023	12-13-2024

Equipment	Manufacturer	Model No.	Serial	Cal. date	Cal. Due date	
			Number	(mm-dd-yyyy)	(mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938- 003	09/22/2023 09/07/2024	09/21/2024 09/06/2025	
Spectrum Analyzer	R&S	FSV40	101200	07/25/2023 07/18/2024	07/24/2024 07/17/2025	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025	
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/14/2023	12/13/2024	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025	
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025	
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025	
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre		-	
Cable line	Fulai(7M)	SF106	5219/6A		0	
Cable line	Fulai(6M)	SF106	5220/6A		<u></u>	
Cable line	Fulai(3M)	SF106	5216/6A			
Cable line	Fulai(3M)	SF106	5217/6A	(<u></u>	

Report No. : EED32Q80830301 Page 11 of 40

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023	12-13-2024
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	C.	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		-(1)
Cable line	Times	EMC104-NMNM-1000	SN160710	<u></u>	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(3)
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32Q80830301 Page 12 of 40

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 4.54dBi.

Report No. : EED32Q80830301 Page 13 of 40

6.2 Conducted Emissions

ssions						
47 CFR Part 15C Section 15.	207	(0,)				
ANSI C63.10: 2013						
150kHz to 30MHz						
(65)	Limit (d	dBuV)				
Frequency range (MHz)		Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
() ()		50				
10.0	10.0 /	(6.7)				
Г						
AC Mains LISN1	Ground Reference Plane	Test Receiver				
The mains terminal disturbance voltage test was conducted in a sh room.						
 The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linea impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was 						
4) The test was performed we the EUT shall be 0.4 me vertical ground reference reference plane. The LIS unit under test and bore mounted on top of the ground the closest points of the and associated equipments. 5) In order to find the maximal and all of the interface care.	ith a vertical ground ref from the vertical ground e plane was bonded N 1 was placed 0.8 m anded to a ground ref aund reference plane. T LISN 1 and the EUT. A t was at least 0.8 m fro um emission, the relati bles must be changed	ference plane. The rear of and reference plane. The to the horizontal ground from the boundary of the ference plane for LISNs his distance was between All other units of the EUT m the LISN 2. Ive positions of equipment according to				
16.7	16.7	16.7				
	ANSI C63.10: 2013 150kHz to 30MHz RBW=9 kHz, VBW=30 kHz, S Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarithm room. 2) The EUT was connected impedance Stabilization Nimpedance. The power connected to a second Lliplane in the same way multiple socket outlet stripsingle LISN provided the right single LISN provid	ANSI C63.10: 2013 150kHz to 30MHz RBW=9 kHz, VBW=30 kHz, Sweep time=auto Frequency range (MHz) Ouasi-peak 0.15-0.5 66 to 56* 0.5-5 5-30 * Decreases with the logarithm of the frequency. Shielding Room Caround Reference Plane 1) The mains terminal disturbance voltage test was room. 2) The EUT was connected to AC power source Impedance Stabilization Network) which provide impedance. The power cables of all other connected to a second LISN 2, which was bonder plane in the same way as the LISN 1 for the multiple socket outlet strip was used to connected single LISN provided the rating of the LISN was as 3) The tabletop EUT was placed upon a non-meta				

the report.

