

# **FCC Test Report**

Report No.: RF190502E01

FCC ID: 2ACDX-LRR25

Test Model: LRR-25

Received Date: May 02, 2019

Test Date: May 13 to 16, 2019

Issued Date: June 19, 2019

Applicant: MANDO corp.

Address: 21, Pangyo-ro 255 beon-gil, Bundang-gu, Gyeonggi-do, Seongnam-si,

463-400, Republic of Korea

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

FCC Registration /

723255 / TW2022 **Designation Number:** 





This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.



# **Table of Contents**

| Re | Release Control Record3                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|
| 1  | (                                                                                                                                          | Certificate of Conformity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 4                                                                                                |  |  |  |
| 2  | ;                                                                                                                                          | Summary of Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 5                                                                                                |  |  |  |
|    | 2.1<br>2.2                                                                                                                                 | Measurement Uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |  |  |  |
| 3  | (                                                                                                                                          | General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 6                                                                                                |  |  |  |
|    | 3.1<br>3.2<br>3.2.1<br>3.3<br>3.3.1<br>3.4                                                                                                 | General Description of EUT  Description of Test Modes  Test Mode Applicability and Tested Channel Detail  Description of Support Units  Configuration of System under Test  General Description of Applied Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 7<br>. 7<br>. 8<br>. 8                                                                           |  |  |  |
| 4  | 7                                                                                                                                          | Test Types and Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                 |  |  |  |
|    | 4.1.2<br>4.1.3<br>4.1.4<br>4.1.5<br>4.1.6<br>4.1.7<br>4.2<br>4.3.1<br>4.3.2<br>4.3.3<br>4.3.4<br>4.3.5<br>4.4.1<br>4.4.2<br>4.4.3<br>4.4.4 | Radiated Power and Unwanted Emission Measurement Limits of Radiated Power and Unwanted Emission Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results Modulation characteristics Measurement Occupied Bandwidth Measurement Test Setup Test Instruments Test Procedure Deviation from Test Standard EUT Operating Conditions Test Results Frequency Stability Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedure Test Instruments Test Procedure Test Standard EUT Operating Conditions Test Results Frequency Stability Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedure Test Setup Test Results | 10<br>11<br>14<br>16<br>17<br>18<br>25<br>26<br>26<br>26<br>26<br>26<br>27<br>28<br>28<br>28<br>29 |  |  |  |
| 5  | ı                                                                                                                                          | Pictures of Test Arrangements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                 |  |  |  |
| Δ١ | nnen                                                                                                                                       | dix – Information of the Testing Laboratories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31                                                                                                 |  |  |  |



# **Release Control Record**

| Issue No.   | Description       | Date Issued   |
|-------------|-------------------|---------------|
| RF190502E01 | Original release. | June 19, 2019 |



# 1 Certificate of Conformity

Product: Advanced Smart Cruise Control System

Brand: Mando

Test Model: LRR-25

Sample Status: ENGINEERING SAMPLE

**Applicant:** MANDO corp.

**Test Date:** May 13 to 16, 2019

Standards: 47 CFR FCC Part 95, Subpart M

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: \_\_\_\_\_\_\_, Date: \_\_\_\_\_\_\_, Dune 19, 2019

Wendy Wu / Specialist

May Chen / Manager



# 2 Summary of Test Results

|                    | 47 CFR FCC Part 95, Subpart M                      |        |                                |  |  |  |  |
|--------------------|----------------------------------------------------|--------|--------------------------------|--|--|--|--|
| FCC<br>Clause      | Test Item                                          | Result | Remarks                        |  |  |  |  |
| 95.3367<br>(a)/(b) | Equivalent Isotropically Radiated Power (EIRP)Test | PASS   | Meet the requirement of limit. |  |  |  |  |
| 95.3379(a)         | Unwanted Emission Test                             | PASS   | Meet the requirement of limit. |  |  |  |  |
| 95.3379(b)         | 3379(b) Frequency Stability Test                   |        | Meet the requirement of limit. |  |  |  |  |
| 2.1049             | 2.1049 Occupied Bandwidth Measurement              |        | Meet the requirement of limit. |  |  |  |  |
| 2.1047             | Modulation characteristics                         | PASS   | Meet the requirement           |  |  |  |  |

#### Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

# 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                     | Frequency      | Expanded Uncertainty (k=2) (±) |
|---------------------------------|----------------|--------------------------------|
| Radiated Emissions up to 1 GHz  | 30MHz ~ 1GHz   | 5.1 dB                         |
|                                 | 1GHz ~ 6GHz    | 5.1 dB                         |
| Radiated Emissions above 1 GHz  | 6GHz ~ 18GHz   | 5.0 dB                         |
| Radiated Effissions above 1 GHz | 18GHz ~ 40GHz  | 5.2 dB                         |
|                                 | 40GHz ~ 231GHz | 5.4 dB                         |

# 2.2 Modification Record

There were no modifications required for compliance.



# 3 General Information

# 3.1 General Description of EUT

| Product             | Advanced Smart Cruise Control System |
|---------------------|--------------------------------------|
| Brand               | Mando                                |
| Test Model          | LRR-25                               |
| Status of EUT       | ENGINEERING SAMPLE                   |
| Power Supply Rating | 12Vdc                                |
| Modulation Type     | FMCW                                 |
| Operating Frequency | 76 ~ 77GHz                           |
| Emission designator | 0G83F1N                              |
| Antenna Type        | Refer to Note                        |
| Antenna Connector   | Refer to Note                        |
| Accessory Device    | NA                                   |
| Data Cable Supplied | NA                                   |

#### Note:

1. The antennas provided to the EUT, please refer to the following table:

| Antenna<br>No. | Frequency range (GHz) | Antenna Net Gain (dBi) | Antenna Type | Connector Type   |
|----------------|-----------------------|------------------------|--------------|------------------|
| TX 1           | 76 ~ 77               | 21                     | Patch        | micro strip line |
| TX 2           | 76 ~ 77               | 14                     | Patch        | micro strip line |

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.



#### 3.2 **Description of Test Modes**

Frequency is 76.5GHz provided for test.

#### 3.2.1 Test Mode Applicability and Tested Channel Detail

| EUT CONFIGURE |       | APPLICA      | ABLE TO |    | DESCRIPTION |
|---------------|-------|--------------|---------|----|-------------|
| MODE          | RE≥1G | RE<1G        | FS      | ОВ | DESCRIPTION |
| -             | V     | $\checkmark$ | V       | V  | -           |

Where

**RE≥1G:** Radiated Emission above 1GHz-

RE<1G: Radiated Emission below 1GHz

FS: Frequency Stability

**OB:** Occupied Bandwidth measurement

**NOTE:** The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Y-plane**.

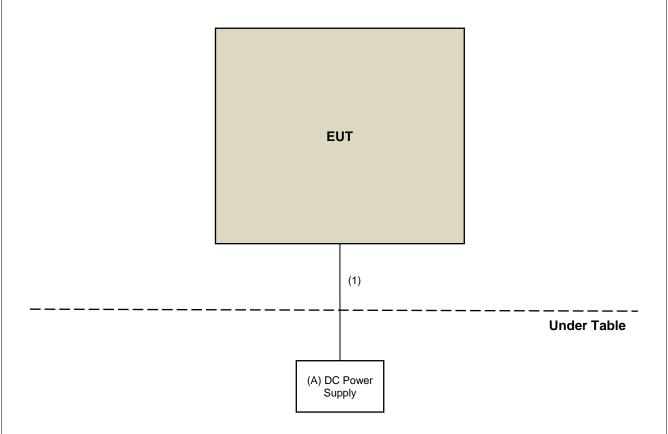
# **Test Condition:**

| APPLICABLE TO | ENVIRONMENTAL CONDITIONS | INPUT POWER | TESTED BY |
|---------------|--------------------------|-------------|-----------|
| RE≥1G         | 25deg. C, 69%RH          | DC 12V      | Andy Ho   |
| RE≥IG         | 24deg. C, 63%RH          | DC 12V      | Weiwei Lo |
| RE<1G         | 25deg. C, 69%RH          | DC 40V      | Andy Ho   |
|               | 24deg. C, 63%RH          | DC 12V      | Weiwei Lo |
| FS            | 24deg. C, 63%RH          | DC 12V      | Weiwei Lo |
| ОВ            | 24deg. C, 63%RH          | DC 12V      | Weiwei Lo |



