

Report No.: SZEM180400321702 Page: 1 of 36

Appendix B

LTE-M1 BAND12

Report No.: SZEM180400321702 Page: 2 of 36

CONTENT

1	EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
2	PEAK-TO-AVERAGE RATIO	6
	2.1 For LTE-M1	6
	2.1.1 Test Band = LTE-M1 band12	6
3	MODULATION CHARACTERISTICS	13
	3.1 For LTE-M1	13
	3.1.1 Test Band = LTE-M1 band12	13
4	BANDWIDTH	15
	4.1 For LTE	15
	4.1.1 Test Band = LTE-M1 band12	15
5	BAND EDGES COMPLIANCE	22
	5.1 For LTE-M1	22
	5.1.1 Test Band = LTE-M1 band12	22
6	SPURIOUS EMISSION AT ANTENNA TERMINAL	27
	6.1 For LTE-M1	27
	6.1.1 Test Band = LTE-M1 band12	27
7	FIELD STRENGTH OF SPURIOUS RADIATION	31
	7.1 For LTE-M1	31
	7.1.1 Test Band = LTE-M1 band12	31
8	FREQUENCY STABILITY	33
	8.1 FREQUENCY ERROR VS. VOLTAGE	33
	8.2 FREQUENCY ERROR VS. TEMPERATURE	34

Report No.: SZEM180400321702 Page: 3 of 36

1 Effective (Isotropic) Radiated Power Output Data

Effect	Effective Isotropic Radiated Power of Transmitter (EIRP) for LTE-M1 BAND12											
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict				
				RB1#0	23.37	20.62	34.77	PASS				
			LCH	RB1#5	23.43	20.68	34.77	PASS				
				RB6#0	22.21	19.46	34.77	PASS				
			MCH	RB1#0	23.19	20.44	34.77	PASS				
BAND12	LTE- M1/TM1	1.4M		RB1#5	23.21	20.46	34.77	PASS				
				RB6#0	22.22	19.47	34.77	PASS				
				RB1#0	23.13	20.38	34.77	PASS				
			HCH	RB1#5	23.16	20.41	34.77	PASS				
				RB6#0	22.05	19.3	34.77	PASS				

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	22.52	19.77	34.77	PASS
			LCH	RB1#5	22.53	19.78	34.77	PASS
				RB6#0	21.28	18.53	34.77	PASS
				RB1#0	22.55	19.8	34.77	PASS
BAND12	LTE- M1/TM2	1.4M	MCH	RB1#5	22.61	19.86	34.77	PASS
				RB6#0	21.26	18.51	34.77	PASS
				RB1#0	22.25	19.5	34.77	PASS
			HCH	RB1#5	22.53	19.78	34.77	PASS
				RB6#0	21.08	18.33	34.77	PASS

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	23.43	20.68	34.77	PASS
			LCH	RB1#5	23.49	20.74	34.77	PASS
				RB6#0	22.33	19.58	34.77	PASS
				RB1#0	23.06	20.31	34.77	PASS
BAND12	LTE- M1/TM1	3M	MCH	RB1#5	23.12	20.37	34.77	PASS
				RB6#0	22.13	19.38	34.77	PASS
				RB1#0	23.01	20.26	34.77	PASS
			HCH	RB1#5	23.07	20.32	34.77	PASS
				RB6#0	22.31	19.56	34.77	PASS

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	22.83	20.08	34.77	PASS
		ЗМ	LCH	RB1#5	22.73	19.98	34.77	PASS
	LTE-			RB6#0	21.06	18.31	34.77	PASS
BAND12	M1/TM2			RB1#0	22.28	19.53	34.77	PASS
			MCH	RB1#5	22.26	19.51	34.77	PASS
				RB6#0	21.08	18.33	34.77	PASS

Report No.: SZEM180400321702 Page: 4 of 36

		RB1#0	22.31	19.56	34.77	PASS
	HCH	RB1#5	22.38	19.63	34.77	PASS
		RB6#0	21.06	18.31	34.77	PASS

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	23.38	20.63	34.77	PASS
			LCH	RB1#5	23.42	20.67	34.77	PASS
		5M		RB6#0	22.41	19.66	34.77	PASS
	LTE- M1/TM1		MCH	RB1#0	23.42	20.67	34.77	PASS
BAND12				RB1#5	23.48	20.73	34.77	PASS
				RB6#0	22.14	19.39	34.77	PASS
				RB1#0	23.25	20.5	34.77	PASS
			HCH	RB1#5	23.27	20.52	34.77	PASS
				RB6#0	22.02	19.27	34.77	PASS

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	22.98	20.23	34.77	PASS
			LCH	RB1#5	22.86	20.11	34.77	PASS
				RB6#0	21.35	18.6	34.77	PASS
	LTE- M1/TM2	5M	МСН	RB1#0	22.42	19.67	34.77	PASS
BAND12				RB1#5	22.87	20.12	34.77	PASS
				RB6#0	21.35	18.6	34.77	PASS
				RB1#0	22.61	19.86	34.77	PASS
			HCH	RB1#5	22.7	19.95	34.77	PASS
				RB6#0	21.25	18.5	34.77	PASS

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	23.19	20.44	34.77	PASS
			LCH	RB1#5	23.23	20.48	34.77	PASS
				RB6#0	22.16	19.41	34.77	PASS
				RB1#0	23.22	20.47	34.77	PASS
BAND12	LTE- M1/TM1	10M	MCH	RB1#5	23.2	20.45	34.77	PASS
				RB6#0	22.1	19.35	34.77	PASS
				RB1#0	23.13	20.38	34.77	PASS
			HCH	RB1#5	23.07	20.32	34.77	PASS
				RB6#0	21.98	19.23	34.77	PASS

