Automaton Inc. dba RADAR

TEST REPORT FOR

RFID sensor operating in the UHF band Model: RS510B

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (FHSS 902-928MHz)

Report No.: 108850-9

Date of issue: November 3, 2023

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 101 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	7
FCC Part 15 Subpart C	14
15.247(a) Transmitter Characteristics	14
15.247(a)(1)(i) 20 dB Bandwidth	15
15.247(a)(1) Carrier Separation	
15.247(a)(1)(i) Number of Hopping Channels	
15.247(a)(1)(i) Time of Occupancy	
15.247(b)(2) Output Power	27
15.247(d) RF Conducted Emissions & Band Edge	47
15.247(d) Radiated Emissions & Band Edge	61
15.207 AC Conducted Emissions	92
Supplemental Information	
Measurement Uncertainty	
Emissions Test Details	

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Automaton Inc. dba RADAR 15150 Avenue of Science, Ste. 200 San Diego, CA 92121

Representative: Mark Easton Customer Reference Number: 1993-SD1-TestRS510B

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: **REPORT PREPARED BY:**

Viviana Prado CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 108850

October 18, 2023 October 18, 20, and 21, 2023

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Belo

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable, and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 North Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: <u>https://standards.gov/cabs/designations.html</u>

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	NA	Pass
15.247(a)(1)(i)	Number of Hopping Channels	NA	Pass
15.247(a)(1)(i)	Average Time of Occupancy	NA	Pass
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The equipment sample utilized for testing is selected by the manufacturer. The declaration of pass or fail herein is a binary statement for simple acceptance rule (ILAC G8) based upon assessment to the specification(s) listed above, without consideration of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions None

> Page 5 of 101 Report No.: 108850-9

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1 (RF Conducted Unit, Radiated Emissions Unit)

Equipment Tested:			
Device	Manufacturer	Model #	S/N
RFID sensor operating in the UHF band	Automaton Inc. dba RADAR	RS510B	1537

Support Equipment:

Device	Manufacturer	Model #	S/N
Minicomputer	Intel	NUC8HN	BTHN009003HV
Gigabit POE	Trendnet	TPE-117G1A	E18H7G2000147
Laptop	Dell	P107P	ST03AT1B3

Configuration 2 (Power Variation, AC Conducted Emissions)

Equipment Tested:		-	
Device	Manufacturer	Model #	S/N
RFID sensor operating in the UHF band	Automaton Inc. dba RADAR	RS510B	1537

Support Equipment:

Device	Manufacturer	Model #	S/N
Minicomputer	Intel	NUC8HN	BTHN009003HV
Laptop	Dell	P107P	ST03AT1B3
Power supply	Topward	6306D	988614
POE injector	Solis Energy	HPI-2148	PT2144220316

General Product Information:

Product Information	Manufacturer-Provided Details	
Equipment Type:	Stand-Alone Equipment	
Type of Wideband System:	FHSS	
Operating Frequency Range:	902.75- 927.25MHz	
Number of Hopping Channels:	50	
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.	
Modulation Type(s):	PR-ASK *	
Maximum Duty Cycle:	98% or better	
Number of TX Chains:	4	
Antenna Type(s) and Gain:	Patch Array 7.04 dBi to 8.62dBi (Measured ant gain + beamforming gain as provided by the manufacturer)	
Beamforming Type:	Digital	
Antenna Connection Type:	Integral (External connector provided to facilitate testing)	
Nominal Input Voltage:	48VDC from POE	
Firmware / Software used for Test:	Test mode firmware version: 0.85.12	
The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.		

*Phase reversal ASK., TARI set at 6.25us

Antenna Gain and power settings.Lowest gain 7.04dBi : Sector 135, 0Highest gain 8,62dBi : Sector 67.5, -155Power setting 21.2dBm

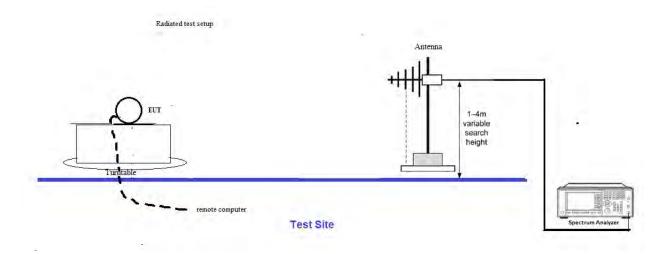
EUT Photo(s)

Page 8 of 101 Report No.: 108850-9

Page 9 of 101 Report No.: 108850-9

Page 10 of 101 Report No.: 108850-9

Support Equipment Photo(s)



Page 12 of 101 Report No.: 108850-9

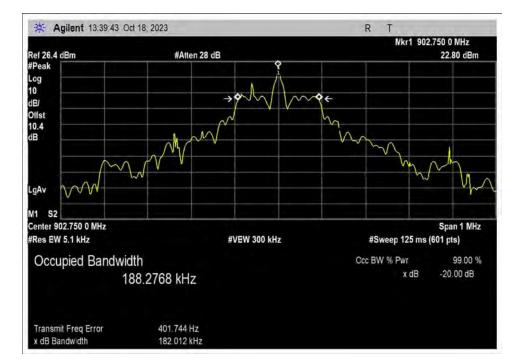
Block Diagram of Test Setup(s)

FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

	Test Setup/Conditions				
Test Location:	Brea Lab A	Test Engineer:	E. Wong		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	10/18/2023		
Configuration:	1				
Test Setup:	The equipment under test (EUT) is set on a test bench. The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected				
	to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer.				
	The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.				
	Frequency Range of EUT: 902.75MHz-927.25MHz				
	TX 902.75MHz, 914.75MHz, 927.25MHz				
	TARI = 6.25us as intended.				
Lowest antenna pattern and associated power level evaluated.					

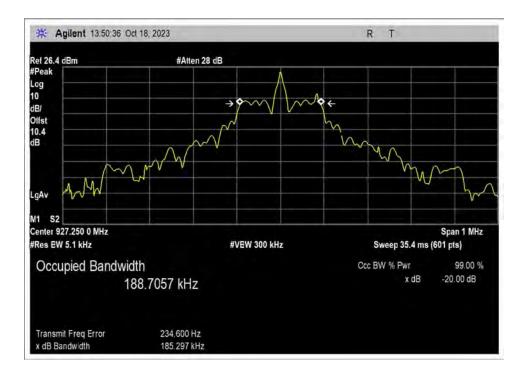
Environmental Conditions			
Temperature (ºC)	22.4	Relative Humidity (%):	55


Test Equipment						
Asset# Description Manufacturer Model Cal Date Cal Du						
02869	Spectrum Analyzer	Agilent	E4440A	12/13/2022	12/13/2023	
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	1/14/2022	1/14/2024	
07658	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024	

15.247(a)(1)(i) 20 dB Bandwidth

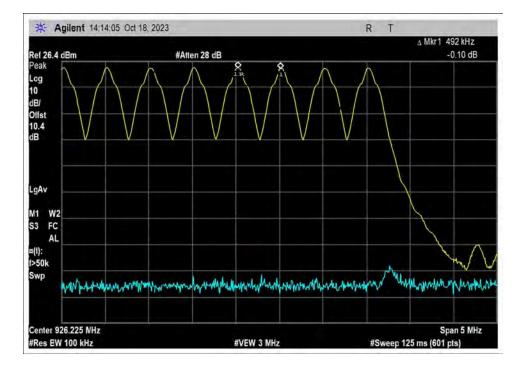
Test Data Summary								
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results			
902.75	1	PR-ASK	182.012	≤500	Pass			
914.75	1	PR-ASK	185.320	≤500	Pass			
927.25	1	PR-ASK	185.297	≤500	Pass			

Plot(s)



Low Channel

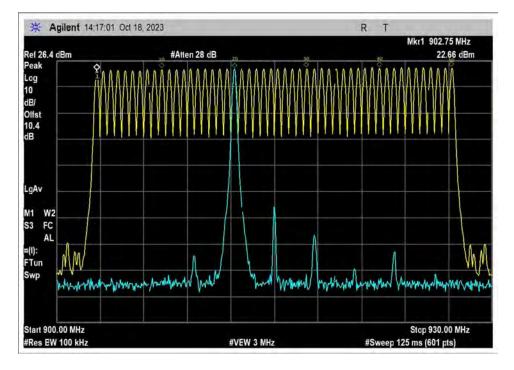
Middle Channel


High Channel

15.247(a)(1) Carrier Separation

Test Data Summary							
Limit applied: 2	Limit applied: 20dB bandwidth of the hopping channel.						
Antenna Port	Operational Mode	Measured (kHz)	Limit (kHz)	Results			
1	Hopping	482	> 185.320	Pass			

Plot(s)


Channel Separation

15.247(a)(1)(i) Number of Hopping Channels

Test Data Summary							
$Limit = \begin{cases} 50 \ Channels \ 20 \ dB \ BW < 250 \ kHz \\ 25 \ Channels \ 20 \ dB \ BW \ge 250 \ kHz \end{cases}$							
Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results			
1	Hopping	50	≥50	Pass			

Number of Channel

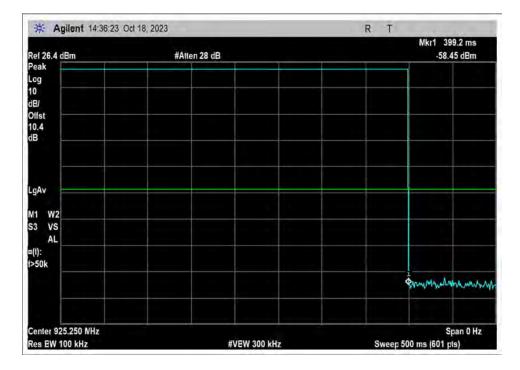
15.247(a)(1)(i) Time of Occupancy

	Test Data Summary							
Observation Period, P_{obs} is derived from the following: $P_{Obs} = \begin{cases} 20 \ Seconds \ 20 \ dB \ BW < 250 kHz \\ 10 \ Seconds \ 20 \ dB \ BW \ge 250 kHz \end{cases}$								
Antenna Port	Operational Mode	Measured (ms)	Limit (ms/P _{obs})	Results				
1	hopping	351.3	≤400	Pass				

Measured results are calculated as follows:

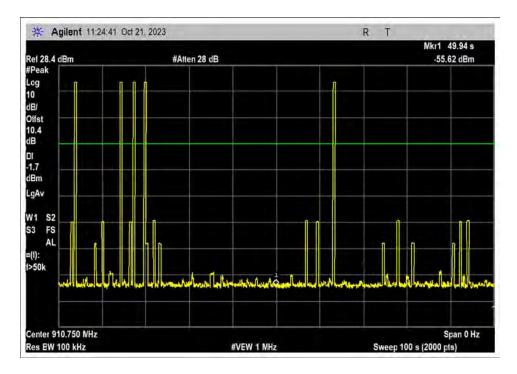
$$Dwell time = \left(\sum_{Bursts} RF Burst On Time + \sum_{Control} Control Signal On time \right) \Big|_{P_{obs}}$$

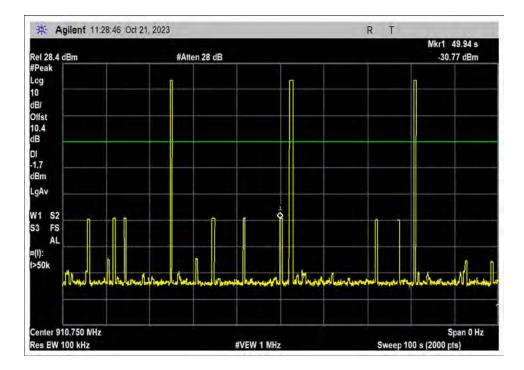
Actual Calculated Values:


Parameter	Value
Observation Period (Pobs):	100sec
Number of RF Bursts / P _{obs} :	4.4
On time of RF Burst:	399.2ms
Number of Control or other signals / Pobs:	Na
On time of Control or other Signals:	Na
Total Measured On Time:	351.3ms

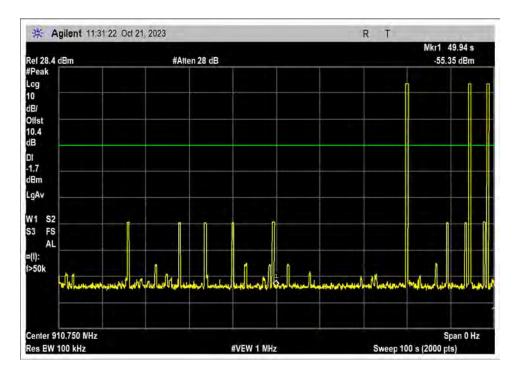
Average of ten 100 second sweep= 4.4 event (4.4 event /100) x 20 sec = 0.88 event/ 20 sec

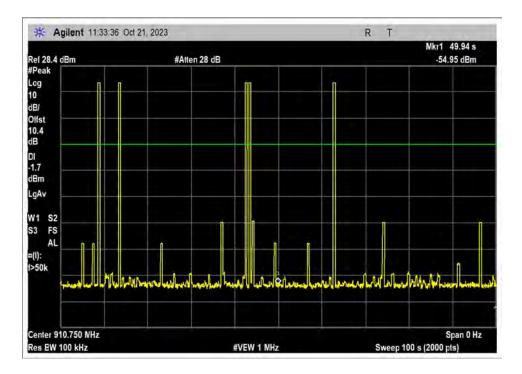
On time per 20 sec = 0.88 event per 20 sec x 399.2ms = 351.3ms

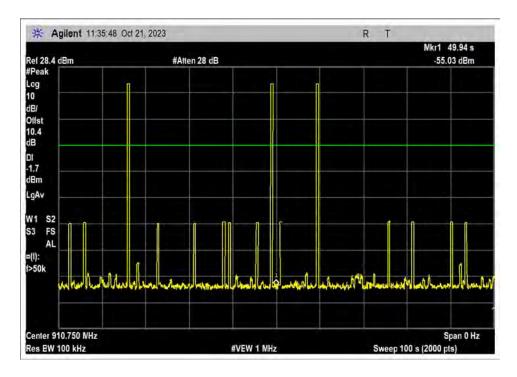

Plot(s)

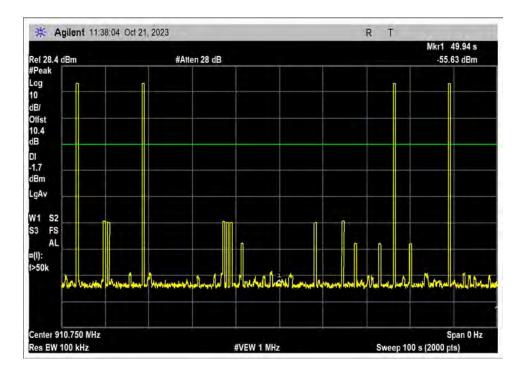

Occupancy Time Per Event

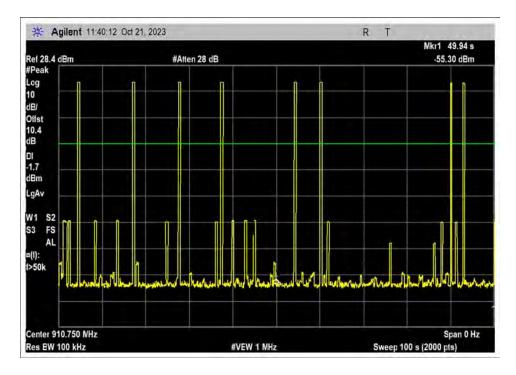
Page 20 of 101 Report No.: 108850-9

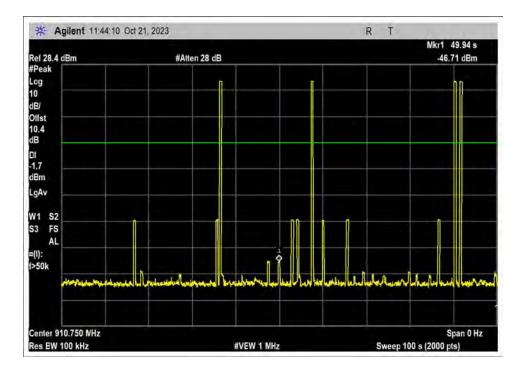


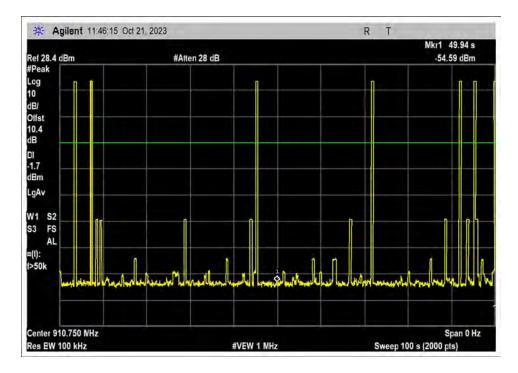

100 Second Sweep 1

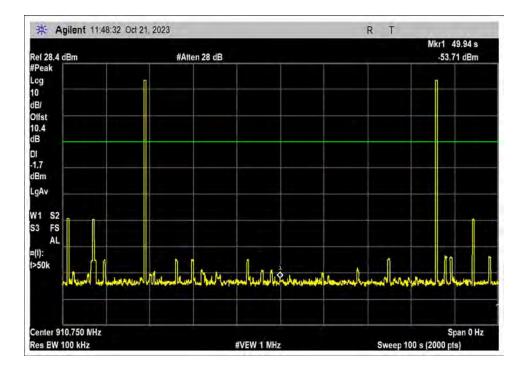



100 Second Sweep 3




100 Second Sweep 5




100 Second Sweep 7

100 Second Sweep 9

Test Setup Photo(s)