# 3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


| ID | Product         | Brand                                | Model No. | Serial No. | FCC ID | Remarks         |
|----|-----------------|--------------------------------------|-----------|------------|--------|-----------------|
| A. | DC Power Supply | GOOD WILL<br>INSTRUMENT CO.,<br>LTD. | GPC-3030D | 7700087    | NA     | Proivded by Lab |

#### Note:

<sup>1.</sup> All power cords of the above support units are non-shielded (1.8m).

| ID | Descriptions | Qty. | Length (m) | Shielding (Yes/No) | Cores (Qty.) | Remarks            |
|----|--------------|------|------------|--------------------|--------------|--------------------|
| 1. | Signal Cable | 1    | 4.3        | No                 | 0            | Supplied by client |

# 3.3.1 Configuration of System under Test





# 3.4 **General Description of Applied Standards** The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards: FCC Part 95, Subpart M KDB 653005 D01 76-81 GHz Radars v01r01 ANSI 63.10-2013 All test items have been performed and recorded as per the above standards.



#### 4 Test Types and Results

#### 4.1 Radiated Power and Unwanted Emission Measurement

4.1.1 Limits of Radiated Power and Unwanted Emission Measurement

According to 95.3367 the field strength of emissions from intentional radiators operated under these

frequencies bands shall not exceed the following:

| Fundamental Frequency<br>(GHz) | Equivalent Isotropically | Radiated Power (EIRP) |
|--------------------------------|--------------------------|-----------------------|
| (51.2)                         | Peak                     | Average               |
| 76 ~ 81                        | 55 dBm/MHz               | 50 dBm                |

According to 95.3379 the power density of any emissions outside the 76-81 GHz band shall consist solely of spurious emissions and shall not exceed the following:

(1) Radiated emissions below 40 GHz shall not exceed the field strength as shown in the following emissions table.

| Frequencies<br>(MHz) | Field strength (microvolts/meter) | Measurement distance (meters) |
|----------------------|-----------------------------------|-------------------------------|
| 0.009-0.490          | 2400/F(kHz)                       | 300                           |
| 0.490-1.705          | 24000/F(kHz)                      | 30                            |
| 1.705-30.0           | 30                                | 30                            |
| 30-88                | 100                               | 3                             |
| 88-216               | 150                               | 3                             |
| 216-960              | 200                               | 3                             |
| Above 960            | 500                               | 3                             |

#### NOTE:

- 1. The tighter limit applies at the band edges.
- 2. The limits are based on the frequency of the unwanted emissions and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- 3. The emissions limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9.0-90.0 kHz, 110.0-490.0 kHz, and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector with a 1 MHz RBW.
- (2) The power density of radiated emissions outside the 76-81 GHz band above 40.0 GHz shall not exceed the following, based on measurements employing an average detector with a 1 MHz RBW:
- (i) For radiated emissions outside the 76-81 GHz band between 40 GHz and 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band:  $600 \text{ pW/cm}^2$  at a distance of 3 meters from the exterior surface of the radiating structure.
- (ii) For radiated emissions above 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 1000 pW/cm2 at a distance of 3 meters from the exterior surface of the radiating structure.
- (3) For field disturbance sensors and radar systems operating in the 76-81 GHz band, the spectrum shall be investigated up to 231.0 GHz.