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	22.91	20.16	34.77	PASS
			LCH	RB1#5	22.97	20.22	34.77	PASS
				RB6#0	21.17	18.42	34.77	PASS
BAND12	LTE- M1/TM2	10M		RB1#0	22.87	20.12	34.77	PASS
			MCH	RB1#5	22.77	20.02	34.77	PASS
				RB6#0	22.1	19.35	34.77	PASS
			HCH	RB1#0	22.86	20.11	34.77	PASS

Report No.: SZEM180400321702 Page: 5 of 36

 · · · · · · · · · · · · · · · · · · ·						
		RB1#5	22.76	20.01	34.77	PASS
		RB6#0	21.12	18.37	34.77	PASS

Note:

a: For getting the ERP (Efficient Radiated Power) in substitution method, the following formula should be taken to calculate it,

ERP [dBm] = SGP [dBm] – Cable Loss [dB] + Gain [dBd] b: SGP=Signal Generator Level

Report No.: SZEM180400321702 Page: 6 of 36

2 Peak-to-Average Ratio

Part I - Test Results

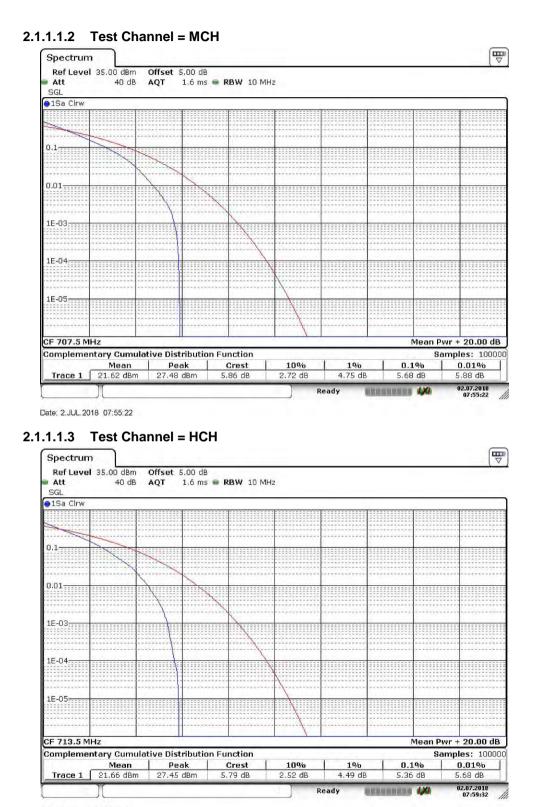
Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
		LCH	5.30	13	PASS
	TM1/5M Full RB	MCH	5.68	13	PASS
		HCH	5.36	13	PASS
	TM1/5M	LCH	4.17	13	PASS
	1 RB	MCH	5.01	13	PASS
BAND12	IKD	HCH	6.17	13	PASS
DANDTZ	TM2/5M Full RB	LCH	5.54	13	PASS
		MCH	6.55	13	PASS
		HCH	5.45	13	PASS
		LCH	5.45	13	PASS
	TM2/5M 1 RB	MCH	5.48	13	PASS
		НСН	5.45	13	PASS

Part II - Test Plots

2.1 For LTE-M1

2.1.1 Test Band = LTE-M1 band12

2.1.1.1 Test Mode = LTE-M1/TM1.Bandwidth=5MHz Full RB


2.1.1.1.1 Test Channel = LCH

Date: 2.JUL.2018 07:44:34

Report No.: SZEM180400321702 Page: 7 of 36

Date: 2.JUL.2018 07:59:32

Report No.: SZEM180400321702 Page: 8 of 36

2.1.1.2.1 Test Channel = LCH B Spectrum Ref Level 35.00 dBm Offset 5.00 dB 1.6 ms 🖷 RBW 10 MHz Att 40 dB AOT SGL ●1Sa Clrv 0.1 0.01= 1E-03-1E-04-1E-05: CF 701.5 MHz Mean Pwr + 20.00 dB Complementary Cumulative Distribution Function Samples: 100000 0.01% Mean Peak Crest 10% 1% 0.1% 26.95 dBm 3.74 dB Trace 1 22.74 dBm 4.21 dB 2.26 dB 4.17 dB 4.23 dB 02.07.2018 ----Ready Date: 2.JUL.2018 07:42:44

2.1.1.2.2 Test Channel = MCH

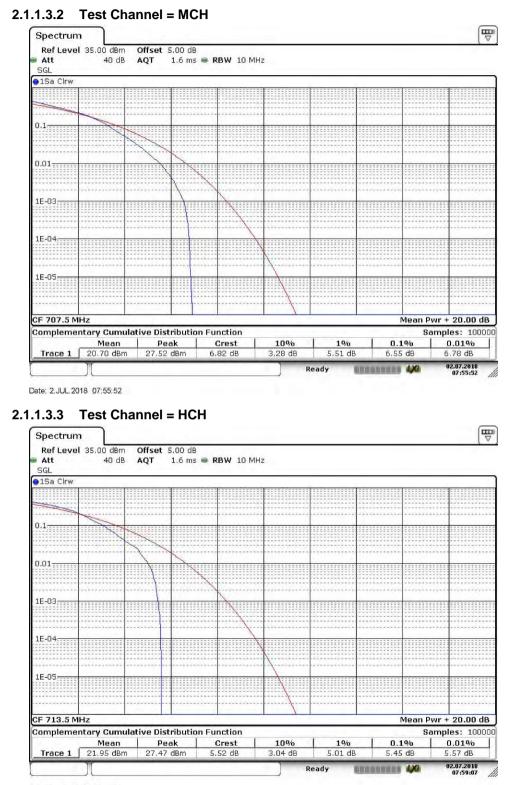

Date: 2.II.II. 2018. 07:56:38

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, This document is issued by the Company subject to this observed printed overlear, available on request or accessible at <u>http://www.sgs.com/en/ terms-and-contions.aspx</u> and, for electronic format documents, subject to Terms and Conditions. for electronic Documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/ terms-and-conditions/Terms-and-Condi</u>