15.247(b)(2) Output Power

	Test Setup/Conditions									
Test Location:	Brea Lab A	Test Engineer:	E. Wong							
Test Method:	ANSI C63.10 (2013)	Test Date(s):	10/18/2023							
Configuration:	1&2									
Test Setup:	The equipment under test (EUT) is The EUT is powered via a cat 6 net to a remotely located POE Injector remotely located computer. The computer is used to set freque the EUT. Frequency Range of EUT: 902.75M TX 902.75MHz, 914.75MHz, 927.2 TARI = 6.25us as intended. Both Antenna Pattern and associa	work cable (nominal v r. Connected to the Po ency channel, frequen 1Hz-927.25MHz 25MHz	DE Injector via cat 6 cable is a cy hopping, and modulation of							

Environmental Conditions						
Temperature (ºC)	22.4	Relative Humidity (%):	55			

Test Equipment									
Asset#	Description	Cal Date	Cal Due						
02869	Spectrum Analyzer	Agilent	E4440A	12/13/2022	12/13/2023				
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	1/14/2022	1/14/2024				
07658	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024				
P07164	Multimeter	Fluke	8845A/G	8/21/2023	8/21/2025				
01438	DC Power Supply	Topward	6306D	4/4/2023	4/4/2025				

Test Data Summary - Voltage Variations								
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)			
902.75	PR-ASK	22.8	22.8	22.8	0			
914.75	PR-ASK	22.8	22.8	22.8	0			
927.25	PR-ASK	22.9	22.9	22.9	0			

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal +15%. – 8%*

Parameter	Value
V _{Nominal} :	55.2
V _{Minimum} :	48
V _{Maximum} :	44**

**Lowest attenable voltage to maintain operation of the EUT.

Test Data Summary - RF Conducted Measurement

 $(30dBm Conducted/36dBm EIRP | \ge 50 Channels)$

 $Limit = \begin{cases} 300Bm \ Conducted/300Bm \ EIRP \\ 24dBm \ Conducted/30dBm \ EIRP \\ < 50 \ Channels \ (min \ 25) \end{cases}$

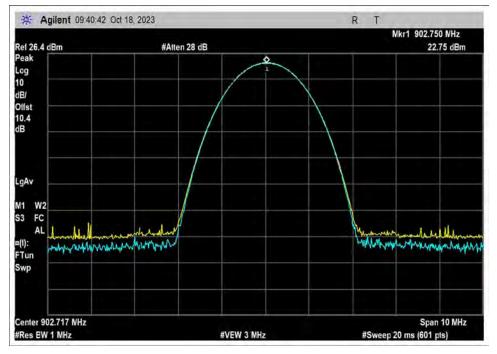
Lowest Gain, Highest Power

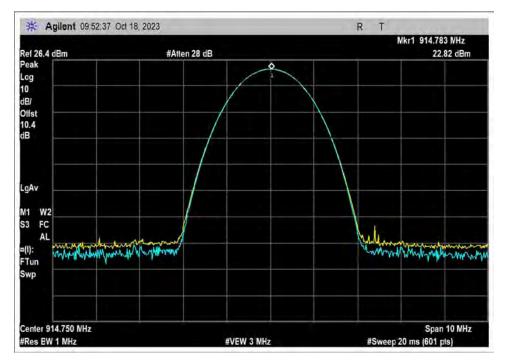
Ant Port		0		1		2	3		Linear sum		Ant gain Beamforming gain	Total EIRP
Freq	dBm	Watts	dBm	Watts	dBm	Watts	dBm	Watts	watt	dBm	dBi	dBm
902.75	22.8	0.1884	22.9	0.1963	22.7	0.1841	22.6	0.1803	0.7491	28.7	7.04	35.8
914.75	22.8	0.1914	22.8	0.1914	22.7	0.1845	22.6	0.1811	0.7485	28.7	7.04	35.8
927.25	22.9	0.1941	22.9	0.1945	22.7	0.1849	22.9	0.1954	0.7690	28.9	7.04	35.9

Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured Total EIRP (dBm)	EIRP Limit (dBm)	Results				
	Lowest antenna gain, highest power setting.								
902.75	PR-ASK	Patch Array	35.8	≤ 36	Pass				
914.75	PR-ASK	Patch Array	35.8	≤ 36	Pass				
927.25	PR-ASK	Patch Array	35.9	≤ 36	Pass				

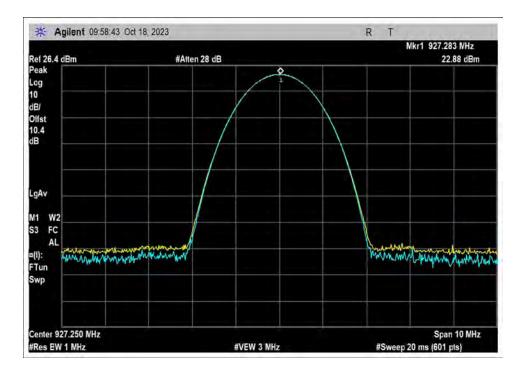
Highest Gain, Lowest Power

Ant Port	0		1		2		3		Linear sum		Ant gain Beamforming gain	Total EIRP
Freq	dBm	Watts	dBm	Watts	dBm	Watts	dBm	Watts	watt	dBm	dBi	dBm
902.75	21.0	0.1271	21.1	0.1294	20.7	0.1180	20.8	0.1202	0.4947	26.9	8.62	35.6
914.75	21.4	0.1380	21.2	0.1330	21.1	0.1274	21.0	0.1256	0.5240	27.2	8.62	35.8
927.25	21.4	0.1374	21.4	0.1365	21.0	0.1253	21.2	0.1318	0.5310	27.3	8.62	35.9

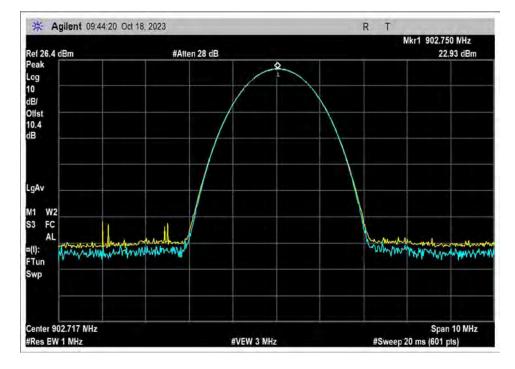

Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured Total EIRP (dBm)	EIRP Limit (dBm)	Results					
Lowest antenna gain, highest power setting.										
902.75	PR-ASK	Patch Array	35.6	≤ 36	Pass					
914.75	PR-ASK	Patch Array	35.8	≤ 36	Pass					
927.25	PR-ASK		35.9	≤ 36	Pass					