# 4.1.2 Test Instruments

#### **Below 40GHz test:**

| DESCRIPTION &                        |                      |             | CALIBRATED    | CALIBRATED    |
|--------------------------------------|----------------------|-------------|---------------|---------------|
| MANUFACTURER                         | MODEL NO.            | SERIAL NO.  | DATE          | UNTIL         |
| Test Receiver<br>Agilent             | N9038A               | MY50010156  | July 12, 2018 | July 11, 2019 |
| Pre-Amplifier<br>EMCI                | EMC001340            | 980142      | Jan. 25, 2019 | Jan. 24, 2020 |
| Loop Antenna<br>Electro-Metrics      | EM-6879              | 269         | Sep. 07, 2018 | Sep. 06, 2019 |
| RF Cable                             | NA                   | LOOPCAB-001 | Jan. 14, 2019 | Jan. 13, 2020 |
| RF Cable                             | NA                   | LOOPCAB-002 | Jan. 14, 2019 | Jan. 13, 2020 |
| Pre-Amplifier<br>Mini-Circuits       | ZFL-1000VH2B         | AMP-ZFL-05  | Apr. 30, 2019 | Apr. 29, 2020 |
| Trilog Broadband Antenna SCHWARZBECK | VULB 9168            | 9168-361    | Nov. 22, 2018 | Nov. 21, 2019 |
| RF Cable                             | 8D                   | 966-3-1     | Mar. 18, 2019 | Mar. 17, 2020 |
| RF Cable                             | 8D                   | 966-3-2     | Mar. 18, 2019 | Mar. 17, 2020 |
| RF Cable                             | 8D                   | 966-3-3     | Mar. 18, 2019 | Mar. 17, 2020 |
| Fixed attenuator<br>Mini-Circuits    | UNAT-5+              | PAD-3m-3-01 | Sep. 27, 2018 | Sep. 26, 2019 |
| Horn_Antenna<br>SCHWARZBECK          | BBHA9120-D           | 9120D-406   | Nov. 25, 2018 | Nov. 24, 2019 |
| Pre-Amplifier<br>EMCI                | EMC12630SE           | 980384      | Jan. 28, 2019 | Jan. 27, 2020 |
| RF Cable                             | EMC104-SM-SM-1200    | 160922      | Jan. 28, 2019 | Jan. 27, 2020 |
| RF Cable                             | EMC104-SM-SM-2000    | 180601      | June 12, 2018 | June 11, 2019 |
| RF Cable                             | EMC104-SM-SM-6000    | 180602      | June 12, 2018 | June 11, 2019 |
| Spectrum Analyzer<br>Keysight        | N9030A               | MY54490679  | July 23, 2018 | July 22, 2019 |
| Pre-Amplifier<br>EMCI                | EMC184045SE          | 980387      | Jan. 28, 2019 | Jan. 27, 2020 |
| Horn_Antenna<br>SCHWARZBECK          | BBHA 9170            | BBHA9170519 | Nov. 25, 2018 | Nov. 24, 2019 |
| RF Cable                             | EMC102-KM-KM-1200    | 160924      | Jan. 28, 2019 | Jan. 27, 2020 |
| RF Cable                             | EMC102-KM-KM-1200    | 160925      | Jan. 28, 2019 | Jan. 27, 2020 |
| Software                             | ADT_Radiated_V8.7.08 | NA          | NA            | NA            |
| Antenna Tower & Turn Table Max-Full  | MF-7802              | MF780208406 | NA            | NA            |
| Boresight Antenna Fixture            | FBA-01               | FBA-SIP01   | NA            | NA            |

#### Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 3.
- 3. Loop antenna was used for all emissions below 30 MHz.
- 4. Tested Date: May 14 to 16, 2019