2.1.1.2 Test Mode = LTE-M1/TM1.Bandwidth=5MHz 1 RB

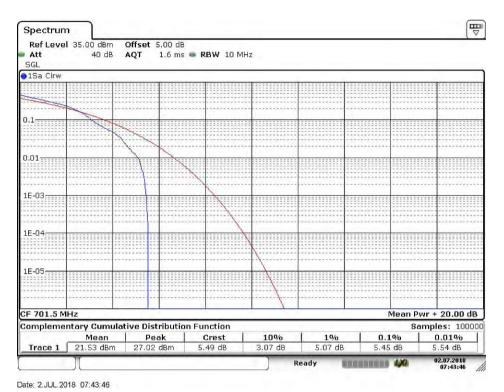
Report No.: SZEM180400321702 Page: 9 of 36

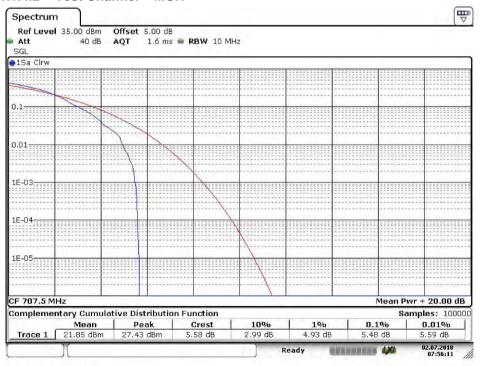
2.1.1.3 Test Mode = LTE-M1/TM2.Bandwidth=5MHz Full RB


2.1.1.3.1 Test Channel = LCH

Date: 2.JUL.2018 07:44:11

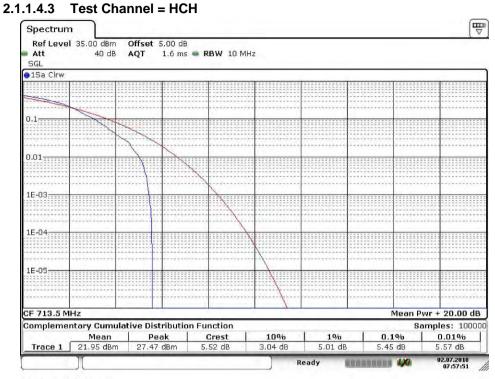
Report No.: SZEM180400321702 Page: 10 of 36