Report No.: EED32Q80830301 Page 14 of 40

Test Results:	Pass		
---------------	------	--	--

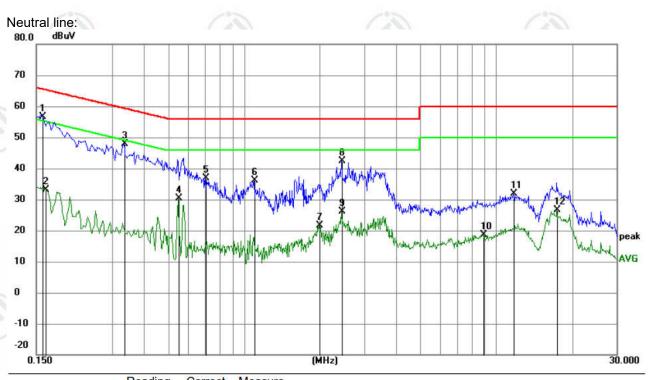
Measurement Data

Live line: 80.0 dBuV 70 60 40 30 20 10 -10 -20

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	48.23	9.87	58.10	66.00	-7.90	QP	
2		0.1500	26.92	9.87	36.79	56.00	-19.21	AVG	
3		0.2895	39.31	9.58	48.89	60.54	-11.65	QP	
4		0.3525	35.77	9.67	45.44	58.90	-13.46	QP	
5		0.5460	14.27	9.69	23.96	46.00	-22.04	AVG	
6		1.0005	23.74	9.74	33.48	56.00	-22.52	QP	
7		2.3280	12.30	9.76	22.06	46.00	-23.94	AVG	
8		2.6430	33.44	9.77	43.21	56.00	-12.79	QP	
9		3.4935	16.76	9.79	26.55	46.00	-19.45	AVG	
10		16.0620	29.29	9.89	39.18	60.00	-20.82	QP	
11		16.0620	18.87	9.89	28.76	50.00	-21.24	AVG	
12		20.4090	11.61	10.03	21.64	50.00	-28.36	AVG	

(MHz)

30.000


Remark:

0.150

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.1590	46.82	9.88	56.70	65.52	-8.82	QP		
2		0.1641	23.22	9.88	33.10	55.25	-22.15	AVG		
3		0.3345	38.29	9.63	47.92	59.34	-11.42	QP		
4		0.5505	20.68	9.68	30.36	46.00	-15.64	AVG		
5		0.7035	27.01	9.99	37.00	56.00	-19.00	QP		
6		1.0995	26.35	9.74	36.09	56.00	-19.91	QP		
7		1.9860	11.91	9.75	21.66	46.00	-24.34	AVG		
8		2.4360	32.53	9.76	42.29	56.00	-13.71	QP		- 3
9		2.4360	16.48	9.76	26.24	46.00	-19.76	AVG		
10		8.8710	8.90	9.84	18.74	50.00	-31.26	AVG		
11		11.7015	21.92	9.84	31.76	60.00	-28.24	QP		
12		17.3940	16.61	9.94	26.55	50.00	-23.45	AVG		- B

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

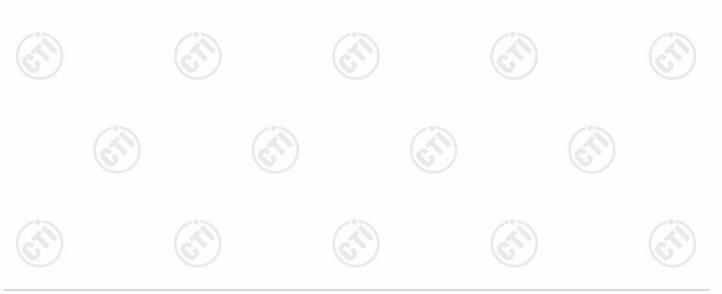
6.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Congular Power Supply Power Pool Table EUT RF test System System Instrument Table	
	Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Swann time = auto sounds 	
	 d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	
Limit:	30dBm	/ *>
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix Bluetooth LE	
	Test Method: Test Setup: Test Procedure: Limit: Test Mode:	Test Method: Test Setup: RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. Test Procedure: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. Limit: 30dBm Test Mode: Refer to clause 5.3

Report No.: EED32Q80830301 Page 17 of 40

6.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10 2013					
Test Setup:						
	Control Computer Computer Computer Control					
	Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. 					
Limit:	≥ 500 kHz					
Test Mode:	Refer to clause 5.3					
Test Results:	Refer to Appendix Bluetooth LE					



6.5 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C Section 15.247 (e)						
	Test Method:	ANSI C63.10 2013						
3	Test Setup:							
		Control Computer Power poid Power poid Table	RF test System Instrument					
10 A		Remark: Offset=Cable loss+ attenuat	ion factor.					
2 (2.7)	Test Procedure:	within the RBW.	bandwidth.					
	Limit:	≤8.00dBm/3kHz						
	Test Mode:	Refer to clause 5.3						
	Test Results:	Refer to Appendix Bluetooth LE						

6.6 Band Edge measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	RF test System Fower port Table RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE

6.7 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Sec	tion 1	5.209 and 1	5.205		160	
Test Method:	ANSI C63.10 2013						
Test Site:	Measurement Distance	e: 3n	n (Semi-Ane	choic Cha	mbe	r)	-07
Receiver Setup:	Frequency	(9)	Detector	RB	W VBW		Remark
	0.009MHz-0.090M	Hz	Peak	10k	Hz	30kHz	Peak
	0.009MHz-0.090M	Hz	Average	10k	Hz	30kHz	Average
	0.090MHz-0.110M	Hz	Quasi-pea	ak 10k	Hz	30kHz	Quasi-peak
	0.110MHz-0.490M	Hz	Peak	10k	Hz	30kHz	Peak
	0.110MHz-0.490M	Hz	Average	10k	Hz	30kHz	Average
	0.490MHz -30MH	lz	Quasi-pea	ak 10k	Hz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-pea	ak 100	kHz	300kHz	Quasi-peak
	Above 4011	18	Peak	ak 1MI		3MHz	Peak
	Above 1GHz		Peak	1M	Hz	10kHz	Average
Limit:	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	Remark		Measurement distance (m)
	0.009MHz-0.490MHz	240	00/F(kHz)	-	- /0		300
	0.490MHz-1.705MHz	240	00/F(kHz)	-	- (3		30
	1.705MHz-30MHz		30			-	30
	30MHz-88MHz		100	40.0	Qua	asi-peak	3
	88MHz-216MHz		150	43.5	Qua	asi-peak	3
	216MHz-960MHz		200	46.0	Qua	asi-peak	3
	960MHz-1GHz	\cup	500	54.0	Qua	asi-peak	3
	Above 1GHz		500	54.0	A۱	verage	3
	Note: 15.35(b), frequency emissions limit applicable to the peak emission level ra	is 20d equip	IB above the oment under	e maximu test. This	m pe	rmitted av	erage emission

Report No.: EED32Q80830301 Page 21 of 40

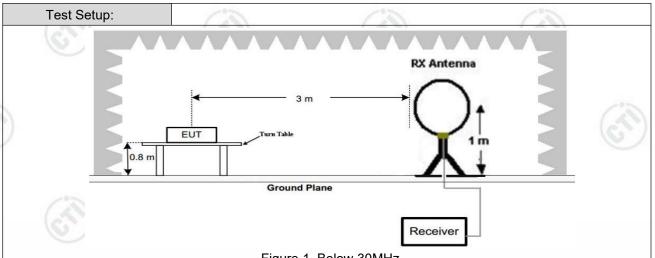


Figure 1. Below 30MHz

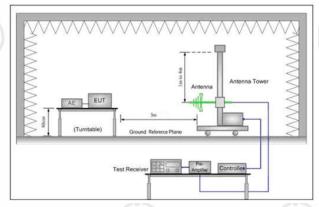


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

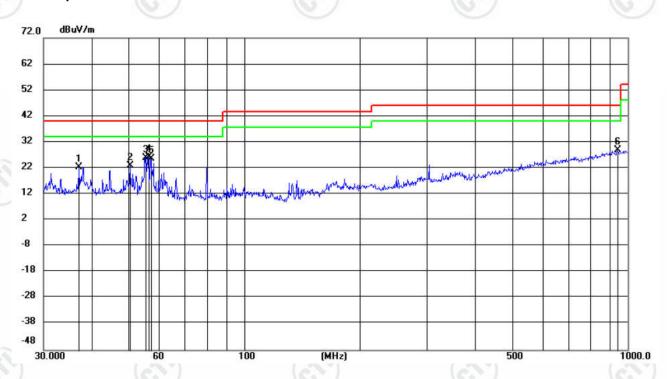
Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Report No. : EED32Q80830301 Page 22 of 40

Test Results: Pa	RSS
	efer to clause 5.3
i.	Repeat above procedures until all frequencies measured was complete.
h.	The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
g.	Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz)
f.	If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dE margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
e.	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

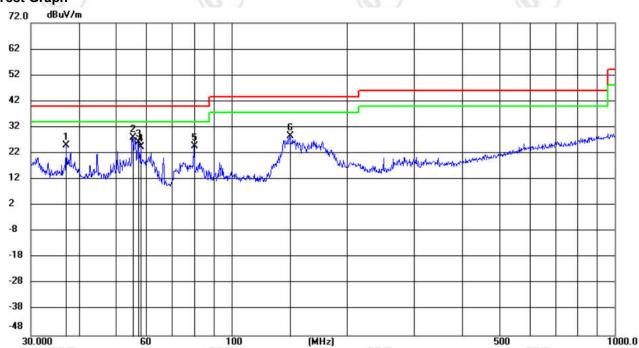


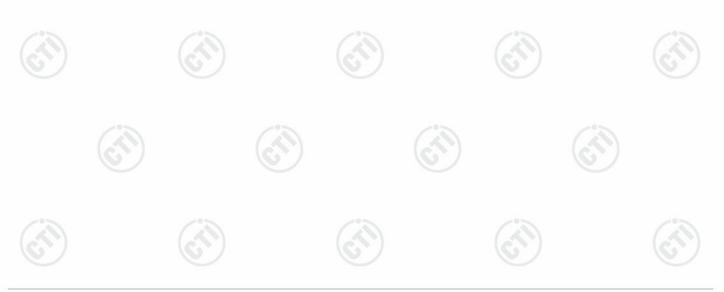
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.