# Above 40GHz test:

| DESCRIPTION & MANUFACTURER                                                                  | MODEL NO.                  | SERIAL NO.      | CALIBRATED DATE | CALIBRATED<br>UNTIL |
|---------------------------------------------------------------------------------------------|----------------------------|-----------------|-----------------|---------------------|
| Spectrum Analyzer<br>Agilent                                                                | E4446A                     | MY48250253      | Aug. 1, 2018    | July 31, 2019       |
| *Harmonic Mixer (33~55GHz) OML                                                              | M22HWD                     | 110215-1        | Oct. 17, 2017   | Oct. 16, 2019       |
| *Horn Antenna (33~55GHz) OML                                                                | M22RH                      | 110215-1        | Oct. 17, 2017   | Oct. 16, 2019       |
| *Harmonic Mixer (50~75GHz) OML                                                              | M15RH                      | 110215-1        | Oct. 17, 2017   | Oct. 16, 2019       |
| *Horn Antenna (50~75GHz) OML                                                                | M15HWD                     | 110215-1        | Oct. 17, 2017   | Oct. 16, 2019       |
| *Harmonic Mixer (75~110GHz) OML                                                             | M10HWD                     | 110215-1        | Oct. 17, 2017   | Oct. 16, 2019       |
| *Horn Antenna (75~110GHz) OML                                                               | M10RH                      | 110215-1        | Oct. 17, 2017   | Oct. 16, 2019       |
| *Harmonic Mixer (110~170GHz) OML                                                            | M06RH                      | 110215-1        | Oct. 17, 2017   | Oct. 16, 2019       |
| *Horn Antenna(110~170GHz) OML                                                               | M06HWD                     | 110215-1        | Oct. 17, 2017   | Oct. 16, 2019       |
| *Harmonic Mixer (140~220GHz) OML                                                            | M05HWD                     | 110215-1        | Oct. 17, 2017   | Oct. 16, 2019       |
| *Horn Antenna (140~220GHz) OML                                                              | M05RH                      | 110215-1        | Oct. 17, 2017   | Oct. 16, 2019       |
| *Harmonic Mixer (220~325GHz) OML                                                            | M03HWA                     | M03HWA_140505-1 | Oct. 17, 2017   | Oct. 16, 2019       |
| *Horn Antenna (220~325GHz) OML                                                              | M03RH                      | M03RH_140508-1  | Oct. 17, 2017   | Oct. 16, 2019       |
| *Diplexer<br>EMCI                                                                           | DPL26                      | DPL26_01        | Oct. 17, 2017   | Oct. 16, 2019       |
| *Diplexer<br>EMCI                                                                           | DPL26                      | DPL26_02        | Oct. 17, 2017   | Oct. 16, 2019       |
| *Precision 30dB Attenuator<br>Keysight                                                      | 11708A                     | MY55260015      | Oct. 17, 2017   | Oct. 16, 2019       |
| *Zero-Bias Detector<br>(50~75GHz)<br>Vdi                                                    | WR15ZBD                    | WR15R5 1-30     | Oct. 17, 2017   | Oct. 16, 2019       |
| Digital Storage Oscilloscope<br>Keysight                                                    | DSOX6002A+DSOX6000-<br>AMG | MY56270092      | Jan. 17, 2019   | Jan. 16, 2020       |
| *WR15CH Conical Horn<br>Keysight                                                            | WR15CH                     | WR15CH-01       | Oct. 17, 2017   | Oct. 16, 2019       |
| *WR10CH Conical Horn<br>Keysight                                                            | WR10CH                     | WR10CH-01       | Oct. 17, 2017   | Oct. 16, 2019       |
| *Millimeter-Wave Signal<br>Generator Frequency Extension<br>Module (50~75 GHz)<br>Keysight  | E8257DV15                  | US54250106      | Oct. 17, 2017   | Oct. 16, 2019       |
| *Millimeter-Wave Signal<br>Generator Frequency Extension<br>Module (75~110 GHz)<br>Keysight | E8257DV10                  | US53250009      | Oct. 17, 2017   | Oct. 16, 2019       |
| PSG analog signal generator<br>Keysight                                                     | E8257D                     | MY53401987      | June 26, 2018   | June 25, 2019       |
| Antenna Tower & Turn Table CT                                                               | NA                         | NA              | NA              | NA                  |



# Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. \*The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 3
- 4. Tested Date: May 13, 2019



#### 4.1.3 Test Procedures

#### For Radiated emission: Below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

#### NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

#### For Radiated emission: 30 MHz ~ 40GHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

#### Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection (PK) at frequency from 1GHz to 40GHz.
- 3. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Average detection (AV) at frequency from 1GHz to 40GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.