Date: 2.JUL.2018 07:59:07


Report No.: SZEM180400321702 Page: 11 of 36

2.1.1.4 Test Mode = LTE-M1/TM2.Bandwidth=5MHz 1 RB

2.1.1.4.1 Test Channel = LCH

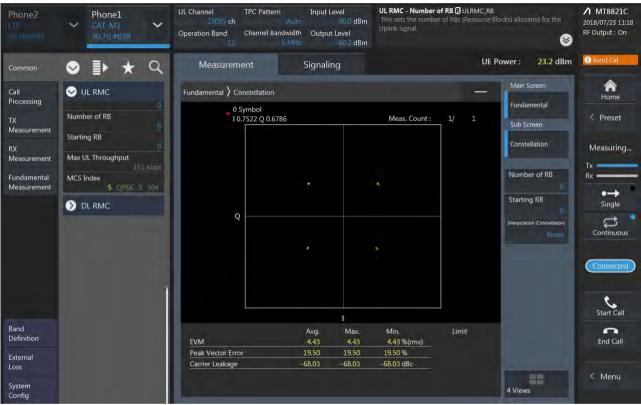

2.1.1.4.2 Test Channel = MCH

Date: 2.JUL.2018 07:56:11

Report No.: SZEM180400321702 Page: 12 of 36

Date: 2.JUL.2018 07:57:52

Report No.: SZEM180400321702 Page: 13 of 36


3 Modulation Characteristics

Part I - Test Plots

3.1 For LTE-M1

- 3.1.1 Test Band = LTE-M1 band12
- 3.1.1.1 Test Mode = LTE-M1 /TM1 5MHz

3.1.1.1.1 Test Channel = MCH

Report No.: SZEM180400321702 Page: 14 of 36

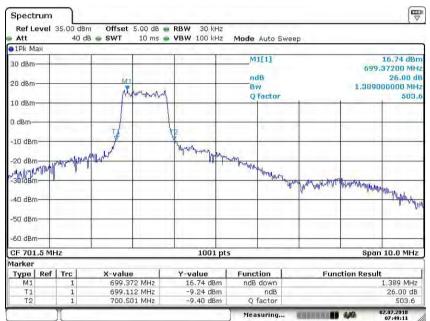
UL Channel TPC Pattern 23095 ch UL RMC - MCS Index 🛚 ULIMCS **∕**1 MT8821C Input Level Phone1 This sets MCS Index for the uplink signal. When setting MCS Index, changes to the modulation scheme and TBS Index settin 0 dBm Operation Band Channel Bandwidth Output Level RF Output : On 0 0.2 dBm . UE Power : 22.4 dBm Q Measurement Signaling S ⇒ ★ A Home UL RMC Fundamental > Constellation Call Processing Fundamental 0 Symbol I -0.3793 Q 0.3396 Number of RB Meas. Count : < Preset Sub Screen Measurement Starting RB Constellation Measuring... Max UL Throughput Measurement Tx = MCS Index 11 16QAM 10 1032 Number of RB Fundamental Measurement •-+ Starting RB > DL RMC Single Q Continuous lation (Const Start Call End Call Max. Limit Definition 4.68 %(rms) EVM 4.68 4.68 Peak Vector Error 30.11 30.11 -78.26 dBc Carrier Leakage -78.26 -78.26 Loss 4 Views Config

3.1.1.2 Test Mode = LTE-M1 /TM2 5MHz 3.1.1.2.1 Test Channel = MCH

Report No.: SZEM180400321702 Page: 15 of 36

4 Bandwidth

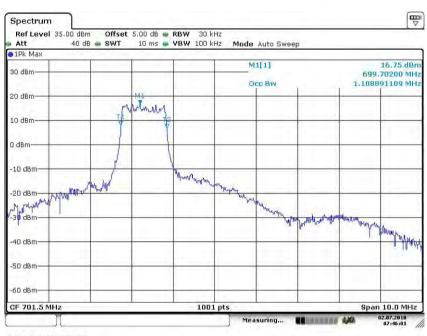
Part I - Test Results


Test Band	Test Mode	Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict
		LCH	1.10	1.38	PASS
Band12	TM1/ 5MHz	MCH	1.11	1.39	PASS
		HCH	1.11	1.40	PASS
	TM2/ 5MHz	LCH	1.11	1.48	PASS
		MCH	1.11	1.47	PASS
		HCH	1.11	1.48	PASS