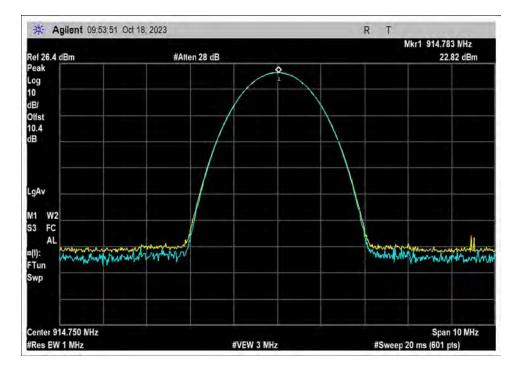

Plots

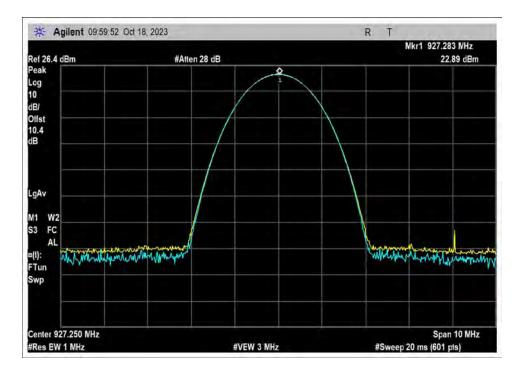
Lowest Gain, Highest Power


Antenna 0

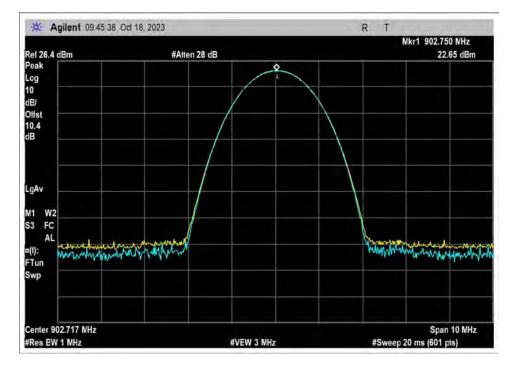
Low Channel

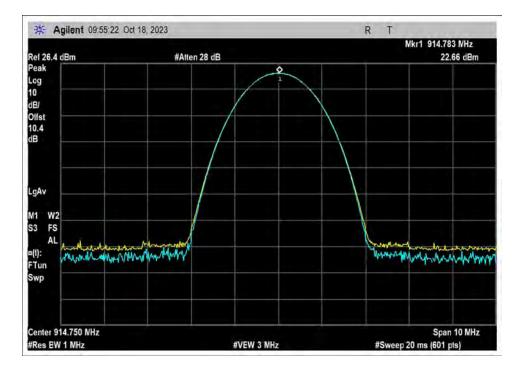


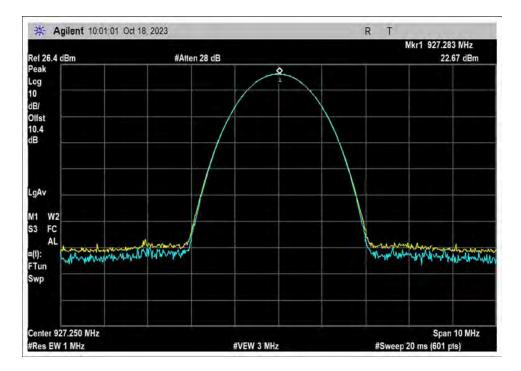

High Channel


Antenna 1

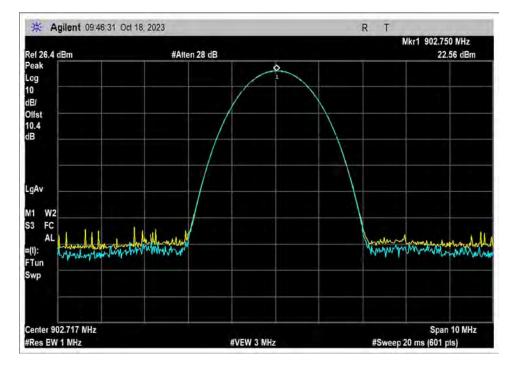
Low Channel

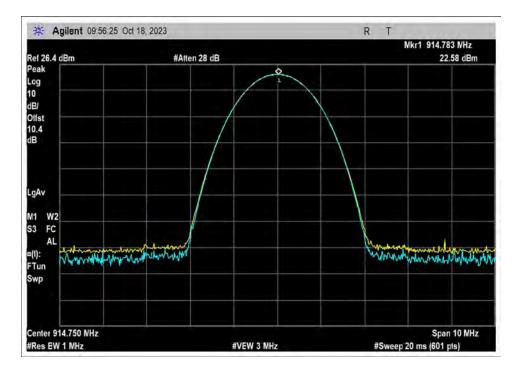


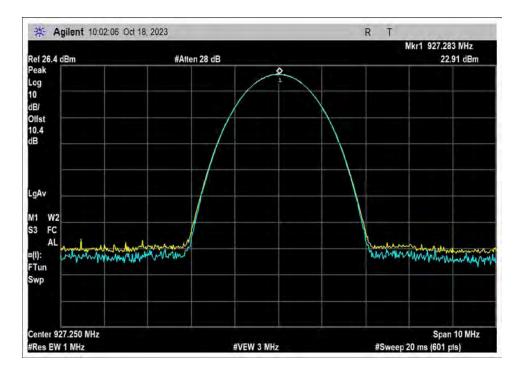

High Channel


Antenna 2

Low Channel

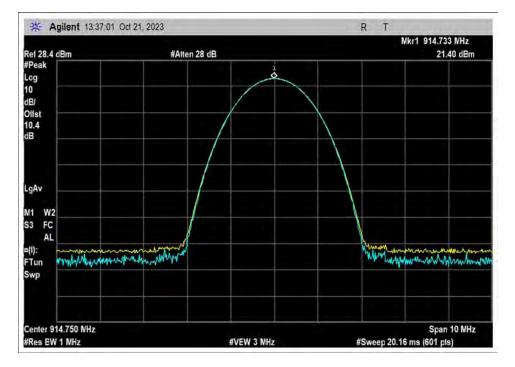



High Channel

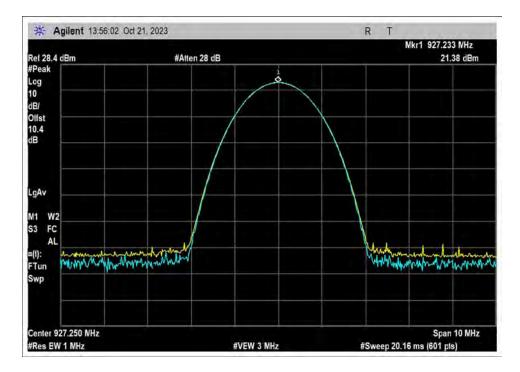


Low Channel

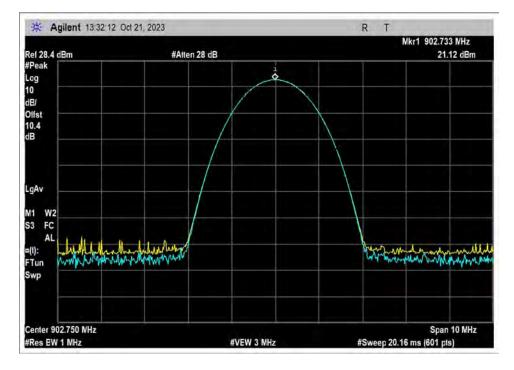
High Channel

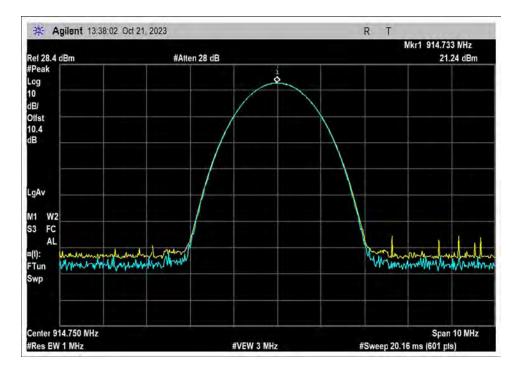


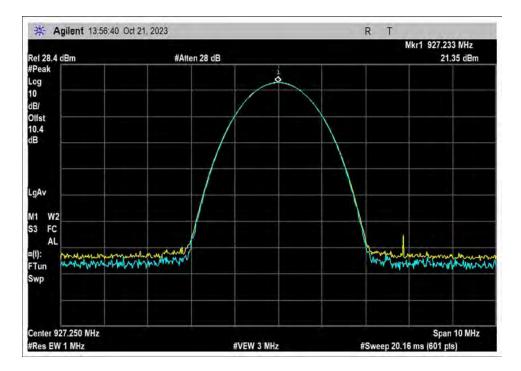
Highest Gain, Lowest Power


<u>Antenna 0</u>

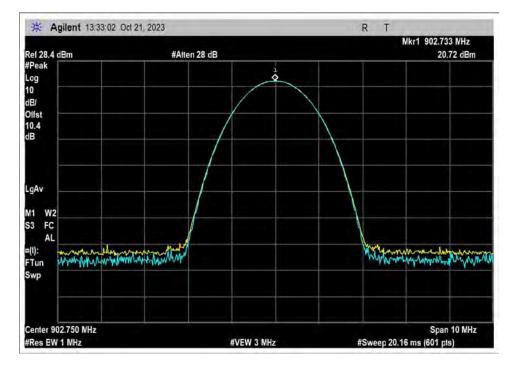
Low Channel

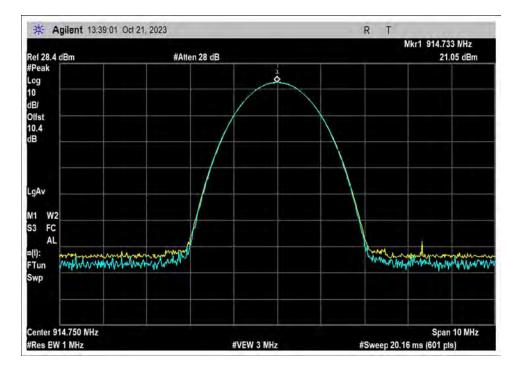


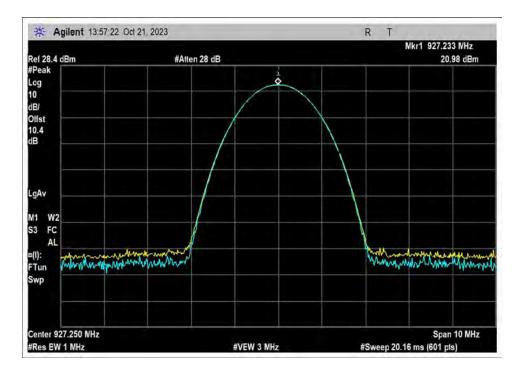

High Channel



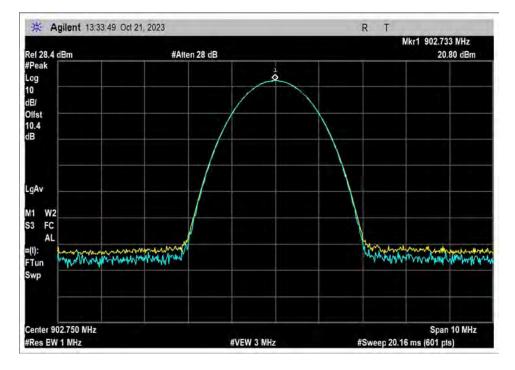
Low Channel

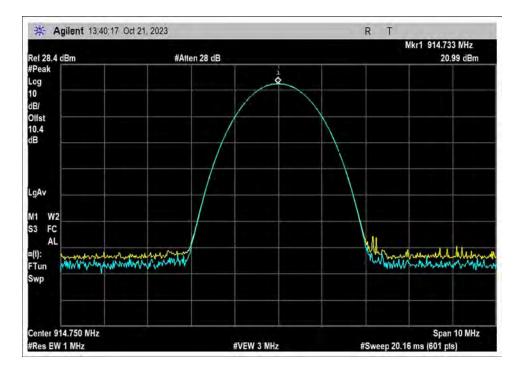


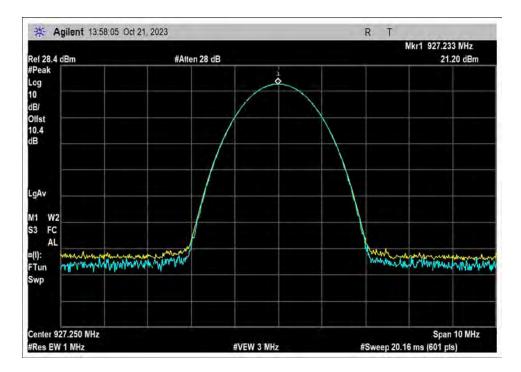

High Channel



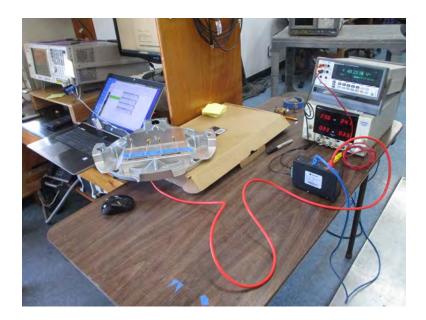
Low Channel




High Channel



Low Channel


High Channel

Test Setup Photo(s)

View 1

View 2

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 110 N. Olinda Plac	e • Brea, CA	• (714) 993-6112
Customer:	Automaton Inc. dba RADAR		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	108850	Date:	10/18/2023
Test Type:	Conducted Emissions	Time:	16:05:37
Tested By:	E. Wong	Sequence#:	1
Software:	EMITest 5.03.20		48VDC

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Summont Equinments				

Support Equipment.				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The equipment under test (EUT) is set on a test bench.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer.

The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz-927.25MHz

TX 902.75MHz, 914.75MHz, 927.25MHz

LO Frequency: 915MHz

TARI = 6.25us as intended.

Firmware version: 0.85.12

Worst case Antenna Pattern and associated power level evaluated. Lowest gain

Frequency Range of Measurement: 9kHz-10GHz 9kHz-10 000 MHz;RBW=100kHz,VBW=300 kHz.

Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 22.5°C Relative Humidity: 55% Pressure: 99.8kPa

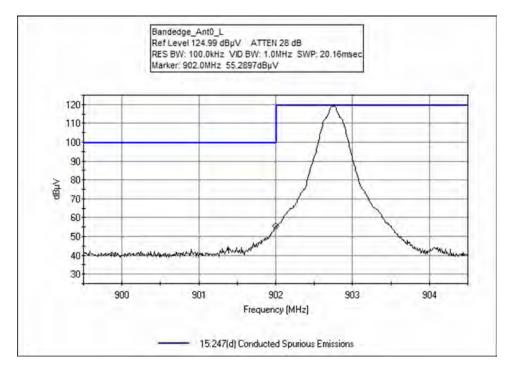
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T2	AN03430	Attenuator	75A-10-12	1/14/2022	1/14/2024
Т3	ANP07658	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		

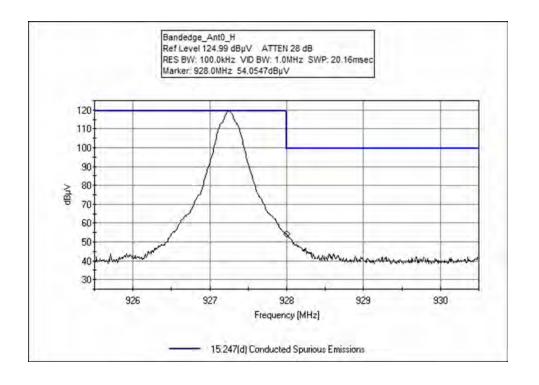
	rement Data:		eading lis				D		ad: Antenna	•	D 1
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	951.670M	58.9	+0.0	+10.1	+0.2		+0.0	69.2	110.0 Ant2_H	-40.8	Anter
2	902.670M	75.2	+0.0	+10.1	+0.3		+0.0	85.6	130.0	-44.4	Anter
2	<i>J02.070</i>	13.2	10.0	110.1	10.5		10.0	05.0	Ant2_H		7 miles
3	1805.800M	53.7	+0.0	+10.1	+0.4		+0.0	64.2	110.0	-45.8	Anter
									Ant0_L		
4	1829.400M	51.6	+0.0	+10.1	+0.4		+0.0	62.1	110.0	-47.9	Anter
									Ant0_M	10.0	
5	951.670M	51.5	+0.0	+10.1	+0.2		+0.0	61.8	110.0	-48.2	Anter
(1054 20014	51.0	.0.0	. 10.1	0.4		.0.0	(17	Ant3_H	40.2	A
0	1854.300M	51.2	+0.0	+10.1	+0.4		+0.0	61.7	110.0	-48.3	Anter
7	939.500M	51.2	+0.0	+10.1	+0.3		+0.0	61.6	Ant0_H	-48.4	Antor
/	939.300M	31.2	+0.0	+10.1	+0.5		± 0.0	01.0	110.0 Ant0_H	-40.4	Anter
8	1805.700M	50.6	+0.0	+10.1	+0.4		+0.0	61.1	110.0	-48.9	Anto
0	1803.700101	50.0	+0.0	+10.1	+0.4		± 0.0	01.1	Ant1_L	-40.9	Anter
9	1805.500M	50.1	+0.0	+10.1	+0.4		+0.0	60.6	110.0	-49.4	Anter
,	1005.500101	50.1	10.0	110.1	10.4		10.0	00.0	Ant2_L	-17.1	Antei
10	1829.400M	49.8	+0.0	+10.1	+0.4		+0.0	60.3	110.0	-49.7	Anter
10	1027.40000	47.0	10.0	110.1	10.4		10.0	00.5	Ant1_M	47.7	7 1110
11	939.500M	49.9	+0.0	+10.1	+0.3		+0.0	60.3	110.0	-49.7	Anter
11	<i>737.3</i> 00111	19.9	10.0	110.1	10.5		10.0	00.5	Ant2_H	17.7	7 1110
12	1854.300M	49.4	+0.0	+10.1	+0.4		+0.0	59.9	110.0	-50.1	Anter
		.,						- / //	Ant1_H		
13	939.500M	49.2	+0.0	+10.1	+0.3		+0.0	59.6	110.0	-50.4	Anter
									Ant1_H		
14	1829.500M	48.9	+0.0	+10.1	+0.4		+0.0	59.4	110.0	-50.6	Anter
									Ant2_M		
15	1829.700M	48.6	+0.0	+10.1	+0.4		+0.0	59.1	110.0	-50.9	Anter
									Ant3_M		
16	1805.400M	48.5	+0.0	+10.1	+0.4		+0.0	59.0	110.0	-51.0	Anter
									Ant3_L		
17	1854.200M	47.9	+0.0	+10.1	+0.4		+0.0	58.4	110.0	-51.6	Anter
									Ant3_H		
18	1854.500M	47.8	+0.0	+10.1	+0.4		+0.0	58.3	110.0	-51.7	Anter
									Ant2_H		
19	902.670M	67.3	+0.0	+10.1	+0.3		+0.0	77.7	130.0	-52.3	Anter
									Ant3_H		
20	915.000M	67.0	+0.0	+10.1	+0.3		+0.0	77.4	130.0	-52.6	Anter
	04 # 0000 -			40.4	~ ~				Ant2_H		
21	915.080M	66.2	+0.0	+10.1	+0.3		+0.0	76.6	130.0	-53.4	Anter
	007 0703 5		0.0	10.4	0.0		0.0		Ant1_H		A .
22	927.250M	66.1	+0.0	+10.1	+0.3		+0.0	76.5	130.0	-53.5	Anter
	015 0003 5		0.0	10.1	0.0		0.0		Ant3_L		
23	915.000M	65.7	+0.0	+10.1	+0.3		+0.0	76.1	130.0	-53.9	Anter
~ (015 0003 5	<i></i>		. 10.1			. 0. 0	75.0	Ant2_L	7 4 1	A :
24	915.000M	65.5	+0.0	+10.1	+0.3		+0.0	75.9	130.0	-54.1	Anter
									Ant1_L		

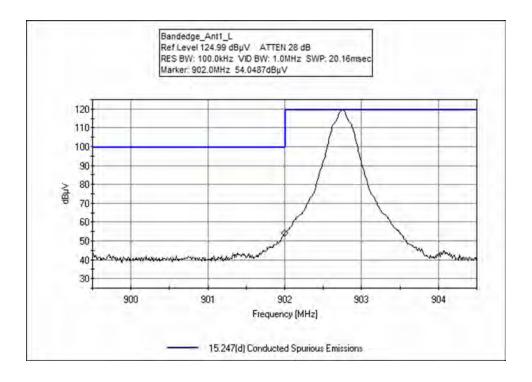
25	915.000M	64.3	+0.0	+10.1	+0.3	+0.0	74.7		-55.3	Anten
								Ant0_H		
26	915.000M	64.2	+0.0	+10.1	+0.3	+0.0	74.6	130.0	-55.4	Anten
								Ant3_H		
27	915.000M	63.0	+0.0	+10.1	+0.3	+0.0	73.4	130.0	-56.6	Anten
								Ant3_L		
28	927.250M	60.7	+0.0	+10.1	+0.3	+0.0	71.1	130.0	-58.9	Anten
								Ant2_L		
29	915.000M	59.7	+0.0	+10.1	+0.3	+0.0	70.1	130.0	-59.9	Anten
								Ant0_L		
30	927.300M	58.7	+0.0	+10.1	+0.3	+0.0	69.1	130.0	-60.9	Anten
								Ant0_L		
31	911.750M	57.4	+0.0	+10.1	+0.3	+0.0	67.8	130.0	-62.2	Anten
								Ant3_L		
32	911.750M	56.2	+0.0	+10.1	+0.3	+0.0	66.6	130.0	-63.4	Anten
								Ant2_L		
33	918.170M	56.0	+0.0	+10.1	+0.3	+0.0	66.4	130.0	-63.6	Anten
								Ant2_H		
34	918.250M	55.9	+0.0	+10.1	+0.3	+0.0	66.3	130.0	-63.7	Anten
								Ant1_H		
35	911.830M	55.6	+0.0	+10.1	+0.3	+0.0	66.0	130.0	-64.0	Anten
								Ant1_L		
36	902.670M	53.1	+0.0	+10.1	+0.3	+0.0	63.5	130.0	-66.5	Anten
								Ant0_H		
37	927.170M	52.6	+0.0	+10.1	+0.3	+0.0	63.0	130.0	-67.0	Anten
								Ant1_L		
38	912.000M	51.1	+0.0	+10.1	+0.3	+0.0	61.5	130.0	-68.5	Anten
								Ant0_L		

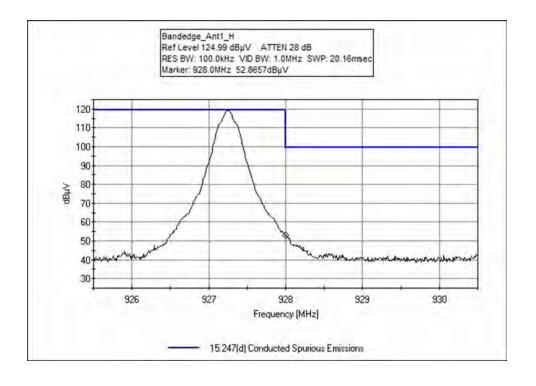
Band Edge

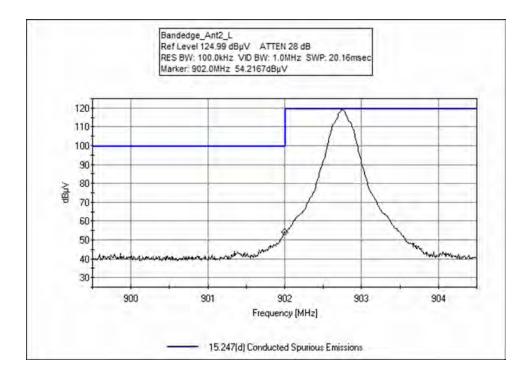
	Band Edge Summary									
Limit applied: Max Power/100kHz - 20dB. Operating Mode: Single Channel (Low and High)										
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results						
902	PR-ASK Ant0	-41.5	<3	Pass						
928	PR-ASK AntO	-41.8	< 3	Pass						
902	PR-ASK Ant1	-42.4	< 3	Pass						
928	PR-ASK Ant1	-42.8	< 3	Pass						
902	PR-ASK Ant2	-42.4	< 3	Pass						
928	PR-ASK Ant2	-43.1	< 3	Pass						
902	PR-ASK Ant3	-43.3	< 3	Pass						
928	PR-ASK Ant3	-43.4	< 3	Pass						