#### For Radiated emission: Above 40GHz

External mixers are utilized.

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The distance at which limits are typically specified is 3 meter; however, closer measurement distances may be utilized.
- c. Begin handheld measurements with the test antenna (horn) at a distance of 1 meter from the EUT, in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 meter from the FLIT
- d. Repeat (b) with the horn in a vertically polarized position.
- e. If the emission cannot be detected at 1 meter, reduce the RBW in order to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.
- f. Note the maximum level indicated on the Spectrum Analyzer.
- g. Based on the distance at which the measurement was made and the calculated distance to the edge of the far field, determine the appropriate distance attenuation factor. Apply this factor to the calculated field strength in order to determine the equivalent field strength at the distance at which the regulatory limit is specified. Compare to the appropriate limits
- h. Repeat (a) (f) for every emission that must be measured, up through the required frequency range of investigation

#### NOTE:

- 1. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak and RMS detection for fundamental emission.
- 2. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for RMS detection at frequency above 40GHz.

#### **Far Field Boundary Calculations**

The far-field boundary is given as:

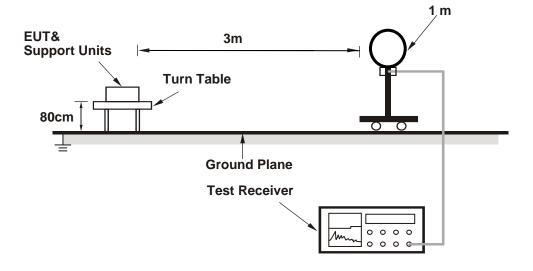
R far field =  $(2 * L^2) / \lambda$ 

where: L = Largest Antenna Dimension, including the reflector, in meters

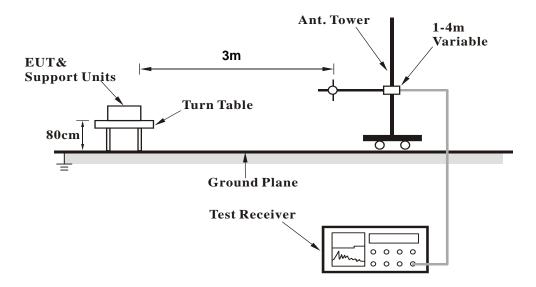
 $\lambda$  = wavelength in meters

| FREQUENCY<br>RANGE (GHz) | L (m) | Lambda (m) | R (Far Field)<br>(m) |
|--------------------------|-------|------------|----------------------|
| 76.5                     | 0.045 | 0.00392    | 1.033                |

<sup>\*</sup>Measurements made at 1.5 meter distance.

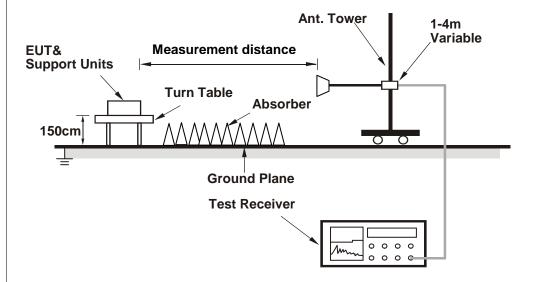



# 4.1.4 Deviation from Test Standard

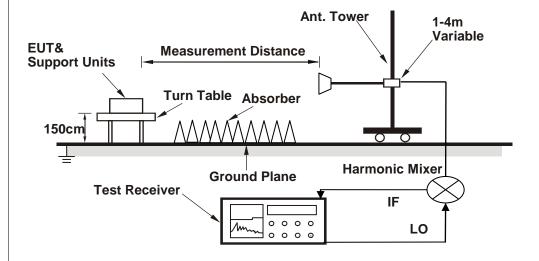

No deviation.

# 4.1.5 Test Setup

# For Radiated emission below 30MHz




#### For Radiated emission 30MHz to 1GHz






#### For Radiated emission 1GHz to 40GHz



# For Radiated emission above 40GHz



For the actual test configuration, please refer to the attached file (Test Setup Photo).