Horizontal:

Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
37.1289	8.88	13.61	22.49	40.00	-17.51	peak	100	331	
50.4795	8.83	14.13	22.96	40.00	-17.04	peak	100	60	
55.2497	12.29	13.69	25.98	40.00	-14.02	peak	199	354	
56.2072	12.50	13.62	26.12	40.00	-13.88	peak	100	227	
57.1212	12.06	13.53	25.59	40.00	-14.41	peak	100	248	
941.4700	1.15	27.66	28.81	46.00	-17.19	peak	100	0	
	MHz 37.1289 50.4795 55.2497 56.2072 57.1212	Freq. Level MHz dBuV 37.1289 8.88 50.4795 8.83 55.2497 12.29 56.2072 12.50 57.1212 12.06	Freq. Level Factor MHz dBuV dB 37.1289 8.88 13.61 50.4795 8.83 14.13 55.2497 12.29 13.69 56.2072 12.50 13.62 57.1212 12.06 13.53	Freq. Level Factor ment MHz dBuV dB dBuV/m 37.1289 8.88 13.61 22.49 50.4795 8.83 14.13 22.96 55.2497 12.29 13.69 25.98 56.2072 12.50 13.62 26.12 57.1212 12.06 13.53 25.59	Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 37.1289 8.88 13.61 22.49 40.00 50.4795 8.83 14.13 22.96 40.00 55.2497 12.29 13.69 25.98 40.00 56.2072 12.50 13.62 26.12 40.00 57.1212 12.06 13.53 25.59 40.00	Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dBuV/m dB 37.1289 8.88 13.61 22.49 40.00 -17.51 50.4795 8.83 14.13 22.96 40.00 -17.04 55.2497 12.29 13.69 25.98 40.00 -14.02 56.2072 12.50 13.62 26.12 40.00 -13.88 57.1212 12.06 13.53 25.59 40.00 -14.41	Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB v/m dB	Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 37.1289 8.88 13.61 22.49 40.00 -17.51 peak 100 50.4795 8.83 14.13 22.96 40.00 -17.04 peak 100 55.2497 12.29 13.69 25.98 40.00 -14.02 peak 199 56.2072 12.50 13.62 26.12 40.00 -13.88 peak 100 57.1212 12.06 13.53 25.59 40.00 -14.41 peak 100	Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 37.1289 8.88 13.61 22.49 40.00 -17.51 peak 100 331 50.4795 8.83 14.13 22.96 40.00 -17.04 peak 100 60 55.2497 12.29 13.69 25.98 40.00 -14.02 peak 199 354 56.2072 12.50 13.62 26.12 40.00 -13.88 peak 100 227 57.1212 12.06 13.53 25.59 40.00 -14.41 peak 100 248





Report No.: EED32Q80830301 Page 24 of 40

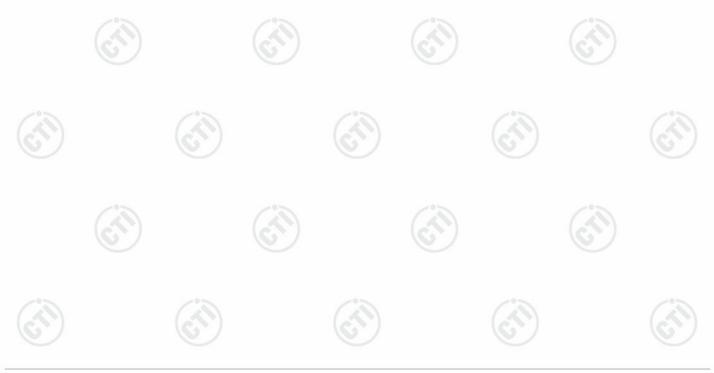
Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	Ŷ	Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		37.1223	11.44	13.61	25.05	40.00	-14.95	peak	100	359	
2	*	55.2304	14.25	13.70	27.95	40.00	-12.05	peak	200	174	
3		57.1313	12.59	13.53	26.12	40.00	-13.88	peak	200	132	
4		58.0807	11.06	13.44	24.50	40.00	-15.50	peak	200	89	
5		79.9964	15.17	9.65	24.82	40.00	-15.18	peak	100	242	
6		142.0502	19.06	9.61	28.67	43.50	-14.83	peak	100	92	