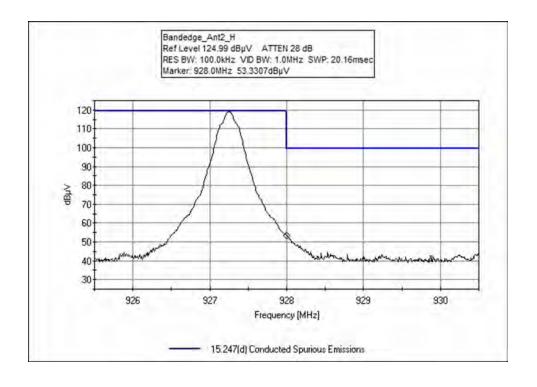

	Band Edge Summary									
Limit applied: Max Power/100kHz - 20dB. Operating Mode: Hopping										
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results						
902	PR-ASK Ant0	-47.2	<3	Pass						
928	PR-ASK Ant0	-46.0	< 3	Pass						
902	PR-ASK Ant1	-46.2	< 3	Pass						
928	PR-ASK Ant1	-53.3	< 3	Pass						
902	PR-ASK Ant2	-45.8	< 3	Pass						
928	PR-ASK Ant2	-45.9	< 3	Pass						
902	PR-ASK Ant3	-48.1	< 3	Pass						
928	PR-ASK Ant3	-46.8	< 3	Pass						

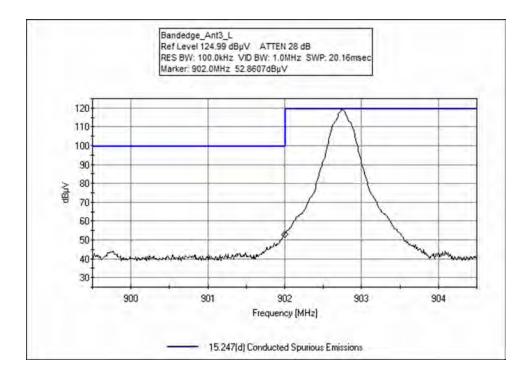

Note: dBm = dBµV- 107

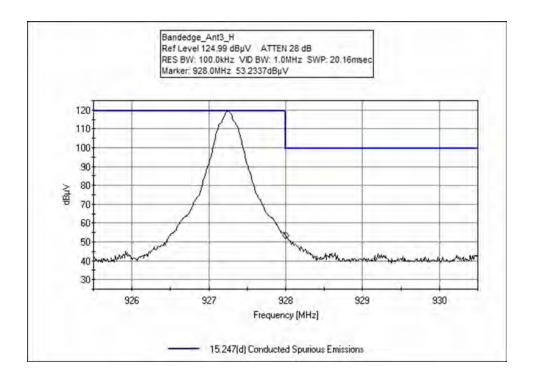

Band Edge Plots

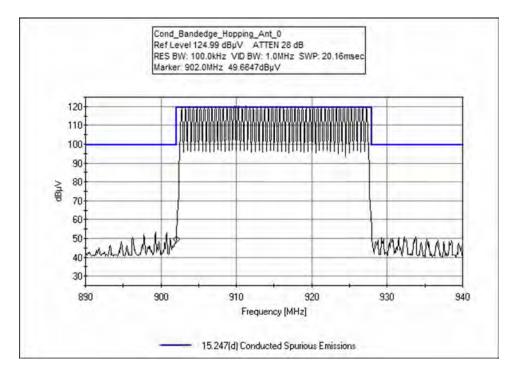

Single Channel

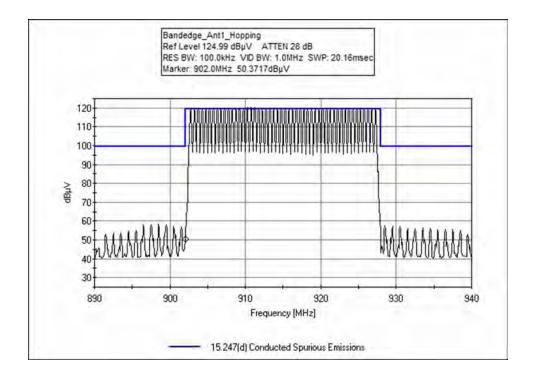


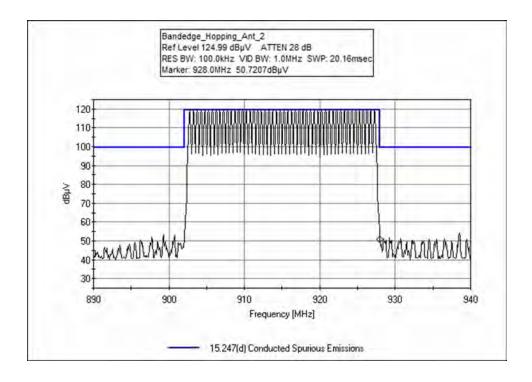


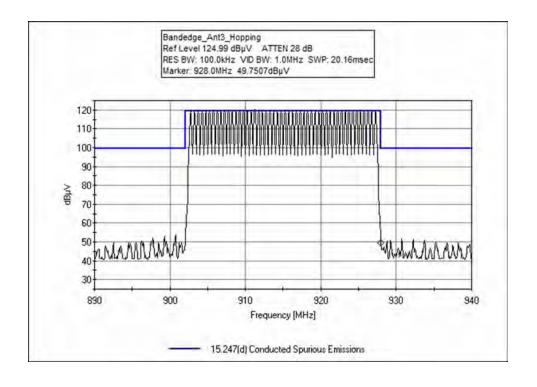











Hopping

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 110 N. Olinda Place	• Brea, CA	• (714) 993-6112
Customer:	Automaton Inc. dba RADAR		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	108850	Date:	10/21/2023
Test Type:	Conducted Emissions	Time:	13:18:21
Tested By:	E. Wong	Sequence#:	5
Software:	EMITest 5.03.20		48VDC

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturar	Model #	C/N	

DeviceManufacturerModel #S/NConfiguration 1

Test Conditions / Notes:

The equipment under test (EUT) is set on a test bench.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer.

The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz-927.25MHz

TX 902.75MHz, 914.75MHz, 927.25MHz

LO Frequency: 915MHz

TARI = 6.25us as intended.

Worst case Antenna Pattern and associated power level evaluated. Lowest gain

Frequency Range of Measurement: 902-928MHz RBW=100kHz,VBW=300 kHz.

Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 22.5°C Relative Humidity: 55% Pressure: 99.8kPa

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T2	AN03430	Attenuator	75A-10-12	1/14/2022	1/14/2024
Т3	ANP07658	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		

leasu	rement Data:		eading lis	ted by ma	argin.			Test Lea	ad: Antenna		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	902.000M	55.1	+0.0	+10.1	+0.3		+0.0	65.5	110.0	-44.5	Anten
									Bandedge_		
2	902.000M	54.8	+0.0	+10.1	+0.3		+0.0	65.2	110.0	-44.8	Anten
									Bandedge_	_Ant1_L	
3	902.000M	54.2	+0.0	+10.1	+0.3		+0.0	64.6	110.0	-45.4	Anten
									Bandedge_	_Ant2_L	
4	928.000M	54.2	+0.0	+10.1	+0.3		+0.0	64.6	110.0	-45.4	Anten
									Bandedge_		
5	902.000M	53.8	+0.0	+10.1	+0.3		+0.0	64.2	110.0	-45.8	Anten
									Bandedge_	_Ant3_L	
6	928.000M	53.5	+0.0	+10.1	+0.3		+0.0	63.9	110.0	-46.1	Anten
									Bandedge_	_Ant1_H	
7	928.000M	53.3	+0.0	+10.1	+0.3		+0.0	63.7	110.0	-46.3	Anten
									Bandedge_	_Ant2_H	
8	928.000M	53.2	+0.0	+10.1	+0.3		+0.0	63.6	110.0	-46.4	Anten
									Bandedge_		
9	902.000M	50.8	+0.0	+10.1	+0.3		+0.0	61.2	110.0	-48.8	Anten
									Bandedge_	_Ant2_L_	
									Hopping		
10	928.000M	50.7	+0.0	+10.1	+0.3		+0.0	61.1	110.0	-48.9	Anten
									Bandedge_	_Ant2_H	
									_Hopping		
11	928.000M	50.6	+0.0	+10.1	+0.3		+0.0	61.0	110.0	-49.0	Anten
									Bandedge_	_Ant0_H	
									_Hopping		
12	902.000M	50.4	+0.0	+10.1	+0.3		+0.0	60.8	110.0	-49.2	Anten
									Bandedge_	_Ant1_L_	
									Hopping		
13	928.000M	49.8	+0.0	+10.1	+0.3		+0.0	60.2	110.0	-49.8	Anten
									Bandedge_	_Ant3_H	
									_Hopping		
14	902.000M	49.4	+0.0	+10.1	+0.3		+0.0	59.8	110.0	-50.2	Anten
									Bandedge_	_Ant0_L_	
									Hopping		
15	902.000M	48.5	+0.0	+10.1	+0.3		+0.0	58.9	110.0	-51.1	Anten
									Bandedge_	_Ant3_L_	
									Hopping		
16	928.000M	43.3	+0.0	+10.1	+0.3		+0.0	53.7	110.0	-56.3	Anten
									Bandedge_	_Ant1_H	
									_Hopping		

Test Setup Photo(s)

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 110 N	J. Olinda Place • Brea, CA	• (714) 993-6112	
Customer:	Automaton Inc. dba RADAR			
Specification:	15.247(d) / 15.209 Radiated Sj	purious Emissions		
Work Order #:	108850	Date:	10/20/2023	
Test Type:	Radiated Scan	Time:	17:19:06	
Tested By:	E. Wong	Sequence#:	3	
Software:	EMITest 5.03.20			
Equipment Teste	ed:			
D	M C 4	NT - J - L 4	C/NT	

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The equipment under test (EUT) is placed on Styrofoam block.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer.

The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz-927.25MHz

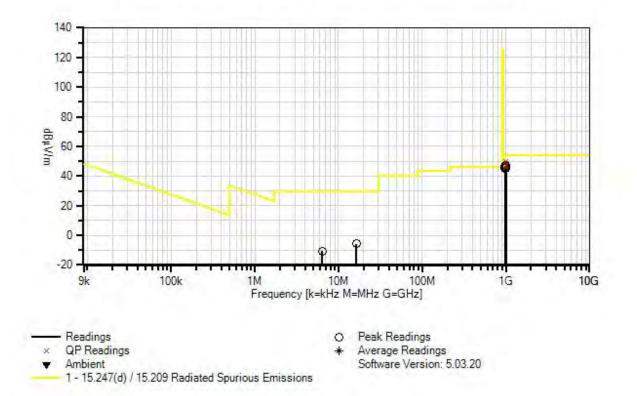
TX 902.75MHz, 914.75MHz, 927.25MHz

LO Frequency: 915MHz

TARI = 6.25us as intended.

Testing both Antenna Pattern and associated power level evaluated. Both Antenna Pattern and associated power level evaluated.

Frequency Range of Measurement: 9kHz-1GHz 9 kH -150 kHz;RBW=200 Hz,VBW=600 Hz; 150 kHz-30 MHz;RBW=9 kHz,VBW=27 kHz; 30 MHz-1000 MHz;RBW=120 kHz,VBW=360 kHz


Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 24°C Relative Humidity: 55% Pressure: 99.8kPa

Additional evaluation was performed with the EUT lay flat on the Styrofoam. Worst case emission presented. No signal found between 9kHz-30Mz and 30-1000MHz. Recorded data represent noise floor.

Automaton Inc dba RADAR WO#: 108850 Sequence#: 3 Date: 10/20/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T2	AN00851	Biconilog Antenna	CBL6111C	4/21/2022	4/21/2024
Т3	ANP05198	Cable-Amplitude	8268	12/31/2022	12/31/2024
		+15C to +45C (dB)			
T4	AN00309	Preamp	8447D	12/13/2021	12/13/2023
T5	ANP05050	Cable	RG223/U	12/31/2022	12/31/2024
T6	AN03430	Attenuator	75A-10-12	1/14/2022	1/14/2024
T7	ANP06664	Cable	PHASEFLEX	3/25/2022	3/25/2024
			FJR01N01036.0		
	AN00314	Loop Antenna	6502	3/29/2022	3/29/2024

Measu	Reading listed by margin.					Test Distance: 3 Meters					
#	Freq	Rdng	T1 T5	T2 T6	T3 T7	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBuV/m	dBµV/m	dB	Ant
1	998.750M	29.6	+0.0	+30.9	+6.3	-27.5	+0.0	49.9	<u>54.0</u>	-4.1	Horiz
-	QP	27.0	+0.5	+10.1	+0.0	-21.5	10.0	77.7	LowGain_I		HOHZ
2	998.667M	28.3	+0.0	+30.9	+6.3	-27.5	+0.0	48.3	54.0	-5.7	Horiz
	QP	20.5	+0.0	+10.1	+0.2	27.5	10.0	10.0	HiGain_L	5.7	110112
۸	998.750M	33.7	+0.0	+30.9	+6.3	-27.5	+0.0	54.0	54.0	+0.0	Horiz
			+0.5	+10.1	+0.0				LowGain_I		
^	998.667M	30.7	+0.0	+30.9	+6.3	-27.5	+0.0	50.7	54.0	-3.3	Horiz
			+0.0	+10.1	+0.2				HiGain_L		
^	998.696M	25.3	+0.0	+30.9	+6.3	-27.5	+0.0	45.3	54.0	-8.7	Horiz
			+0.0	+10.1	+0.2				HiGain_H		
6	997.850M	27.3	+0.0	+30.9	+6.3	-27.5	+0.0	47.3	54.0	-6.7	Horiz
			+0.0	+10.1	+0.2				LowGain_I	LayFl	
									at		
7	988.843M	26.9	+0.0	+31.1	+6.2	-27.4	+0.0	47.1	54.0	-6.9	Vert
			+0.0	+10.1	+0.2				LowGain_N		
8	998.600M	27.1	+0.0	+30.9	+6.3	-27.5	+0.0	47.1	54.0	-6.9	Vert
	QP		+0.0	+10.1	+0.2				HiGain_L		
9	996.730M	26.5	+0.0	+30.9	+6.3	-27.5	+0.0	46.5	54.0	-7.5	Vert
			+0.0	+10.1	+0.2				LowGain_N	M_LayFl	
									at		
10	977.630M	26.0	+0.0	+31.3	+6.2	-27.4	+0.0	46.4	54.0	-7.6	Horiz
	000 (50) 5		+0.0	+10.1	+0.2				LowGain_H		
11	998.650M	8.0	+0.0	+30.9	+6.3	+0.0	+0.0	45.7	54.0	-8.3	Vert
	QP		+0.5	+0.0	+0.0				LowGain_I		
									preamp_(no found)) signal	
^	998.600M	30.0	+0.0	+30.9	+6.3	-27.5	+0.0	50.0	54.0	-4.0	Vert
	998.000IVI	50.0	+0.0	+30.9 +10.1	+0.3 +0.2	-27.5	+0.0	50.0	HiGain_L	-4.0	ven
۸	998.650M	12.0	+0.0	+30.9	+6.3	+0.0	+0.0	49.7	54.0	-4.3	Vert
	<i>))</i> 0.050101	12.0	+0.5	+0.0	+0.0	10.0	10.0	77.7	LowGain_I		Vert
			10.0	10.0	10.0				preamp_(no		
									found)		
٨	998.700M	27.0	+0.0	+30.9	+6.3	-27.5	+0.0	47.0	54.0	-7.0	Vert
				+10.1	+0.2				HiGain_M		
15	998.830M	7.9	+0.0	+30.9	+6.3	+0.0	+0.0	45.6			Vert
	QP		+0.5	+0.0	+0.0				LowGain_I	No	
									preamp		
۸	998.830M	12.3	+0.0	+30.9	+6.3	+0.0	+0.0	50.0	54.0	-4.0	Vert
			+0.5	+0.0	+0.0				LowGain_I	No	
									preamp		
۸	998.830M	25.8	+0.0	+30.9	+6.3	-27.5	+0.0	45.8		-8.2	Vert
			+0.0	+10.1	+0.2				LowGain_I	LayFl	
		_							at		
18	998.467M	25.6	+0.0	+30.9	+6.3	-27.5	+0.0	45.6	54.0	-8.4	Vert
10	000 0001 5		+0.0	+10.1	+0.2	07 í	0.0	4	HiGain_H	0.7	X 7
19	982.830M	25.2	+0.0	+31.2	+6.2	-27.4	+0.0	45.5		-8.5	Vert
			+0.0	+10.1	+0.2				LowGain_H	1	

20	981.670M	25.1	+0.0	+31.2	+6.2	-27.4	+0.0	45.4	54.0	-8.6	Horiz
			+0.0	+10.1	+0.2				LowGain_N	A	
21	999.600M	25.2	+0.0	+30.9	+6.3	-27.5	+0.0	45.2	54.0	-8.8	Horiz
			+0.0	+10.1	+0.2				HiGain_M		
22	16.350M	25.0	+0.0	+0.0	+0.7	+0.0	-40.0	-5.6	29.5	-35.1	Perpe
			+0.0	+0.0	+0.1				LowGain_N	M_Noise	-
									floor		
23	6.410M	19.9	+0.0	+0.0	+0.5	+0.0	-40.0	-10.6	29.5	-40.1	Perpe
			+0.0	+0.0	+0.0				LowGain_N	M_Noise	-
									floor		
24	19.060M	9.8	+0.0	+0.0	+0.7	+0.0	-40.0	-21.4	29.5	-50.9	Perpe
			+0.0	+0.0	+0.1				LowGain_N	M_Noise	-
									floor		

Test Location: Customer:	CKC Laboratories, Inc • 110 N. O Automaton Inc. dba RADAR	linda Place • Brea, CA	• (714) 993-6112
Specification:	15.247(d) / 15.209 Radiated Spuri	ous Emissions	
Work Order #:	108850	Date:	10/21/2023
Test Type:	Radiated Scan	Time:	10:16:10
Tested By:	E. Wong	Sequence#:	4
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				
Support Equipment:				

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

The equipment under test (EUT) is placed on Styrofoam block

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer.