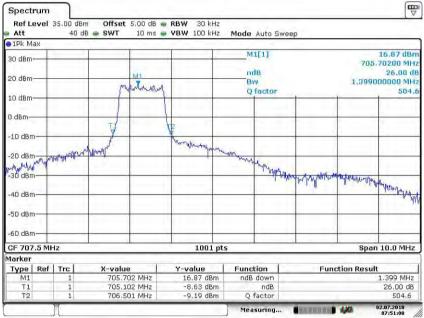
4.1 For LTE

4.1.1 Test Band = LTE-M1 band12

4.1.1.1 Test Mode = LTE-M1/TM1 5MHz

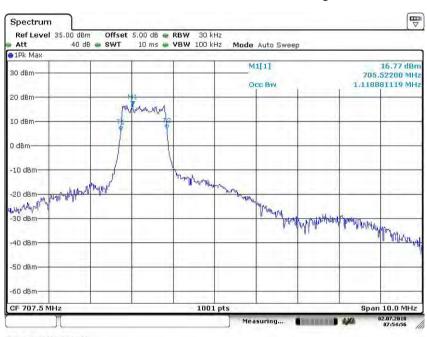

4.1.1.1.1 Test Channel = LCH

Date: 2.JUL.2018 07:49:12

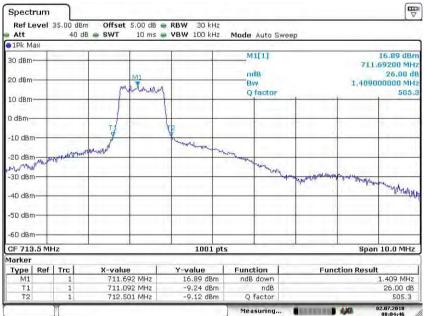


Report No.: SZEM180400321702 Page: 16 of 36

Date: 2.JUL.2018 07:46:00

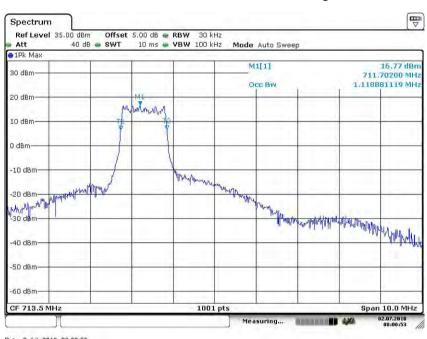

4.1.1.1.2 Test Channel = MCH

Date: 2.JUL.2018 07:51:08

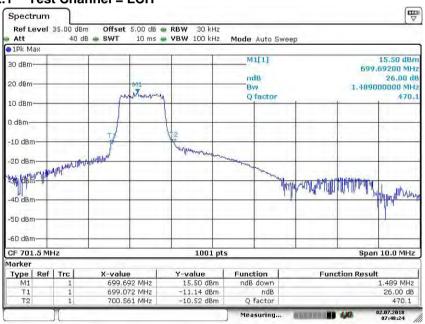


Report No.: SZEM180400321702 Page: 17 of 36

Date: 2.JUL.2018 07:54:56

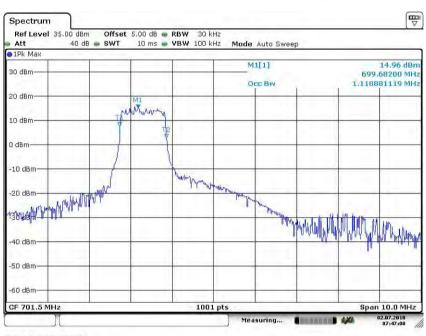

4.1.1.1.3 Test Channel = HCH

Date: 2.JUL.2018 08:04:47


Report No.: SZEM180400321702 Page: 18 of 36

Date: 2.JUL.2018 08:00:53

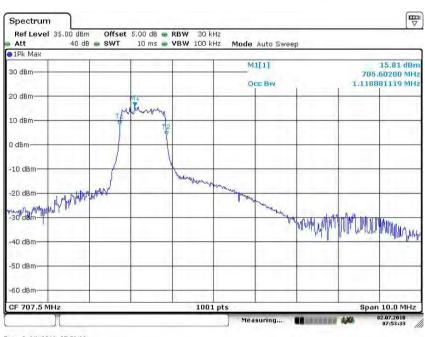
4.1.1.2 Test Mode = LTE-M1/TM2 5MHz


4.1.1.2.1 Test Channel = LCH

Date: 2.JUL.2018 07:48:24

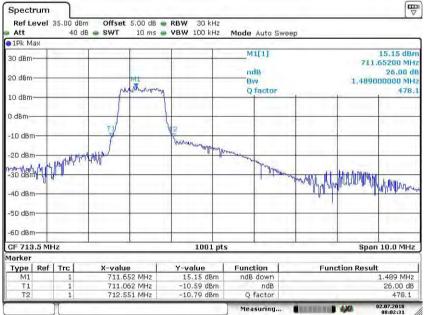
Report No.: SZEM180400321702 Page: 19 of 36

Date: 2.JUL.2018 07:47:09


4.1.1.2.2 Test Channel = MCH

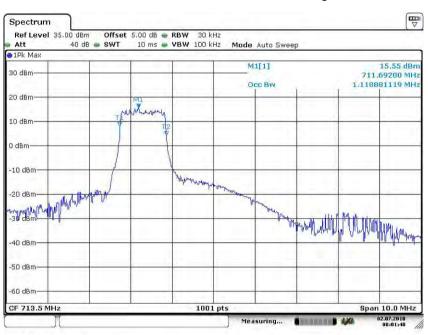
Spect					-	_					
Ref Le	evel 3	5.00 d 40	Bm Offset dB = SWT	5.00 dB 10 ms	 RBW 30 kH; VBW 100 kH; 		de Auto S	weep			
1Pk Ma	эх						10 F				
30 dBm-	-	-				-	M1[1]			705	15.76 dBn 60200 MH
20 dBm-	-			Managen			BW			1.4790	26.00 di 100000 MH
10 dBm-		-	f	the second and			Q factor	1			477.:
0 dBm—	-	_					-	-	_		
-10 dBm			ET .	-	12			-			-
-20 dBm			Name		monter	Same man	-un	-			-
155 abri	print	y yu	1.				- Annahar all	where a	Lens dis 1 1 115	M Hills office	A hate
-40 dBm								- Th	and the for the second	a tri arrollor	Mannahan
-50 dBm							_				
-60 dBm									_		
CF 707	.5 MH	z			1001	pts	_	-	-	Spar	10.0 MHz
Marker							-				
Туре	Ref	Trc	X-value		Y-value		Function		Fund	tion Resul	
M1		1		502 MHz 15.76 dB			ndB down		1.479 MHz		
T1 T2	_	1		72 MHz 51 MHz	-9.96 dBm -10.28 dBm		ndB Q factor			26.00 dB 477.2	
	j	(100.0		20120 001	-	leasuring		lanana,	4,40	02.07.2018 07:52:33