# 4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.



# 4.1.7 Test Results

#### **Above 1GHz Data**

| FREQUENCY RANGE | 1GHz ~ 18GHz | DETECTOR FUNCTION | Peak (PK)<br>Average (AV) |
|-----------------|--------------|-------------------|---------------------------|
|-----------------|--------------|-------------------|---------------------------|

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |             |                       |                            |                     |                             |  |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|--|--|
| NO. | FREQ. (MHz)                                         | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |  |  |
| 1   | 2209.15                                             | 36.8 PK                       | 74.0              | -37.2       | 2.00 H                | 278                        | 38.4                | -1.6                        |  |  |
| 2   | 2209.15                                             | 23.2 AV                       | 54.0              | -30.8       | 2.00 H                | 278                        | 24.8                | -1.6                        |  |  |
| 3   | 6544.07                                             | 38.5 PK                       | 74.0              | -35.5       | 2.00 H                | 35                         | 32.2                | 6.3                         |  |  |
| 4   | 6544.07                                             | 25.4 AV                       | 54.0              | -28.6       | 2.00 H                | 35                         | 19.1                | 6.3                         |  |  |
| 5   | 10250.05                                            | 44.6 PK                       | 74.0              | -29.4       | 2.20 H                | 99                         | 32.7                | 11.9                        |  |  |
| 6   | 10250.05                                            | 31.6 AV                       | 54.0              | -22.4       | 2.20 H                | 99                         | 19.7                | 11.9                        |  |  |
|     | •                                                   | ANITENIA                      | IA DOL ABIT       | V A TEAT DI | OTANOE ME             | DTIOAL AT                  | 0.84                | _                           |  |  |

# ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

| NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | _    | CORRECTION<br>FACTOR (dB/m) |
|-----|-------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|------|-----------------------------|
| 1   | 2158.57     | 36.1 PK                       | 74.0              | -37.9       | 1.50 V                | 212                        | 38.1 | -2.0                        |
| 2   | 2158.57     | 23.5 AV                       | 54.0              | -30.5       | 1.50 V                | 212                        | 25.5 | -2.0                        |
| 3   | 6624.82     | 39.4 PK                       | 74.0              | -34.6       | 2.00 V                | 288                        | 33.0 | 6.4                         |
| 4   | 6624.82     | 26.3 AV                       | 54.0              | -27.7       | 2.00 V                | 288                        | 19.9 | 6.4                         |
| 5   | 11136.57    | 44.4 PK                       | 74.0              | -29.6       | 2.00 V                | 225                        | 31.6 | 12.8                        |
| 6   | 11136.57    | 32.1 AV                       | 54.0              | -21.9       | 2.00 V                | 225                        | 19.3 | 12.8                        |

# **REMARKS:**

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



 FREQUENCY RANGE
 18GHz ~ 40GHz
 DETECTOR FUNCTION
 Peak (PK) Average (AV)