The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

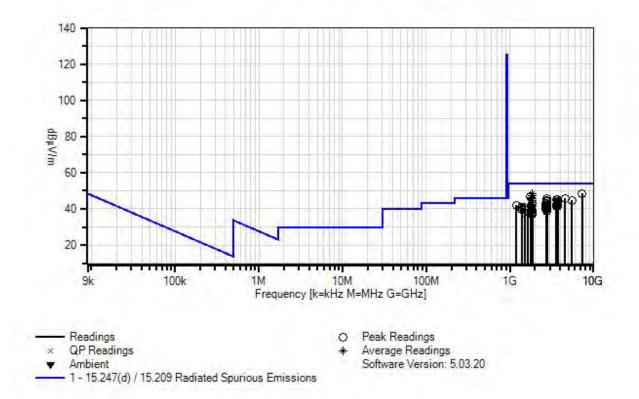
Frequency Range of EUT: 902.75MHz-927.25MHz

TX 902.75MHz, 914.75MHz, 927.25MHz

LO Frequency: 915MHz

TARI = 6.25us as intended. Both Antenna Pattern and associated power level evaluated.

Frequency Range of Measurement: 1-10GHz 1000 MHz-10 000 MHz;RBW=1MHz,VBW=3 MHz.


Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 24°C Relative Humidity: 55% Pressure: 99.8kPa

Additional evaluation was performed with the EUT lay flat on the Styrofoam. Worst case emission presented.

Automaton Inc dba RADAR WO#: 108850 Sequence#: 4 Date: 10/21/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T2	AN00849	Horn Antenna	3115	3/21/2022	3/21/2024
Т3	ANP07658	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T4	AN00786	Preamp	83017A	5/23/2022	5/23/2024
T5	ANP07692	Cable	LDF1-50	9/9/2022	9/9/2024
Т6	AN03169	High Pass Filter	HM1155-11SS	5/15/2023	5/15/2025

#	<i>irement Data:</i> Freq	Rdng	eading lis T1	T2	T3	T4	Dist	Corr	e: 3 Meters Spec Margin	Polar
π	rieq	Kung	T5	T2 T6	15	14	Dist	Coll	spec Margin	rolai
	MHz	dBµV	dB	dB	dB	dB	Table	dBuV/m	dBµV/m dB	Ant
1	1829.467M	<u>α</u> βμ ν 55.7		+27.1	+0.4	-38.8	+0.0	48.4	54.0 -5.6	Horiz
1		55.7	+0.0		+0.4	-38.8	+0.0	48.4		
	Ave		+3.6	+0.4					LowGain_M_+Har	
2	7220 02714	20.0	.0.0	.262	.0.0	26.0	.0.0	40.4	monics of LO_	II
2	7320.027M	39.2	+0.0	+36.3	+0.9	-36.9	+0.0	48.4	54.0 -5.6	Horiz
			+8.6	+0.3					LowGain_L_Harm	0
2	1854.500M	54.5		+27.4	+0.4	-38.8	+0.0	47.5	nics of LO 54.0 -6.5	Horiz
3		54.5	+0.0		+0.4	-30.0	+0.0	47.3		поп
4	Ave 1740 400M	52.0	+3.7	+0.3	0.4	20.0	.0.0	165	LowGain_H	N7
4	1749.400M	53.9	+0.0	+27.0	+0.4	-38.8	+0.0	46.5	54.0 -7.5	Vert
			+3.6	+0.4					non intentional	
5	1005 50014	52 7	.0.0	26.0	0.4	20.0	.0.0	16.0	radiator 7.8	II.
5	1805.500M	53.7	+0.0	+26.9	+0.4	-38.8	+0.0	46.2	54.0 -7.8	Horiz
	Ave	52 F	+3.6	+0.4	.0.4	20.0	. 0. 0	16.0	LowGain_L	X 7 /
6	1805.533M	53.5	+0.0	+26.9	+0.4	-38.8	+0.0	46.0	54.0 -8.0	Vert
7	Ave	52.2	+3.6	+0.4	.0.4	20.0	. 0. 0	45.0	LowGain_L	X 7 /
/	1829.433M	53.2	+0.0	+27.1	+0.4	-38.8	+0.0	45.9	54.0 -8.1	Vert
	Ave		+3.6	+0.4					LowGain_M_+Har	
0	4575 01714	42.4	.0.0	. 20.2	.07	27.4	. 0. 0	45.0	monics of LO	
8	4575.017M	43.4	+0.0	+32.3	+0.7	-37.4	+0.0	45.8	54.0 -8.2	Hori
			+6.4	+0.4					LowGain_L_Harm	0
0	1020 40214	52.0	.0.0	. 07.1	0.4	20.0	.0.0	157	nics of LO	II
9	1829.483M	53.0	+0.0	+27.1	+0.4	-38.8	+0.0	45.7	54.0 -8.3	Horiz
	Ave		+3.6	+0.4					HiGain_M+Harmo	n
^	1020 46714	50.4	.0.0	. 07.1	0.4	20.0	.0.0	50.1	ics of LO	II.
~	1829.467M	59.4	+0.0	+27.1	+0.4	-38.8	+0.0	52.1	54.0 -1.9	Horiz
			+3.6	+0.4					LowGain_M_+Har	
^	1920 49214	56.6		1 27 1	+0.4	20.0		49.3	monics of LO 54.0 -4.7	Hari
~	1829.483M	56.6	+0.0	+27.1	+0.4	-38.8	+0.0	49.5		Hori
			+3.6	+0.4					HiGain_M+Harmo	n
^	1829.467M	50.2	.0.0	. 07.1	0.4	20.0	.0.0	42.0	ics of LO 54.0 -11.0	II
~	1829.407M	50.3	+0.0	+27.1	+0.4	-38.8	+0.0	43.0		
			+3.6	+0.4					LayFlat_LowGain_	-
									M+Harmonics of	
^	1020 41714	160		1 27 1	+0.4	20 0		20 0	LO 54.0 -15.1	Har
~	1829.417M	46.2	$^{+0.0}_{+3.6}$	+27.1 + 0.4	+0.4	-38.8	+0.0	38.9	54.0 -15.1 LayFlat_HiGain_M	Hori
			+3.0	+0.4					+Harmonics of LO	L
1 /	2781.750M	48.8	+0.0	+29.5	+0.5	-38.4	+0.0	45.5	54.0 -8.5	Ver
14	2/01./30101	40.0	+0.0	+29.3 +0.4	+0.3	-30.4	+0.0	45.5		
			+4. /	+0.4					LayFlat_LowGain_ H	-
15	3600.000M	45.6		+31.3	+0.6	-38.1	+0.0	45.1	<u>п</u> 54.0 -8.9	Hori
13	3000.000M	43.0	$^{+0.0}_{+5.4}$	+31.3 +0.3	+0.0	-30.1	+0.0	43.1	non intentional	поп
			⊤J. 4	± 0.5					radiator	
17	2650 01714	15.0		121 5	106	27.0		44.0		Hori
10	3659.917M	45.0	+0.0	+31.5	+0.6	-37.9	+0.0	44.9	54.0 -9.1 LowGain_M_+Har	Hori
			+5.4	+0.3					monics of LO	
									monies of LO	

1	17 5490.020M	39.8	+0.0	+34.0	+0.8	-37.1	+0.0	44.8	54.0 -9.2	Horiz
	17 5490.020101	57.0	+7.1	+0.2	10.0	-57.1	10.0	0	LowGain_L_Harmo	HOLL
				10.2					nics of LO	
1	18 1854.450M	51.5	+0.0	+27.4	+0.4	-38.8	+0.0	44.5	54.0 -9.5	Horiz
	Ave		+3.7	+0.3					HiGain_H	
	^ 1854.500M	58.6	+0.0	+27.4	+0.4	-38.8	+0.0	51.6	54.0 -2.4	Horiz
			+3.7	+0.3					LowGain_H	
	^ 1854.450M	56.3	+0.0	+27.4	+0.4	-38.8	+0.0	49.3	54.0 -4.7	Horiz
			+3.7	+0.3					HiGain_H	
	^ 1854.400M	46.6	+0.0	+27.4	+0.4	-38.8	+0.0	39.6	54.0 -14.4	Horiz
			+3.7	+0.3					LayFlat_LowGain_	
		15.0		27.4	0.4	20.0	0.0	20.2	H	
	^ 1854.500M	45.3	+0.0	+27.4	+0.4	-38.8	+0.0	38.3	54.0 -15.7	Horiz
	2 2791 (20)4	47.0	+3.7	+0.3	0.5	20.4	.0.0	44.5	LayFlat_HiGain_H	X 7 /
4	23 2781.620M	47.8	$^{+0.0}_{+4.7}$	+29.5 +0.4	+0.5	-38.4	+0.0	44.5	54.0 -9.5 HiGain_H	Vert
_	24 3660.013M	44.3	+4.7 +0.0	+0.4 +31.5	+0.6	-37.9	+0.0	44.2	54.0 -9.8	Horiz
4	24 5000.015M	44.3	+0.0 +5.4	+31.3 +0.3	+0.0	-37.9	+0.0	44.2	LowGain_L_Harmo	HOLIZ
			13.4	10.5					nics of LO	
	25 3659.967M	44.1	+0.0	+31.5	+0.6	-37.9	+0.0	44.0	54.0 -10.0	Horiz
-			+5.4	+0.3	1010	0115			HiGain M+Harmon	110112
									ics of LO	
2	26 3660.050M	44.0	+0.0	+31.5	+0.6	-37.9	+0.0	43.9	54.0 -10.1	Vert
			+5.4	+0.3					LayFlat_HiGain_M	
									+Harmonics of LO	
2	27 2781.600M	47.2	+0.0	+29.5	+0.5	-38.4	+0.0	43.9	54.0 -10.1	Horiz
			+4.7	+0.4					LayFlat_LowGain_	
									Н	
4	28 3660.000M	43.9	+0.0	+31.5	+0.6	-37.9	+0.0	43.8	54.0 -10.2	Horiz
			+5.4	+0.3					LowGain_Harmoni	
		42.0	.0.0	. 21. 5	0.0	27.0	.0.0	42.7	cs of LO	X <i>T</i> (
4	29 3660.000M	43.8	+0.0	+31.5	+0.6	-37.9	+0.0	43.7	54.0 -10.3	Vert
			+5.4	+0.3					LayFlat_LowGain_ H Harmonics of	
									LO	
	30 1854.450M	50.3	+0.0	+27.4	+0.4	-38.8	+0.0	43.3	54.0 -10.7	Vert
	Ave	50.5	+3.7	+0.3	10.1	50.0	10.0	15.5	HiGain_H	vert
	31 3660.517M	43.3	+0.0	+31.5	+0.6	-37.9	+0.0	43.2	54.0 -10.8	Horiz
			+5.4	+0.3					HiGain_L_Harmoni	
									cs of LO	
	32 3708.800M	42.5	+0.0	+32.0	+0.6	-37.8	+0.0	43.1	54.0 -10.9	Horiz
			+5.4	+0.4					LayFlat_LowGain_	
									Н	
	33 2781.750M	46.4	+0.0	+29.5	+0.5	-38.4	+0.0	43.1	54.0 -10.9	Horiz
			+4.7	+0.4					LayFlat_HiGain_H	
	34 3709.050M	42.4	+0.0	+32.0	+0.6	-37.8	+0.0	43.0	54.0 -11.0	Vert
			+5.4	+0.4		a	0.5		LowGain_H	
	35 2708.150M	46.6	+0.0	+29.2	+0.5	-38.4	+0.0	42.8	54.0 -11.2	Vert
			+4.5	+0.4					LayFlat_LowGain_	
		40.7		107 4	10.4	20.0	10.0	42.7	L 54.0 11.2	V
	36 1854.600M	49.7	+0.0	+27.4	+0.4	-38.8	+0.0	42.7	54.0 -11.3 LavElat HiGain H	Vert
			+3.7	+0.3					LayFlat_HiGain_H	

37	3611.067M	43.0	$^{+0.0}_{+5.4}$	+31.4 +0.3	+0.6	-38.1	+0.0	42.6	54.0 -11.4 LowGain_L	Vert
20	2700 70214	41.0			.0.6	27.0		40.5		
38	3708.783M	41.9	$^{+0.0}_{+5.4}$	+32.0 +0.4	+0.6	-37.8	+0.0	42.5	54.0 -11.5 HiGain_H	Horiz
39	3659.900M	42.6	+0.0	+31.5	+0.6	-37.9	+0.0	42.5	54.0 -11.5	Vert
57	5057.700101	12.0	+5.4	+0.3	10.0	51.7	10.0	12.0	LowGain L Harmo	vert
			13.4	10.5					nics of LO	
40	1805.500M	49.8	+0.0	+26.9	+0.4	-38.8	+0.0	42.3	54.0 -11.7	Vert
		49.0	+0.0 $+3.6$		+0.4	-30.0	± 0.0	42.5	HiGain_L	ven
^	Ave 1805 522M	57.6	+3.0 +0.0	+0.4	+0.4	-38.8	+0.0	50.1	54.0 -3.9	Mant
	1805.533M	57.0		+26.9	+0.4	-30.0	+0.0	50.1		Vert
10	2700 700) (41.7	+3.6	+0.4	0.6	27.0	0.0	10.0	LowGain_L	T T L
42	3708.780M	41.7	+0.0	+32.0	+0.6	-37.8	+0.0	42.3	54.0 -11.7	Vert
			+5.4	+0.4					HiGain_H	
43	3660.000M	42.3	+0.0	+31.5	+0.6	-37.9	+0.0	42.2	54.0 -11.8	Vert
			+5.4	+0.3					HiGain_L_Harmoni	
									cs of LO	
44	1854.500M	49.2	+0.0	+27.4	+0.4	-38.8	+0.0	42.2	54.0 -11.8	Vert
	Ave		+3.7	+0.3					LowGain_H	
45	3658.867M	42.3	+0.0	+31.5	+0.6	-37.9	+0.0	42.2	54.0 -11.8	Vert
			+5.4	+0.3					LowGain_M_+Har	
									monics of LO	
46	2781.750M	45.4	+0.0	+29.5	+0.5	-38.4	+0.0	42.1	54.0 -11.9	Horiz
			+4.7	+0.4					LowGain_H	
47	3660.000M	42.2	+0.0	+31.5	+0.6	-37.9	+0.0	42.1	54.0 -11.9	Vert
	20001000112		+5.4	+0.3		0115			LowGain_H_Harm	
									onics of LO	
48	3611.000M	42.4	+0.0	+31.4	+0.6	-38.1	+0.0	42.0	54.0 -12.0	Vert
10	5011.000101	12.1	+5.4	+0.3	10.0	50.1	10.0	12.0	HiGain_L	vert
49	1199.920M	52.4	+0.0	+25.4	+0.3	-39.9	+0.0	42.0	54.0 -12.0	Horiz
	11/)./20101	52.4	+2.9	+0.9	10.5	-37.7	10.0	72.0	non intentional	HOLL
			<i>τ2.9</i>	+0.9					radiator	
50	3659.033M	42.1	+0.0	+31.5	+0.6	-37.9	+0.0	42.0	54.0 -12.0	Vert
50	3039.033W	42.1		+31.3 +0.3	+0.0	-37.9	+0.0	42.0		ven
			+5.4	+0.5					HiGain_M+Harmon	
<i>E</i> 1	2700 20014	15 6	.0.0	100.0	105	20.4	.0.0	41.0	ics of LO	Vent
51	2708.300M	45.6	+0.0	+29.2	+0.5	-38.4	+0.0	41.8	54.0 -12.2	Vert
50	2611 00014	40.0	+4.5	+0.4	.0.6	20.1	.0.0	41.0	LowGain_L	TT. '
52	3611.000M	42.2	+0.0	+31.4	+0.6	-38.1	+0.0	41.8	54.0 -12.2	Horiz
		46 -	+5.4	+0.3			0.5		HiGain_L	
	1805.433M	49.2	+0.0	+26.9	+0.4	-38.8	+0.0	41.7	54.0 -12.3	Vert
	Ave		+3.6	+0.4					LayFlat_LowGain_	
									L	
^	1805.500M	55.5	+0.0	+26.9	+0.4	-38.8	+0.0	48.0	54.0 -6.0	Vert
			+3.6	+0.4					HiGain_L	
^	1805.433M	53.9	+0.0	+26.9	+0.4	-38.8	+0.0	46.4	54.0 -7.6	Vert
			+3.6	+0.4					LayFlat_LowGain_	
									L	
^	1805.533M	52.3	+0.0	+26.9	+0.4	-38.8	+0.0	44.8	54.0 -9.2	Vert
			+3.6	+0.4					LayFlat_HiGain_L	
L										