Date: 2.JUL.2018 07:52:33



Report No.: SZEM180400321702 Page: 20 of 36

Date: 2.JUL.2018 07:53:33


4.1.1.2.3 Test Channel = HCH

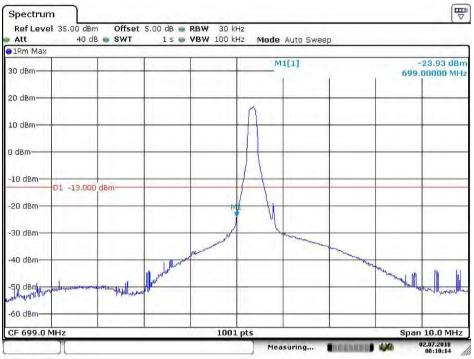
Date: 2.JUL.2018 08:02:32

Report No.: SZEM180400321702 Page: 21 of 36

Date: 2.JUL.2018 08:01:48

Report No.: SZEM180400321702 Page: 22 of 36

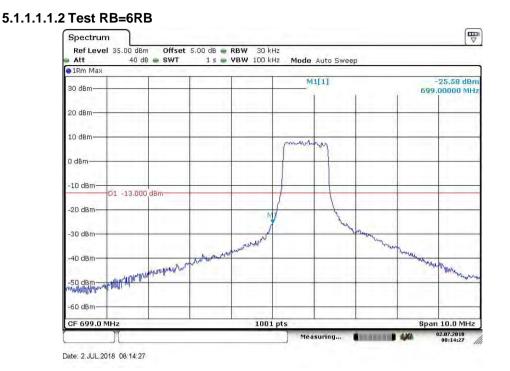
5 Band Edges Compliance


5.1 For LTE-M1

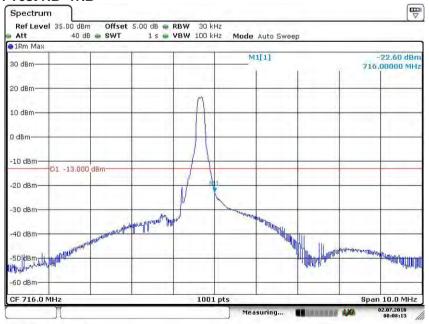
5.1.1 Test Band = LTE-M1 band12

5.1.1.1 Test Mode = LTE-M1/TM1 5MHz

5.1.1.1.1 Test Channel = LCH

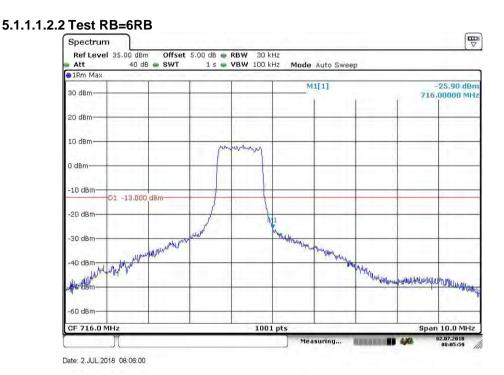

5.1.1.1.1.1 Test RB=1RB

Date: 2.JUL.2018 08:10:14

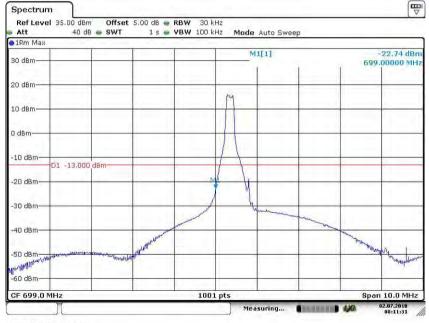


Report No.: SZEM180400321702 Page: 23 of 36

5.1.1.1.2 Test Channel = HCH


5.1.1.1.2.1 Test RB=1RB

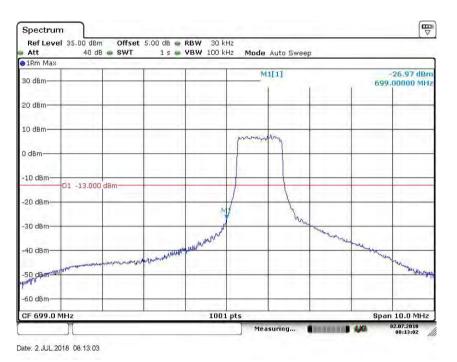
Date: 2.JUL.2018 08:08:13


Report No.: SZEM180400321702 Page: 24 of 36

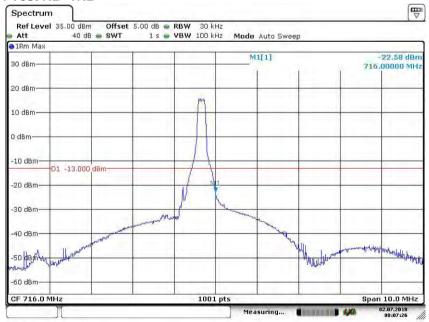
5.1.1.2 Test Mode = LTE-M1/TM2 5MHz

5.1.1.2.1 Test Channel = LCH

5.1.1.2.1.1 Test RB=1RB

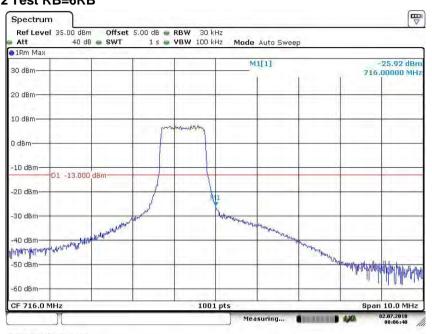


Date: 2.JUL.2018 08:11:31


Report No.: SZEM180400321702 Page: 25 of 36

5.1.1.2.1.2 Test RB=6RB

5.1.1.2.2 Test Channel = HCH



Date: 2.JUL.2018 08:07:26

Report No.: SZEM180400321702 Page: 26 of 36

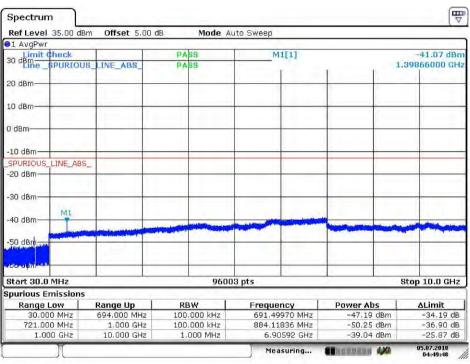
5.1.1.2.2.2 Test RB=6RB

Date: 2.JUL.2018 08:06:40

Report No.: SZEM180400321702 Page: 27 of 36

6 Spurious Emission at Antenna Terminal

NOTE1: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB.

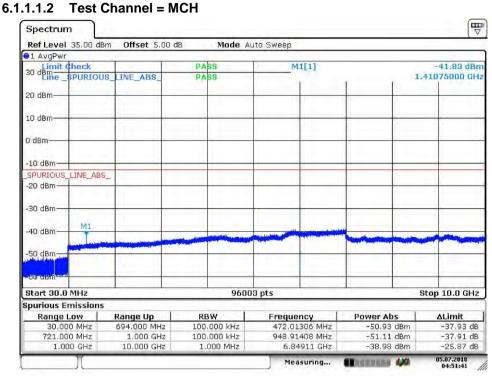

NOTE2: only the worst case data displayed in this report.