Radiated Spurious Emission above 1GHz:

Mode	:	E	Bluetooth LE G	FSK Transmit	ting	Channel:		2402 MHz	2	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1249.4249	7.86	38.32	46.18	74.00	27.82	Pass	Н	PK	
2	1760.076	8.48	37.80	46.28	74.00	27.72	Pass	Н	PK	
3	3193.0129	-18.53	56.41	37.88	74.00	36.12	Pass	Н	PK	
4	5044.1363	-13.46	50.26	36.80	74.00	37.20	Pass	Н	PK	
5	7806.3204	-3.94	46.34	42.40	74.00	31.60	Pass	Н	PK	
6	13720.7147	4.87	44.18	49.05	74.00	24.95	Pass	Н	PK	
7	1311.8312	7.78	37.98	45.76	74.00	28.24	Pass	V	PK	
8	1658.2658	8.30	37.05	45.35	74.00	28.65	Pass	V	PK	
9	3202.0135	-18.49	53.39	34.90	74.00	39.10	Pass	V	PK	
10	4944.1296	-13.38	49.60	36.22	74.00	37.78	Pass	V	PK	
11	7780.3187	-4.14	46.81	42.67	74.00	31.33	Pass	V	PK	
12	13691.7128	5.18	42.76	47.94	74.00	26.06	Pass	V	PK	

Mode	:		Bluetooth LE G	FSK Transmi	tting	Channel:		2440 MHz	
NO	Freq. [MHz]	Facto [dB]	r Reading [dΒμV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1247.2247	7.87	38.39	46.26	74.00	27.74	Pass	Н	PK
2	1804.4804	8.48	37.20	45.68	74.00	28.32	Pass	Н	PK
3	3193.0129	-18.53	56.52	37.99	74.00	36.01	Pass	Н	PK
4	4781.1187	-13.50	52.35	38.85	74.00	35.15	Pass	Н	PK
5	7759.3173	-4.34	46.79	42.45	74.00	31.55	Pass	Н	PK
6	13661.7108	5.55	43.17	48.72	74.00	25.28	Pass	Н	PK
7	1209.2209	7.97	37.97	45.94	74.00	28.06	Pass	V	PK
8	1930.093	8.97	36.62	45.59	74.00	28.41	Pass	٧	PK
9	3113.0075	-18.87	54.66	35.79	74.00	38.21	Pass	V	PK
10	4711.1141	-13.70	49.23	35.53	74.00	38.47	Pass	V	PK
11	7900.3267	-4.01	46.67	42.66	74.00	31.34	Pass	V	PK
12	14235.749	6.86	41.10	47.96	74.00	26.04	Pass	V	PK

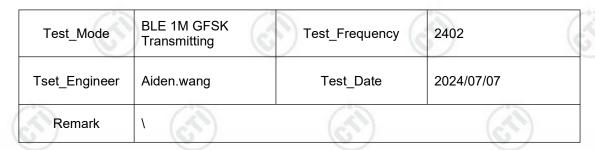


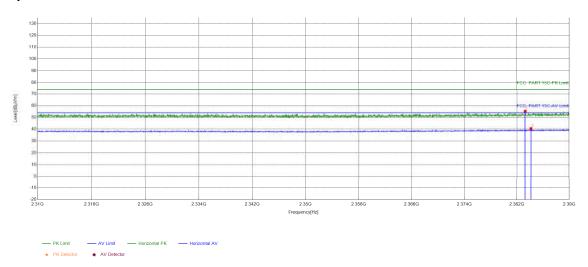
Report No.: EED32Q80830301 Page 26 of 40

_	20%			200		20%		-	0.50	
	Mode	:	В	luetooth LE G	FSK Transmi	tting	Channel:		2480 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1204.4204	7.99	37.96	45.95	74.00	28.05	Pass	Н	PK
3	2	1956.0956	8.97	37.14	46.11	74.00	27.89	Pass	Н	PK
	3	3189.0126	-18.55	57.74	39.19	74.00	34.81	Pass	Н	PK
	4	5441.1627	-11.70	48.56	36.86	74.00	37.14	Pass	Н	PK
	5	7779.3186	-4.14	46.84	42.70	74.00	31.30	Pass	Н	PK
	6	14217.7478	7.01	40.93	47.94	74.00	26.06	Pass	Н	PK
	7	1344.0344	7.94	37.93	45.87	74.00	28.13	Pass	V	PK
	8	2025.5026	9.13	36.80	45.93	74.00	28.07	Pass	V	PK
	9	3307.0205	-18.07	53.19	35.12	74.00	38.88	Pass	V	PK
	10	4863.1242	-13.46	49.84	36.38	74.00	37.62	Pass	V	PK
	11	7791.3194	-4.02	46.65	42.63	74.00	31.37	Pass	V	PK
6	12	13712.7142	4.95	43.58	48.53	74.00	25.47	Pass	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.
- During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.