57	1829.467M	48.9	+0.0	+27.1	+0.4	-38.8	+0.0	41.6	54.0 -12.4	Vert
	Ave		+3.6	+0.4					LayFlat_LowGain_ M+Harmonics of LO	
^	1829.433M	56.9	+0.0 +3.6	+27.1 +0.4	+0.4	-38.8	+0.0	49.6	54.0 -4.4 LowGain_M_+Har monics of LO	Vert
^	1829.467M	53.1	+0.0 +3.6	+27.1 +0.4	+0.4	-38.8	+0.0	45.8	54.0 -8.2 LayFlat_LowGain_ M+Harmonics of LO	Vert
٨	1829.433M	52.8	+0.0 +3.6	+27.1 +0.4	+0.4	-38.8	+0.0	45.5	54.0 -8.5 HiGain_M+Harmon ics of LO	Vert
^	1829.400M	51.6	+0.0 +3.6	+27.1 +0.4	+0.4	-38.8	+0.0	44.3	54.0 -9.7 LayFlat_HiGain_M +Harmonics of LO	Vert
62	2744.200M	45.2	+0.0 +4.6	+29.3 +0.4	+0.5	-38.4	+0.0	41.6	54.0 -12.4 LayFlat_LowGain_ M+Harmonics of LO	Vert
63	2745.317M	45.1	+0.0 +4.6	+29.3 +0.4	+0.5	-38.4	+0.0	41.5	54.0 -12.5 HiGain_L_Harmoni cs of LO	Horiz
64	3611.030M	41.9	+0.0 +5.4	+31.4 +0.3	+0.6	-38.1	+0.0	41.5	54.0 -12.5 LowGain_L	Horiz
65	2745.000M	45.1	+0.0 +4.6	+29.3 +0.4	+0.5	-38.4	+0.0	41.5	54.0 -12.5 LowGain_Harmoni cs of LO	Horiz
66	3660.000M	41.6	+0.0 +5.4	+31.5 +0.3	+0.6	-37.9	+0.0	41.5	54.0 -12.5 LayFlat_LowGain_ L_Harmonics of LO	Vert
67	2744.200M	45.1	+0.0 +4.6	+29.3 +0.4	+0.5	-38.4	+0.0	41.5	54.0 -12.5 LayFlat_LowGain_ M+Harmonics of LO	Horiz
68	2781.800M	44.7	$^{+0.0}_{+4.7}$	+29.5 +0.4	+0.5	-38.4	+0.0	41.4	54.0 -12.6 LowGain_H	Vert
69	3658.933M	41.5	+0.0 +5.4	+31.5 +0.3	+0.6	-37.9	+0.0	41.4	54.0 -12.6 LayFlat_LowGain_ M+Harmonics of LO	Vert
70	2745.000M	44.7	+0.0 +4.6	+29.3 +0.4	+0.5	-38.4	+0.0	41.1	54.0 -12.9 LayFlat_LowGain_ L_Harmonics of LO	Vert
71	2744.800M	44.7	+0.0 +4.6	+29.3 +0.4	+0.5	-38.4	+0.0	41.1	54.0 -12.9 HiGain_M+Harmon ics of LO	Horiz
72	2745.000M	44.6	+0.0 +4.6	+29.3 +0.4	+0.5	-38.4	+0.0	41.0	54.0 -13.0 LowGain_H_Harm onics of LO	Vert

73	1375.500M	50.2	+0.0 +3.2	+25.7 +0.7	+0.4	-39.3	+0.0	40.9	54.0 -13.1 non intentional	Horiz
									radiator	
74	2745.010M	44.5	+0.0	+29.3	+0.5	-38.4	+0.0	40.9	54.0 -13.1	Horiz
			+4.6	+0.4					LowGain_L_Harmo nics of LO	
75	2744.930M	44.5	+0.0	+29.3	+0.5	-38.4	+0.0	40.9	54.0 -13.1	Vert
			+4.6	+0.4					LowGain_L_Harmo nics of LO	
76	2781.617M	44.2	+0.0	+29.5	+0.5	-38.4	+0.0	40.9	54.0 -13.1	Horiz
77	2708 25014	44.5	+4.7	+0.4	0.5	20.4		40.7	HiGain_H	Vort
77	2708.250M	44.5	$^{+0.0}_{+4.5}$	+29.2 +0.4	+0.5	-38.4	+0.0	40.7	54.0 -13.3 HiGain_L	Vert
78	2744.200M	44.3	+0.0	+29.3	+0.5	-38.4	+0.0	40.7	54.0 -13.3	Horiz
			+4.6	+0.4					LowGain_M_+Har	
									monics of LO	
79	1500.200M	50.2	+0.0	+25.4	+0.3	-39.1	+0.0	40.6	54.0 -13.4	Vert
			+3.3	+0.5					non intentional	
80	1805.500M	48.1	+0.0	+26.9	+0.4	-38.8	+0.0	40.6	radiator 54.0 -13.4	Horiz
	Ave	40.1	+0.0 +3.6	+20.9 +0.4	+0.4	-30.0	+0.0	40.0	HiGain_L	HOLIZ
٨	1805.500M	57.6	+0.0	+26.9	+0.4	-38.8	+0.0	50.1	54.0 -3.9	Horiz
			+3.6	+0.4					LowGain_L	-
^	1805.500M	53.8	+0.0	+26.9	+0.4	-38.8	+0.0	46.3	54.0 -7.7	Horiz
			+3.6	+0.4					HiGain_L	
^	1805.500M	50.0	+0.0	+26.9	+0.4	-38.8	+0.0	42.5	54.0 -11.5	Horiz
			+3.6	+0.4					LayFlat_LowGain_ L	
^	1805.500M	48.1	+0.0	+26.9	+0.4	-38.8	+0.0	40.6	54.0 -13.4	Horiz
	10001000111	1011	+3.6	+0.4		2010	1010		LayFlat_HiGain_L	TIOTIL
85	2745.000M	44.2	+0.0	+29.3	+0.5	-38.4	+0.0	40.6	54.0 -13.4	Vert
			+4.6	+0.4					LayFlat_LowGain_	
									H_Harmonics of	
96	2708.280M	44.2	+0.0	+29.2	+0.5	-38.4	+0.0	40.4	LO 54.0 -13.6	Horiz
80	2708.280101	44.2	+0.0 +4.5	+29.2	+0.3	-38.4	± 0.0	40.4	LowGain_L	HOLIZ
87	2708.250M	44.2	+0.0	+29.2	+0.5	-38.4	+0.0	40.4	54.0 -13.6	Horiz
			+4.5	+0.4					HiGain_L	
88	2708.300M	44.2	+0.0	+29.2	+0.5	-38.4	+0.0	40.4	54.0 -13.6	Vert
			+4.5	+0.4					LayFlat_HiGain_L	
89	2744.150M	43.9	+0.0	+29.3	+0.5	-38.4	+0.0	40.3	54.0 -13.7	Vert
			+4.6	+0.4					LowGain_M_+Har monics of LO	
90	2744.100M	43.9	+0.0	+29.3	+0.5	-38.4	+0.0	40.3	54.0 -13.7	Vert
30	2777.100101	тЈ.9	+0.0 $+4.6$	+29.3 +0.4	10.5	-50.4	10.0	-0.J	LayFlat_HiGain_M	vert
									+Harmonics of LO	
91	2744.317M	43.6	+0.0	+29.3	+0.5	-38.4	+0.0	40.0	54.0 -14.0	Vert
			+4.6	+0.4					HiGain_M+Harmon	
	4 # 0.0 # 0.00 5	10 -	<u> </u>	07 i		0 0 1	0.0		ics of LO	
92	1500.200M	49.5	+0.0	+25.4	+0.3	-39.1	+0.0	39.9	54.0 -14.1	Horiz
			+3.3	+0.5					non intentional radiator	
									raulator	

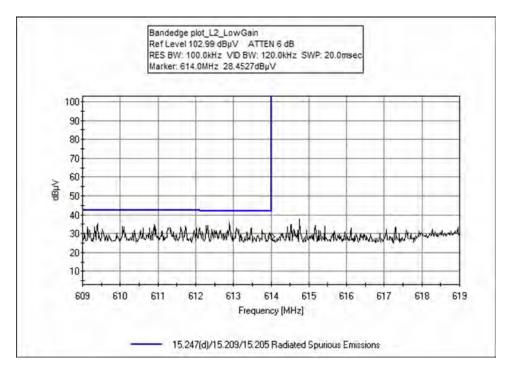
93	2781.900M	43.2	+0.0	+29.5	+0.5	-38.4	+0.0	39.9	54.0 -14.1	Vert
)5	2701.9000	73.2	+4.7	+0.4	10.5	-30.4	10.0	57.7	LayFlat_HiGain_H	ven
94	2708.250M	43.7	+0.0	+29.2	+0.5	-38.4	+0.0	39.9	54.0 -14.1	Horiz
			+4.5	+0.4					LayFlat_LowGain_ L	
95	1374.800M	49.1	+0.0	+25.7	+0.4	-39.3	+0.0	39.8	54.0 -14.2	Vert
			+3.2	+0.7					non intentional	
									radiator	
96	2745.000M	43.4	+0.0	+29.3	+0.5	-38.4	+0.0	39.8	54.0 -14.2	Vert
			+4.6	+0.4					HiGain_L_Harmoni cs of LO	
97	1624.800M	48.8	+0.0	+25.5	+0.3	-38.9	+0.0	39.4	54.0 -14.6	Horiz
			+3.4	+0.3					non intentional	
									radiator	
98	1830.000M	46.6	+0.0	+27.1	+0.4	-38.8	+0.0	39.3	54.0 -14.7	Vert
			+3.6	+0.4					LayFlat_HiGain_H	
00	1020 0003 5	16.0		. 07.1	.0.4	20.0		20.0	_Harmonics of LO	
99	1830.000M	46.3	+0.0	+27.1	+0.4	-38.8	+0.0	39.0	54.0 -15.0	Horiz
			+3.6	+0.4					LowGain_Harmoni cs of LO	
	1854.500M	46.0	+0.0	+27.4	+0.4	-38.8	+0.0	39.0	54.0 -15.0	Vert
	Ave		+3.7	+0.3					LayFlat_LowGain_	
									H	
۸	1854.450M	55.0	+0.0	+27.4	+0.4	-38.8	+0.0	48.0	54.0 -6.0	Vert
•	1054 50014	52.0	+3.7	+0.3	.0.4	20.0	.0.0	16.0	HiGain_H	X 7 (
۸	1854.500M	53.9	+0.0	+27.4	+0.4	-38.8	+0.0	46.9	54.0 -7.1	Vert
٨	1854.500M	51.4	+3.7 +0.0	+0.3 +27.4	+0.4	-38.8	+0.0	44.4	LowGain_H 54.0 -9.6	Vert
	1654.500101	51.4	+0.0 +3.7	+27.4 +0.3	+0.4	-30.0	± 0.0	44.4	LayFlat_LowGain_	ven
									H	
104	2745.000M	42.5	+0.0	+29.3	+0.5	-38.4	+0.0	38.9	54.0 -15.1	Vert
			+4.6	+0.4					LayFlat_HiGain_H	
105	1.500.0003.6	17.0		25.4					_Harmonics of LO	
105	1500.330M	47.9	+0.0	+25.4	+0.3	-39.1	+0.0	38.3	54.0 -15.7	Horiz
			+3.3	+0.5					non intentional	
104	1830.000M	45.4		+27.1	+0.4	-38.8	+0.0	38.1	radiator 54.0 -15.9	Uoria
100	1000.000M	43.4	+0.0 +3.6		+0.4	-30.8	+0.0	30.1	54.0 -15.9 LayFlat_HiGain_H	Horiz
			±3.0	+0.4					Harmonics of LO	
107	1830.000M	45.2	+0.0	+27.1	+0.4	-38.8	+0.0	37.9	<u>54.0</u> -16.1	Horiz
107	1050.000141	r <i>J</i> . 4	+0.0 +3.6	+27.1 +0.4	10.7	50.0	10.0	51.7	LayFlat LowGain	TIOUL
			. 2.0						L_Harmonics of LO	
108	1830.000M	44.9	+0.0	+27.1	+0.4	-38.8	+0.0	37.6	54.0 -16.4	Vert
			+3.6	+0.4	- / -				HiGain_L_Harmoni	
									cs of LO	
109	1825.000M	44.9	+0.0	+27.1	+0.4	-38.8	+0.0	37.6	54.0 -16.4	Vert
			+3.6	+0.4					LayFlat_HiGain_H	
									_Harmonics of LO	
110	1830.007M	44.8	+0.0	+27.1	+0.4	-38.8	+0.0	37.5	54.0 -16.5	Horiz
			+3.6	+0.4					LowGain_L_Harmo	
									nics of LO	

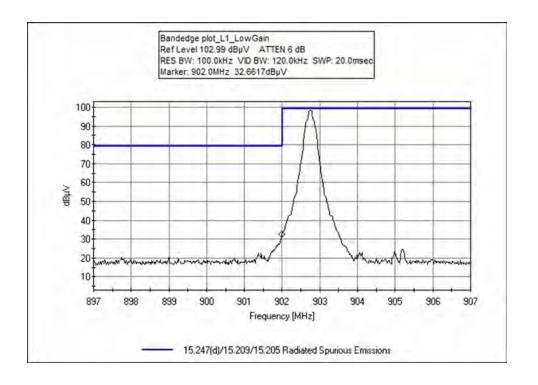
111	1830.000M	44.7	+0.0	+27.1	+0.4	-38.8	+0.0	37.4	54.0 -1	6.6 Horiz
111	1830.0001	44.7			+0.4	-30.0	± 0.0	57.4		
			+3.6	+0.4					LayFlat_HiGair	
									_Harmonics of I	LO
112	1830.033M	44.7	+0.0	+27.1	+0.4	-38.8	+0.0	37.4	54.0 -1	6.6 Horiz
			+3.6	+0.4					LayFlat_LowGa	ain_
									H Harmonics o	f
									LŌ	
113	1830.000M	44.6	+0.0	+27.1	+0.4	-38.8	+0.0	37.3	54.0 -1	6.7 Vert
			+3.6	+0.4					LayFlat_LowGa	ain_
									H_Harmonics o	f
									LO	
114	1830.000M	44.6	+0.0	+27.1	+0.4	-38.8	+0.0	37.3	54.0 -1	6.7 Vert
			+3.6	+0.4					LowGain_H_Ha	arm
									onics of LO	
115	1830.400M	44.5	+0.0	+27.1	+0.4	-38.8	+0.0	37.2	54.0 -1	6.8 Horiz
			+3.6	+0.4					HiGain_L_Harr	noni
									cs of LO	
116	1829.930M	44.5	+0.0	+27.1	+0.4	-38.8	+0.0	37.2	54.0 -1	6.8 Vert
			+3.6	+0.4					LowGain_L_Ha	armo
									nics of LO	
117	1830.000M	44.3	+0.0	+27.1	+0.4	-38.8	+0.0	37.0	54.0 -1	7.0 Vert
			+3.6	+0.4					LayFlat_LowGa	ain
									L Harmonics of	
L										