Part I - Test Plots

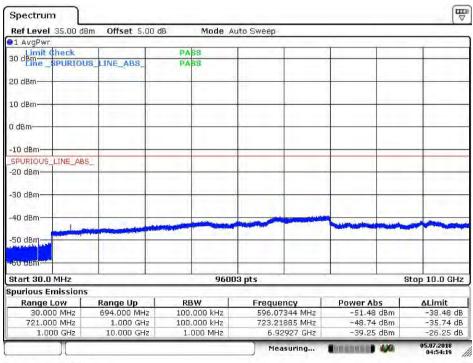
6.1 For LTE-M1

6.1.1 Test Band = LTE-M1 band12

6.1.1.1 Test Mode = LTE-M1 / TM1 5MHz RB1#0



6.1.1.1.1 Test Channel = LCH


Date: 5.JUL.2018 04:49:48

Report No.: SZEM180400321702 Page: 28 of 36

Date: 5.JUL.2018 04:51:42

6.1.1.1.3 Test Channel = HCH

Date: 5.JUL.2018 04:54:19

Report No.: SZEM180400321702 Page: 29 of 36

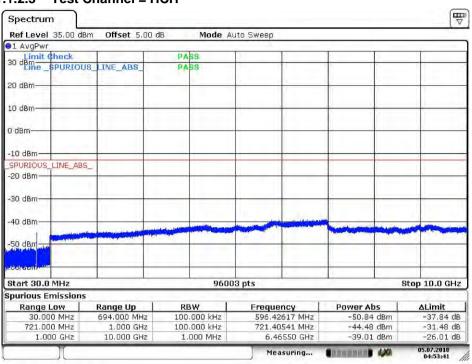
6.1.1.2 Test Mode = LTE-M1 / TM2 5MHz RB1#0

₩ Spectrum Mode Auto Sweep Ref Level 35.00 dBm Offset 5.00 dB ●1 AvgPwr 30 dBm _SPURIOUS_LINE_ABS PASS M1[1] 41.67 dBm PASS 1.39866000 GH: 20 dBm-10 dBm-0 dBm--10 dBm-SPURIOUS_LINE_ABS_ -20 dBm--30 dBm-MI -40 dBn -50 dBro -60 dBm-96003 pts Stop 10.0 GHz Start 30.0 MHz **Spurious** Emissions Range Low Range Up RBW Frequency Power Abs ΔLimit 693,78213 MHz 944,72921 MHz 100.000 kHz 100.000 kHz -25.69 dB -38.62 dB 30.000 MHz 721.000 MHz 694.000 MHz 1.000 GHz -38.69 dBm -51.62 dBm -39.53 dBm 1.000 GHz 10.000 GHz 1.000 MHz 6.83843 GHz -26.53 dB 05.07.2018 04:47:21 Measuring...

6.1.1.2.1 Test Channel = LCH

Date: 5.JUL.2018 04:47:20

Report No.: SZEM180400321702 Page: 30 of 36


6.1.1.2.2 Test Channel = MCH

Spectrum					
Ref Level 35.00 di	Bm Offset 5.00 c	IB Mode Au	ito Sweep		
1 AvgPwr				× ×	
30 dBm Eine_SPURIOL		PABS	1		
SU UPINE _SPURIOL	IS_LINE_ABS_	PASS	T	1	
20 dBm-				-	
10 dBm					
0 dBm					
-10 dBm					
differences and the second sec					
SPURIOUS_LINE_AB	P				
-20 dBm					
-30 dBm	_				
40 dBm				-	
-50 dBm					
-60 dBm					_
Start 30.0 MHz	4	9600	3 pts	ş	stop 10.0 GHz
purious Emissions	5				
Range Low	Range Up	RBW	Frequency	Power Abs	۵Limit
30.000 MHz	694.000 MHz	100.000 kHz	692.76541 MHz	-52.39 dBm	-39.39 dB
721.000 MHz	1.000 GHz	100.000 kHz	932.60181 MHz	-52.73 dBm	-39.68 dB
1.000 GHz	10.000 GHz	1.000 MHz	6.93883 GHz	-39.82 dBm	-26.86 dB
			Measuring		05.07.2018 04:53:02

Date: 5.JUL.2018 04:53:02

Report No.: SZEM180400321702 Page: 31 of 36

6.1.1.2.3 Test Channel = HCH

Date: 5.JUL.2018 04:53:40

Report No.: SZEM180400321702 Page: 32 of 36

7 Field Strength of Spurious Radiation

7.1 For LTE-M1

7.1.1 Test Band = LTE-M1 band12

7.1.1.1 Test Mode =LTE-M1/TM1 5MHz RB1#0

7.1.1.1.1	Test Channel = LC	H		
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
63.693333	-82.31	-13.00	-69.31	Vertical
125.013333	-86.79	-13.00	-73.79	Vertical
933.083333	-63.85	-13.00	-50.85	Vertical
1398.000000	-47.88	-13.00	-34.88	Vertical
2098.500000	-60.70	-13.00	-47.70	Vertical
5594.475000	-63.39	-13.00	-50.39	Vertical
63.226667	-78.41	-13.00	-65.41	Horizontal
932.120833	-61.51	-13.00	-48.51	Horizontal
1398.500000	-40.99	-13.00	-27.99	Horizontal
2098.000000	-52.72	-13.00	-39.72	Horizontal
6041.512500	-65.70	-13.00	-52.70	Horizontal
7855.987500	-64.38	-13.00	-51.38	Horizontal