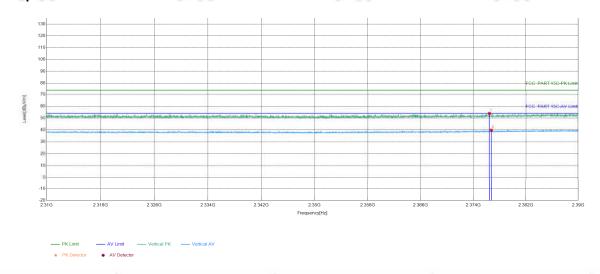




Restricted bands:

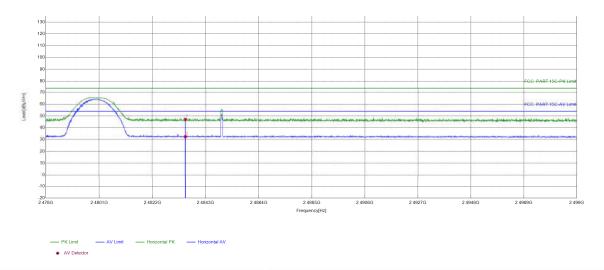
Test plot as follows:

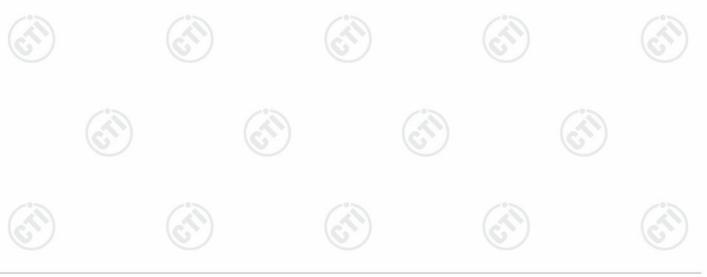
Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Readin g [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2383.2785	15.09	40.21	55.30	74.00	18.70	PASS	Horizontal	PK	
2	2384.1498	15.12	25.40	40.52	54.00	13.48	PASS	Horizontal	AV	



Page 28 of 40 Report No.: EED32Q80830301

6.71	(0.70)	10.7	162
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402
Tset_Engineer	Aiden.wang	Test_Date	2024/07/07
Remark	1		

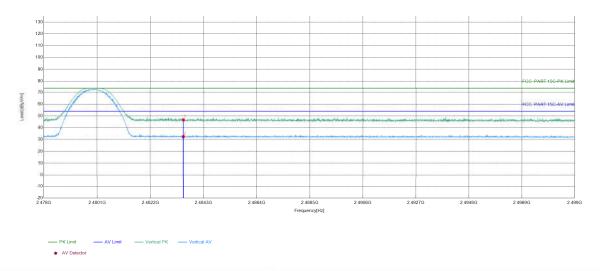

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Readi ng [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2376.4681	14.87	39.04	53.91	74.00	20.09	PASS	Vertical	PK
2	2376.7526	14.87	24.97	39.84	54.00	14.16	PASS	Vertical	AV



Page 29 of 40 Report No.: EED32Q80830301

651	(0.77)	(C.)	100
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480
Tset_Engineer	Aiden.wang	Test_Date	2024/07/07
Remark	1		

	Suspected List									
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	36.84	47.22	74.00	26.78	PASS	Horizontal	PK
	2	2483.5	10.38	22.03	32.41	54.00	21.59	PASS	Horizontal	AV



Page 30 of 40 Report No.: EED32Q80830301

651	(0.77)	(C.)	100		
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480		
Tset_Engineer	Aiden.wang	Test_Date	2024/07/07		
Remark	1				

Test Graph

Suspecte	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.38	36.40	46.78	74.00	27.22	PASS	Vertical	PK
2	2483.5	10.38	22.09	32.47	54.00	21.53	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.