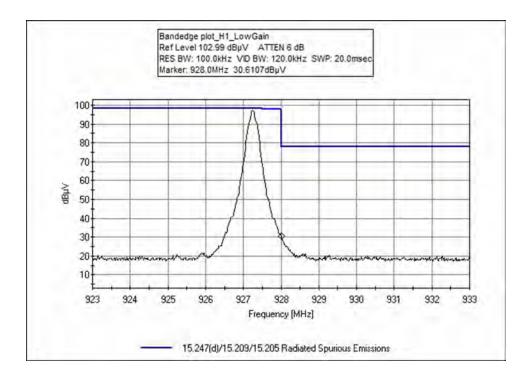
Band Edge

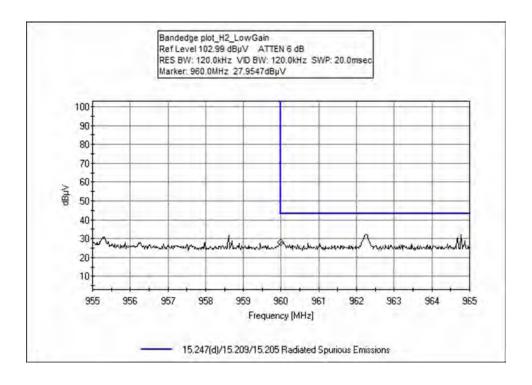
	Band Edge Summary: Lowest Gain, Highest Power								
Operating Mo	Operating Mode: Single Channel (Low and High)								
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results				
614	PR-ASK	Integral	32.4	<46	Pass				
902	PR-ASK	Integral	69.5	<115	Pass				
928	PR-ASK	Integral	67.3	< 115	Pass				
960	PR-ASK	Integral	38.7	<54	Pass				

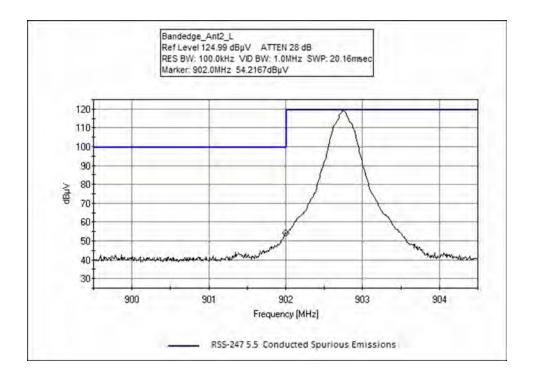
	Band Edge Summary : Lowest Gain, Highest Power							
Operating Mo	Operating Mode: Hopping							
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results			
614	PR-ASK	Integral	30.9	<46	Pass			
902	PR-ASK	Integral	64.8	<115	Pass			
928	PR-ASK	Integral	64.5	< 115	Pass			
960	PR-ASK	Integral	39.7	<54	Pass			


	Band Edge Summary: Highest Gain, Lowest Power								
Operating Mo	Operating Mode: Single Channel (Low and High)								
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results				
614	PR-ASK	Integral	31.3	<46	Pass				
902	PR-ASK	Integral	62.7	<113	Pass				
928	PR-ASK	Integral	63.4	< 113	Pass				
960	PR-ASK	Integral	38.7	<54	Pass				

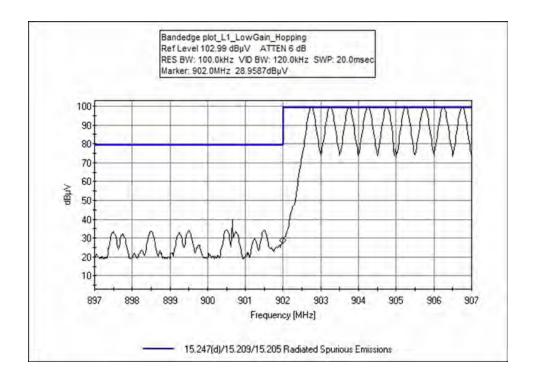

	Band Edge Summary: Highest Gain, Lowest Power								
Operating Mo	Operating Mode: Hopping								
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results				
614	PR-ASK	Integral	31.6	<46	Pass				
902	PR-ASK	Integral	62.3	<113	Pass				
928	PR-ASK	Integral	60.8	< 113	Pass				
960	PR-ASK	Integral	38.8	<54	Pass				

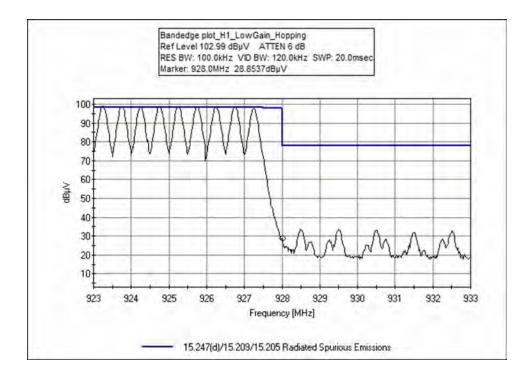

Band Edge Plots

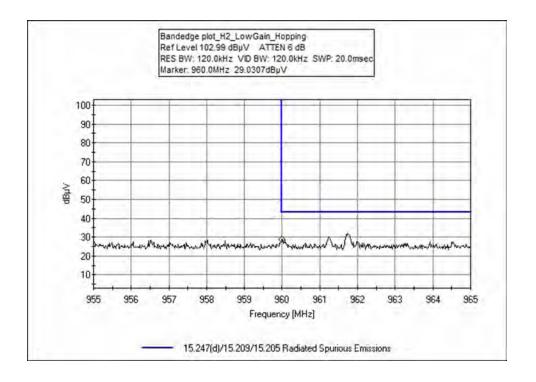

Lowest Gain, Single Channel

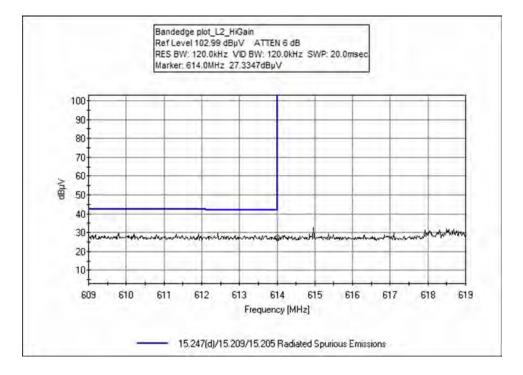


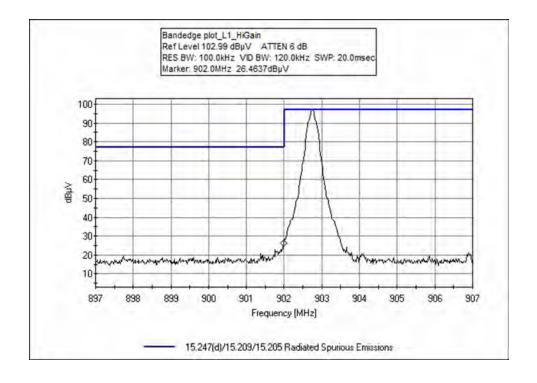


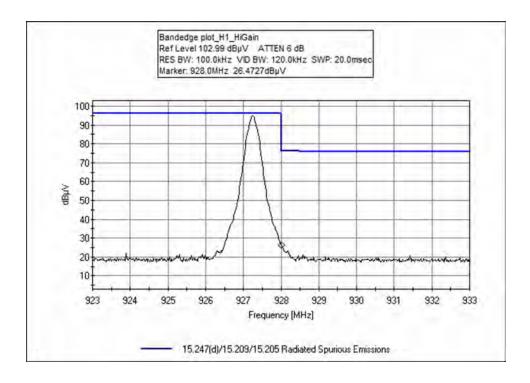


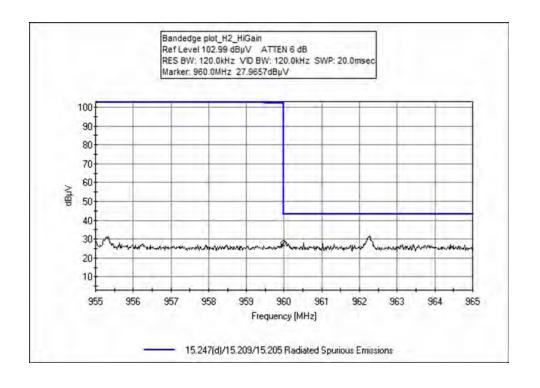


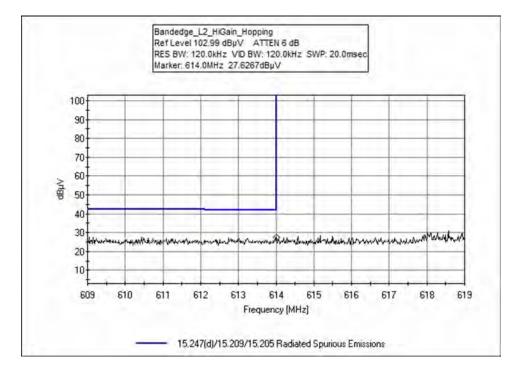

Lowest Gain, Hopping

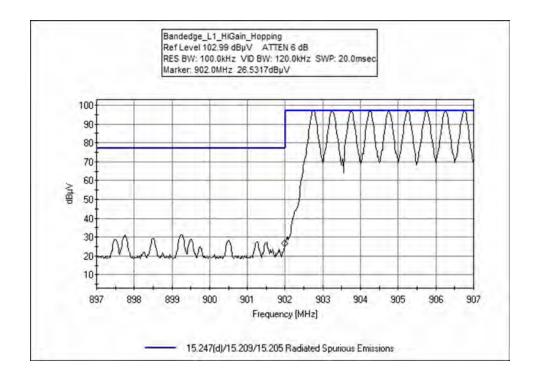


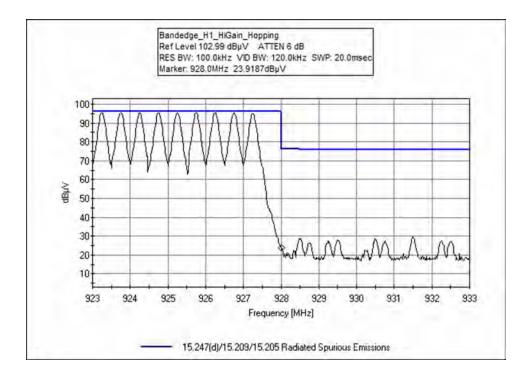


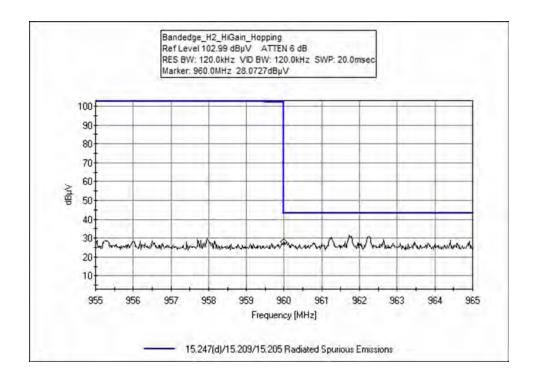



Highest Gain, Single Channel








Highest Gain, Hopping

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 110 N.	Olinda Place • Brea, CA	• (714) 993-6112
Customer:	Automaton Inc. dba RADAR		
Specification:	15.247(d)/15.209/15.205 Radiate	ed Spurious Emissions	
Work Order #:	108850	Date:	10/20/2023
Test Type:	Radiated Scan	Time:	17:19:06
Tested By:	E. Wong	Sequence#:	3
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	

Configuration 1

Test Conditions / Notes:

The equipment under test (EUT) is placed on Styrofoam block

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer.

The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz-927.25MHz

TX 902.75MHz, 914.75MHz, 927.25MHz

LO Frequency: 915MHz

TARI = 6.25us as intended.

Worst case Antenna Pattern, Lowest gain and associated power level evaluated.

Frequency Range of Measurement: 614-960MHz Restricted band RBW=120 kHz,VBW=360 kHz Non restricted band RBW=100 kHz,VBW=300 kHz

Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 24°C Relative Humidity: 55% Pressure: 99.8kPa

Additional evaluation was performed with the EUT lay flat on the Styrofoam. Worst case emission presented.

Test Equipment: Description Model Cal Due Date ID Asset # Calibration Date AN02869 Spectrum Analyzer E4440A Τ1 12/13/2022 12/13/2023 Т2 AN00851 **Biconilog Antenna** CBL6111C 4/21/2022 4/21/2024 T3 ANP05198 Cable-Amplitude 8268 12/31/2022 12/31/2024 +15C to +45C (dB) T4 AN00309 Preamp 8447D 12/13/2021 12/13/2023 Т5 RG223/U 12/31/2022 ANP05050 Cable 12/31/2024 AN03430 Attenuator 75A-10-12 1/14/2022 1/14/2024 ANP06664 Cable PHASEFLEX 3/25/2022 3/25/2024 FJR01N01036.0 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024

Measu	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table		dBµV/m	dB	Ant
1	614.000M	28.4	+0.0	+26.3	+4.7	-27.4	+0.0	32.4	46.0	-13.6	Horiz
			+0.4						Bandedge_ n_L2		
2	960.000M	29.0	+0.0	+31.4	+6.1	-27.3	+0.0	39.7	54.0	-14.3	Horiz
			+0.5						Bandedge		
									H2_LowG	ain_Hop	
	(14,000) (07.6	0.0	262	4.7	07.4	0.0	21.6	ping	1.4.4	
3	614.000M	27.6	+0.0	+26.3	+4.7	-27.4	+0.0	31.6	46.0	-14.4	Horiz
			+0.4						Bandedge_		
4	614.000M	27.3	+0.0	+26.3	+4.7	-27.4	+0.0	31.3	ain_Hoppi 46.0	-14.7	Horiz
4	014.000101	21.5	+0.0 +0.4	+20.3	+4.7	-27.4	+0.0	51.5	Bandedge_		HOUL
			10.4						ain	_L2_1110	
5	614.000M	26.9	+0.0	+26.3	+4.7	-27.4	+0.0	30.9	46.0	-15.1	Horiz
			+0.4						Bandedge		
									L2_LowG	ain_Hopp	
									ing		
6	960.000M	28.1	+0.0	+31.4	+6.1	-27.3	+0.0	38.8	54.0	-15.2	Horiz
			+0.5						Bandedge_		
									ain_Hoppi		
7	960.000M	28.0	+0.0	+31.4	+6.1	-27.3	+0.0	38.7	54.0	-15.3	Horiz
			+0.5						Bandedge_	_LowGa1	
0	0.00 000 1	20.0	.0.0	. 21.4	. (1	27.2	.0.0	20.7	n_H2	15.2	II.
8	960.000M	28.0	$^{+0.0}_{+0.5}$	+31.4	+6.1	-27.3	+0.0	38.7	54.0 Dendedee	-15.3	Horiz
			+0.3						Bandedge_ ain	_n2_ni0	
9	902.000M	33.7	+0.0	+29.5	+5.8	+0.0	+0.0	69.5	115.0	-45.5	Horiz
			+0.5						Bandedge_	LowGai	
									n_L1		