7.1.1.1.2 Test Channel = MCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
64.393333	-82.16	-13.00	-69.16	Vertical
124.966667	-87.31	-13.00	-74.31	Vertical
941.104167	-65.49	-13.00	-52.49	Vertical
1410.500000	-44.48	-13.00	-31.48	Vertical
2116.000000	-60.12	-13.00	-47.12	Vertical
7053.075000	-62.61	-13.00	-49.61	Vertical
63.553333	-78.32	-13.00	-65.32	Horizontal
300.293333	-86.70	-13.00	-73.70	Horizontal
940.187500	-61.47	-13.00	-48.47	Horizontal
1410.500000	-39.66	-13.00	-26.66	Horizontal
2116.500000	-54.71	-13.00	-41.71	Horizontal
5643.225000	-65.20	-13.00	-52.20	Horizontal

Report No.: SZEM180400321702 Page: 33 of 36

7.1.1.1.3 Test Channel = HCH									
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization					
65.606667	-82.63	-13.00	-69.63	Vertical					
124.966667	-87.26	-13.00	-74.26	Vertical					
929.875000	-66.28	-13.00	-53.28	Vertical					
1422.500000	-43.92	-13.00	-30.92	Vertical					
2200.000000	-59.40	-13.00	-46.40	Vertical					
5690.025000	-64.24	-13.00	-51.24	Vertical					
62.666667	-77.61	-13.00	-64.61	Horizontal					
949.033333	-58.23	-13.00	-45.23	Horizontal					
1422.500000	-40.30	-13.00	-27.30	Horizontal					
2134.000000	-57.57	-13.00	-44.57	Horizontal					
3556.237500	-68.73	-13.00	-55.73	Horizontal					
5690.512500	-65.21	-13.00	-52.21	Horizontal					

NOTE:

1) The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

2) We have tested all modulation and all bandwidth, but only the worst case data presented in this report.

Report No.: SZEM180400321702 Page: 34 of 36

8 Frequency Stability

8.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				VL	-4.15	-0.005913	PASS
		LCH	TN	VN	1.52	0.002170	PASS
				VH	-5.14	-0.007324	PASS
				VL	-6.03	-0.008529	PASS
	LTE-M1/TM1 5MHz	MCH	TN	VN	7.24	0.010235	PASS
				VH	6.15	0.008704	PASS
		НСН	TN	VL	-4.36	-0.006118	PASS
				VN	-9.67	-0.013566	PASS
LTE-M1				VH	9.77	0.013712	PASS
Band12		LCH	TN	VL	7.34	0.010461	PASS
				VN	-1.45	-0.002068	PASS
				VH	5.16	0.007363	PASS
				VL	1.82	0.002579	PASS
	LTE-M1/TM2 5MHz	MCH	TN	VN	-2.80	-0.003957	PASS
				VH	-2.78	-0.003937	PASS
				VL	-8.06	-0.011306	PASS
		НСН	TN	VN	5.87	0.008244	PASS
				VH	-2.85	-0.003997	PASS

Report No.: SZEM180400321702 Page: 35 of 36

8.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-4.52	-0.006449	PASS
				-20	-2.76	-0.003938	PASS
				-10	-0.37	-0.000526	PASS
				0	-7.02	-0.010012	PASS
		LCH	VN	10	-6.08	-0.008667	PASS
				20	-7.27	-0.010359	PASS
				30	8.62	0.012287	PASS
				40	9.54	0.013595	PASS
				50	0.20	0.000280	PASS
			VN	-30	-6.83	-0.009658	PASS
	LTE-M1/TM1 5MHz			-20	-1.46	-0.002062	PASS
		МСН		-10	-3.43	-0.004852	PASS
				0	-9.98	-0.014114	PASS
LTE-M1 Band12				10	6.36	0.008991	PASS
Banarz				20	0.30	0.000425	PASS
				30	-2.49	-0.003521	PASS
				40	-5.07	-0.007170	PASS
				50	-3.84	-0.005438	PASS
				-30	-5.02	-0.007042	PASS
				-20	1.21	0.001702	PASS
				-10	-9.79	-0.013741	PASS
				0	-1.71	-0.002404	PASS
		НСН	VN	10	3.15	0.004424	PASS
				20	-7.68	-0.010773	PASS
				30	-6.04	-0.008479	PASS
				40	7.24	0.010164	PASS
				50	-4.75	-0.006668	PASS

Report No.: SZEM180400321702 Page: 36 of 36

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-9.21	-0.013127	PASS
				-20	1.68	0.002391	PASS
				-10	9.17	0.013078	PASS
				0	6.38	0.009088	PASS
		LCH	VN	10	0.80	0.001146	PASS
				20	-3.01	-0.004294	PASS
				30	6.80	0.009694	PASS
				40	-4.02	-0.005731	PASS
				50	-7.80	-0.011119	PASS
	LTE-M1/TM2 5MHz			-30	-3.55	-0.005027	PASS
			VN	-20	7.35	0.010396	PASS
		МСН		-10	-7.63	-0.010790	PASS
LTE-M1				0	3.60	0.005087	PASS
band2				10	0.74	0.001049	PASS
				20	7.72	0.010913	PASS
				30	1.82	0.002576	PASS
				40	5.66	0.008001	PASS
				50	1.69	0.002391	PASS
				-30	-6.25	-0.008776	PASS
				-20	8.41	0.011803	PASS
				-10	7.17	0.010068	PASS
				0	-4.38	-0.006153	PASS
		HCH	VN	10	4.05	0.005689	PASS
				20	2.72	0.003824	PASS
				30	-2.47	-0.003465	PASS
				40	-8.58	-0.012036	PASS
				50	-3.82	-0.005358	PASS