			1 5 ()				1150 477	Homin
8.000M 30.4	+0.0	+30.5	+5.9	+0.0	+0.0	67.3	115.0 -47.7	Horiz
	+0.5						v –	
							n_H1	
8.000M 26.5	+0.0	+30.5	+5.9	+0.0	+0.0	63.4	113.0 -49.6	Horiz
	+0.5						Bandedge Hi HiGa	ι
							in	
2.000M 29.0	+0.0	+29.5	+5.8	+0.0	+0.0	64.8	115.0 -50.2	Horiz
	+0.5						Bandedge	
							L1 LowGain Hope)
							. –	
2.000M 26.9	+0.0	+29.5	+5.8	+0.0	+0.0	62.7	113.0 -50.3	Horiz
	+0.5						Bandedge L1 HiG	
							ain	
8.000M 27.6	+0.0	+30.5	+5.9	+0.0	+0.0	64.5	115.0 -50.5	Horiz
	+0.5						Bandedge	
	1010						e	
2 000M 26 5		120.5	150			67.2		Horiz
2.000M 20.3		+29.3	+3.8	+0.0	+0.0	02.5		HOLIZ
	+0.5						0 = =	
8.000M 23.9	+0.0	+30.5	+5.9	+0.0	+0.0	60.8		Horiz
	+0.5						Bandedge_H1_HiG	
							ain_Hopping	
	2.000M 29.0 2.000M 26.9 8.000M 27.6 2.000M 26.5	$\begin{array}{c} +0.5 \\ \hline 2.000M & 29.0 & +0.0 \\ +0.5 \\ \hline 2.000M & 26.9 & +0.0 \\ +0.5 \\ \hline 8.000M & 27.6 & +0.0 \\ +0.5 \\ \hline \hline 2.000M & 26.5 & +0.0 \\ +0.5 \\ \hline \hline 8.000M & 23.9 & +0.0 \\ \hline \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.000M 26.5 $+0.0$ $+30.5$ $+5.9$ $+0.5$ $+0.5$ $+29.5$ $+5.8$ $2.000M$ 26.9 $+0.0$ $+29.5$ $+5.8$ $+0.5$ $+0.5$ $+29.5$ $+5.8$ $+0.5$ $+0.0$ $+29.5$ $+5.8$ $8.000M$ 27.6 $+0.0$ $+30.5$ $+5.9$ $+0.5$ $+0.0$ $+30.5$ $+5.9$ $8.000M$ 26.5 $+0.0$ $+29.5$ $+5.8$ $+0.5$ $+0.0$ $+29.5$ $+5.8$ $+0.5$ $+0.0$ $+29.5$ $+5.8$ $+0.5$ $+0.0$ $+30.5$ $+5.9$	8.000M 26.5 $+0.0$ $+30.5$ $+5.9$ $+0.0$ $2.000M$ 29.0 $+0.0$ $+29.5$ $+5.8$ $+0.0$ $2.000M$ 26.9 $+0.0$ $+29.5$ $+5.8$ $+0.0$ $2.000M$ 26.9 $+0.0$ $+29.5$ $+5.8$ $+0.0$ $8.000M$ 27.6 $+0.0$ $+30.5$ $+5.9$ $+0.0$ 40.5 $+0.0$ $+30.5$ $+5.9$ $+0.0$ $2.000M$ 26.5 $+0.0$ $+29.5$ $+5.8$ $+0.0$ 40.5 $+29.5$ $+5.8$ $+0.0$ $+0.5$ $+0.0$ $+0.5$ $8.000M$ 23.9 $+0.0$ $+30.5$ $+5.9$ $+0.0$	8.000M 26.5 $+0.0$ $+30.5$ $+5.9$ $+0.0$ $+0.0$ $2.000M$ 29.0 $+0.0$ $+29.5$ $+5.8$ $+0.0$ $+0.0$ $2.000M$ 26.9 $+0.0$ $+29.5$ $+5.8$ $+0.0$ $+0.0$ $2.000M$ 26.9 $+0.0$ $+29.5$ $+5.8$ $+0.0$ $+0.0$ $8.000M$ 27.6 $+0.0$ $+30.5$ $+5.9$ $+0.0$ $+0.0$ $2.000M$ 26.5 $+0.0$ $+29.5$ $+5.8$ $+0.0$ $+0.0$ $8.000M$ 26.5 $+0.0$ $+29.5$ $+5.8$ $+0.0$ $+0.0$ $8.000M$ 23.9 $+0.0$ $+30.5$ $+5.9$ $+0.0$ $+0.0$	8.000M 26.5 $+0.0$ $+30.5$ $+5.9$ $+0.0$ $+0.0$ 63.4 2.000M 29.0 $+0.0$ $+29.5$ $+5.8$ $+0.0$ $+0.0$ 64.8 2.000M 26.9 $+0.0$ $+29.5$ $+5.8$ $+0.0$ $+0.0$ 62.7 40.5 $+0.5$ $+5.8$ $+0.0$ $+0.0$ 62.7 $8.000M$ 27.6 $+0.0$ $+30.5$ $+5.9$ $+0.0$ $+0.0$ 64.5 $2.000M$ 26.5 $+0.0$ $+30.5$ $+5.9$ $+0.0$ $+0.0$ 62.3 $8.000M$ 26.5 $+0.0$ $+29.5$ $+5.8$ $+0.0$ $+0.0$ 62.3 $8.000M$ 23.9 $+0.0$ $+30.5$ $+5.9$ $+0.0$ $+0.0$ 62.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Test Setup Photo(s)

<u>0.8m</u>

Below 1GHz, View 1

Below 1GHz, View 2

Flat View

Upright View

<u>1.5m</u>

Front View

Back View

Flat View

Upright View

<u>Above 1GHz</u>

View 1

View 2

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 110 N.	Olinda Place • Brea, CA	• (714) 993-6112
Customer:	Automaton Inc. dba RADAR		
Specification:	15.207 AC Mains - Average		
Work Order #:	108850	Date:	10/21/2023
Test Type:	Conducted Emissions	Time:	16:22:13
Tested By:	E. Wong	Sequence#:	10
Software:	EMITest 5.03.20		120/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				
Support Fauinment				

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

The equipment under test (EUT) is set on a test bench.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer.

The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz-927.25MHz

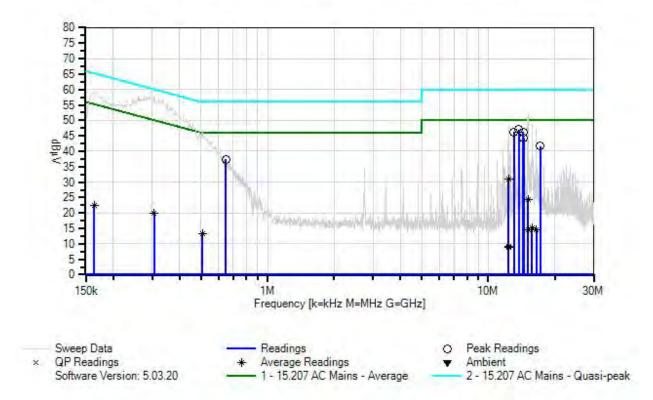
TX: Hopping

LO Frequency: 915MHz

TARI = 6.25us as intended.

Worst case Antenna Pattern and associated power level evaluated. Lowest gain

Frequency Range of Measurement: 150kHz- 30MHz. 150 kHz-30 MHz;RBW=9 kHz,VBW=30kHz


Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 22.5°C Relative Humidity: 55% Pressure: 99.8kPa

Evaluation performed at the AC mains of the support DC power supply which powers the Power Over Ethernet.

Automaton Inc dba RADAR WO#: 108850 Sequence#: 10 Date: 10/21/2023 15.207 AC Mains - Average Test Lead: 120/60Hz L1-Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T1	ANP08007	Attenuator	SA18N10W-06	10/24/2022	10/24/2024
T2	ANP07338	Cable	2249-Y-240	1/3/2022	1/3/2024
Т3	AN02343	High Pass Filter	HE9615-150K-	1/2/2023	1/2/2025
			50-720B		
T4	AN00847.1	50uH LISN-Line 1	3816/2NM	4/19/2023	4/19/2024
	AN00847.1	50uH LISN-Line 2(N)	3816/2NM	4/19/2023	4/19/2024

Measu	rement Data:	e Re	ading lis	ted by ma	argin.			Test Lead	1: L1-Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.752M	40.6	+5.8	+0.3	+0.2	+0.1	+0.0	47.0	50.0	-3.0	L1-Li
2	13.031M	39.8	+5.8	+0.3	+0.2	+0.1	+0.0	46.2	50.0	-3.8	L1-Li
3	14.418M	39.8	+5.8	+0.3	+0.2	+0.1	+0.0	46.2	50.0	-3.8	L1-Li
4	14.445M	37.9	+5.8	+0.3	+0.2	+0.1	+0.0	44.3	50.0	-5.7	L1-Li
5	17.157M	35.3	+5.8	+0.3	+0.2	+0.1	+0.0	41.7	50.0	-8.3	L1-Li
6	645.953k	31.4	+5.8	+0.0	+0.2	+0.0	+0.0	37.4	46.0	-8.6	L1-Li
7	12.330M Ave	24.7	+5.8	+0.3	+0.2	+0.1	+0.0	31.1	50.0	-18.9	L1-Li
8	15.103M Ave	17.9	+5.8	+0.3	+0.2	+0.1	+0.0	24.3	50.0	-25.7	L1-Li
۸	15.103M	44.8	+5.8	+0.3	+0.2	+0.1	+0.0	51.2	50.0	+1.2	L1-Li
10	306.348k Ave	14.1	+5.8	+0.0	+0.1	+0.0	+0.0	20.0	50.1	-30.1	L1-Li
۸	306.348k	52.0	+5.8	+0.0	+0.1	+0.0	+0.0	57.9	50.1	+7.8	L1-Li
12	506.330k Ave	7.2	+5.8	+0.0	+0.2	+0.0	+0.0	13.2	46.0	-32.8	L1-Li
۸	506.329k	40.7	+5.8	+0.0	+0.2	+0.0	+0.0	46.7	46.0	+0.7	L1-Li
14	163.816k Ave	16.2	+5.8	+0.0	+0.4	+0.0	+0.0	22.4	55.3	-32.9	L1-Li
^	163.815k	52.8	+5.8	+0.0	+0.4	+0.0	+0.0	59.0	55.3	+3.7	L1-Li
16	15.779M Ave	8.9	+5.8	+0.3	+0.2	+0.1	+0.0	15.3	50.0	-34.7	L1-Li
17	15.779M Ave	8.7	+5.8	+0.3	+0.2	+0.1	+0.0	15.1	50.0	-34.9	L1-Li
^	15.779M	42.5	+5.8	+0.3	+0.2	+0.1	+0.0	48.9	50.0	-1.1	L1-Li
19	16.499M Ave	8.3	+5.8	+0.3	+0.2	+0.1	+0.0	14.7	50.0	-35.3	L1-Li
۸	16.499M	40.9	+5.8	+0.3	+0.2	+0.1	+0.0	47.3	50.0	-2.7	L1-Li

21	15.130M	8.1	+5.8	+0.3	+0.2	+0.1	+0.0	14.5	50.0	-35.5	L1-Li
A	Ave										
^	15.130M	46.0	+5.8	+0.3	+0.2	+0.1	+0.0	52.4	50.0	+2.4	L1-Li
23	12.382M	2.8	+5.8	+0.3	+0.2	+0.1	+0.0	9.2	50.0	-40.8	L1-Li
A	Ave										
^	12.382M	42.0	+5.8	+0.3	+0.2	+0.1	+0.0	48.4	50.0	-1.6	L1-Li
25	12.355M	2.5	+5.8	+0.3	+0.2	+0.1	+0.0	8.9	50.0	-41.1	L1-Li
A	Ave										
^	12.355M	41.0	+5.8	+0.3	+0.2	+0.1	+0.0	47.4	50.0	-2.6	L1-Li

Test Location: Customer:	CKC Laboratories, Inc • 110 N Automaton Inc. dba RADAR	. Olinda Place • Brea, CA	• (714) 993-6112
Specification:	15.207 AC Mains - Average		
Work Order #:	108850	Date:	10/21/2023
Test Type:	Conducted Emissions	Time:	16:28:22
Tested By:	E. Wong	Sequence#:	11
Software:	EMITest 5.03.20		120/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				
Support Equipment:				

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

The equipment under test (EUT) is set on a test bench.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer.

The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz-927.25MHz

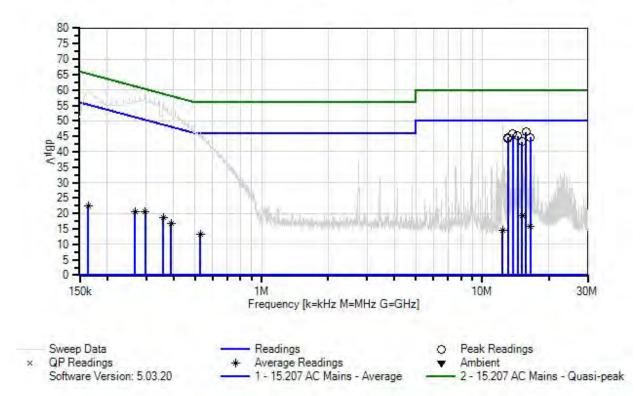
TX :Hopping

LO Frequency: 915MHz

TARI = 6.25us as intended.

Worst case Antenna Pattern and associated power level evaluated. Lowest gain

Frequency Range of Measurement: 150kHz-30MHz 150 kHz-30 MHz;RBW=9 kHz,VBW=30kHz


Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 22.5°C Relative Humidity: 55% Pressure: 99.8kPa

Evaluation performed at the AC mains of the support DC power supply which powers the Power Over Ethernet.

Automaton Inc dba RADAR WO#: 108850 Sequence#: 11 Date: 10/21/2023 15.207 AC Mains - Average Test Lead: 120/60Hz L2-Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T1	ANP08007	Attenuator	SA18N10W-06	10/24/2022	10/24/2024
T2	ANP07338	Cable	2249-Y-240	1/3/2022	1/3/2024
Т3	AN02343	High Pass Filter	HE9615-150K-	1/2/2023	1/2/2025
			50-720B		
	AN00847.1	50uH LISN-Line 1	3816/2NM	4/19/2023	4/19/2024
T4	AN00847.1	50uH LISN-Line 2(N)	3816/2NM	4/19/2023	4/19/2024

	rement Data:	: Re	eading lis	ted by ma	argin.			Test Lead	1: L2-Neut	ral	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	15.806M	40.0	+5.8	+0.3	+0.2	+0.1	+0.0	46.4	50.0	-3.6	L2-Ne
2	13.761M	39.4	+5.8	+0.3	+0.2	+0.1	+0.0	45.8	50.0	-4.2	L2-Ne
3	14.427M	38.7	+5.8	+0.3	+0.2	+0.1	+0.0	45.1	50.0	-4.9	L2-Ne
4	16.517M	38.2	+5.8	+0.3	+0.2	+0.1	+0.0	44.6	50.0	-5.4	L2-Ne
5	13.040M	38.2	+5.8	+0.3	+0.2	+0.1	+0.0	44.6	50.0	-5.4	L2-Ne
6	13.058M	38.0	+5.8	+0.3	+0.2	+0.1	+0.0	44.4	50.0	-5.6	L2-Ne
7	15.157M	36.8	+5.8	+0.3	+0.2	+0.1	+0.0	43.2	50.0	-6.8	L2-Ne
8	297.623k Ave	14.5	+5.8	+0.0	+0.1	+0.0	+0.0	20.4	50.3	-29.9	L2-Ne
^	297.622k	52.6	+5.8	+0.0	+0.1	+0.0	+0.0	58.5	50.3	+8.2	L2-Ne
10	358.708k Ave	12.7	+5.8	+0.0	+0.1	+0.0	+0.0	18.6	48.8	-30.2	L2-Ne
۸	358.708k	50.2	+5.8	+0.0	+0.1	+0.0	+0.0	56.1	48.8	+7.3	L2-Ne
12	267.080k Ave	14.7	+5.8	+0.0	+0.2	+0.0	+0.0	20.7	51.2	-30.5	L2-Ne
۸	267.080k	52.1	+5.8	+0.0	+0.2	+0.0	+0.0	58.1	51.2	+6.9	L2-Ne
14	15.121M Ave	13.0	+5.8	+0.3	+0.2	+0.1	+0.0	19.4	50.0	-30.6	L2-Ne
۸	15.121M	42.5	+5.8	+0.3	+0.2	+0.1	+0.0	48.9	50.0	-1.1	L2-Ne
16	389.978k Ave	11.0	+5.8	+0.0	+0.1	+0.0	+0.0	16.9	48.1	-31.2	L2-Ne
۸	389.977k	47.8	+5.8	+0.0	+0.1	+0.0	+0.0	53.7	48.1	+5.6	L2-Ne
18	163.817k Ave	16.4	+5.8	+0.0	+0.4	+0.0	+0.0	22.6	55.3	-32.7	L2-Ne
^	163.816k	53.0	+5.8	+0.0	+0.4	+0.0	+0.0	59.2	55.3	+3.9	L2-Ne
20	527.420k Ave	7.3	+5.8	+0.0	+0.2	+0.0	+0.0	13.3	46.0	-32.7	L2-Ne
^	527.419k	40.5	+5.8	+0.0	+0.2	+0.0	+0.0	46.5	46.0	+0.5	L2-Ne
22	16.499M Ave	9.4	+5.8	+0.3	+0.2	+0.1	+0.0	15.8	50.0	-34.2	L2-Ne
23		8.3	+5.8	+0.3	+0.2	+0.1	+0.0	14.7	50.0	-35.3	L2-Ne
^		42.2	+5.8	+0.3	+0.2	+0.1	+0.0	48.6	50.0	-1.4	L2-Ne

Test Setup Photo(s)

Front View

Side View

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS							
	Meter reading (dBµV)							
+	Antenna Factor	(dB/m)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	(dBµV/m)						

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret (" n ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. **Quasi-Peak**

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

<u>Average</u>

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.