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |                       |                            |                            |                             |                             |  |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|-----------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|--|--|
| NO. | FREQ. (MHz)                                         | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB)           | ANTENNA<br>HEIGHT (m)      | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV)         | CORRECTION<br>FACTOR (dB/m) |  |  |
| 1   | 20463.00                                            | 42.1 PK                       | 74.0              | -31.9                 | 1.55 H                     | 46                         | 52.1                        | -10.0                       |  |  |
| 2   | 20463.00                                            | 29.3 AV                       | 54.0              | -24.7                 | 1.55 H                     | 46                         | 39.3                        | -10.0                       |  |  |
| 3   | 22014.00                                            | 43.5 PK                       | 74.0              | -30.5                 | 1.69 H                     | 59                         | 52.2                        | -8.7                        |  |  |
| 4   | 22014.00                                            | 30.0 AV                       | 54.0              | -24.0                 | 1.69 H                     | 49                         | 38.7                        | -8.7                        |  |  |
| 5   | 27800.00                                            | 44.6 PK                       | 74.0              | -29.4                 | 1.58 H                     | 46                         | 53.4                        | -8.8                        |  |  |
| 6   | 27800.00                                            | 30.4 AV                       | 54.0              | -23.6                 | 1.58 H                     | 46                         | 39.2                        | -8.8                        |  |  |
|     |                                                     | ANTENN                        | IA POLARIT        | Y & TEST DI           | STANCE: VE                 | RTICAL AT                  | 3 M                         |                             |  |  |
| NO. | NO. FREQ. (MHz) EMISSION LIMIT (dBuV/m)             |                               | MARGIN (dB)       | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV)        | CORRECTION<br>FACTOR (dB/m) |                             |  |  |
| 1   | 24916.00                                            | 43.4 PK                       | 74.0              | -30.6                 | 1.77 V                     | 269                        | 50.4                        | -7.0                        |  |  |
| 2   | 24916.00                                            | 29.9 AV                       | 54.0              | -24.1                 | 1.77 V                     | 269                        | 36.9                        | -7.0                        |  |  |
| 3   | 28968.00                                            | 42.2 PK                       | 74.0              | -31.8                 | 1.76 V                     | 218                        | 50.4                        | -8.2                        |  |  |
| 4   | 28968.00                                            | 29.4 AV                       | 54.0              | -24.6                 | 1.76 V                     | 218                        | 37.6                        | -8.2                        |  |  |
| 5   | 36228.00                                            | 45.0 PK                       | 74.0              | -29.0                 | 1.54 V                     | 176                        | 51.8                        | -6.8                        |  |  |
| 6   | 36228.00                                            | 30.3 AV                       | 54.0              | -23.7                 | 1.54 V                     | 176                        | 37.1                        | -6.8                        |  |  |

#### **REMARKS:**

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



| FREQUENCY RANGE | 40GHz ~ 100GHz | DETECTOR FUNCTION | Average (AV) |
|-----------------|----------------|-------------------|--------------|
|-----------------|----------------|-------------------|--------------|

|     | ANTENNA POLARITY: HORIZONTAL                                 |                         |                           |                                   |                                |                              |                         |           |  |  |
|-----|--------------------------------------------------------------|-------------------------|---------------------------|-----------------------------------|--------------------------------|------------------------------|-------------------------|-----------|--|--|
| NO. | Frequency<br>(GHz)                                           | EIRP Level<br>(dBm/MHz) | Raw<br>Value<br>(dBm/MHz) | Receiver<br>Antenna<br>Gain (dBi) | Occupied<br>Bandwidth<br>(MHz) | Total EIRP<br>Power<br>(dBm) | EIRP Limit<br>(dBm/MHz) | PASS/FAIL |  |  |
| 1   | 76.5                                                         | 19.3                    | -30.8                     | 23.6                              | 830.81                         | 48.5                         | 50                      | PASS      |  |  |
|     |                                                              |                         | ANTENI                    | NA POLARIT                        | Y: VERTICA                     | <u>L</u>                     |                         |           |  |  |
| NO. | NO. Frequency (GHz) EIRP Level (dBm/MHz) Raw Value (dBm/MHz) |                         |                           | Receiver<br>Antenna<br>Gain (dBi) | Occupied<br>Bandwidth<br>(MHz) | Total EIRP<br>Power<br>(dBm) | EIRP Limit<br>(dBm/MHz) | PASS/FAIL |  |  |
| 1   | 76.5                                                         | -7.6                    | -57.7                     | 23.6                              | 830.81                         | 21.5                         | 50                      | PASS      |  |  |

# **REMARKS:**

1.The measured power level is converted to EIRP using the equation:

 $EIRP = Raw\ Value\ -\ Receiver\ Antenna\ Gain\ +\ 20*log(4*3.1416*D/\lambda)$ 

where:

D is the measurement distance

 $\boldsymbol{\lambda}$   $% \boldsymbol{\lambda}$  is the wavelength

\*Measurements made at 1.5 meter distance.



FREQUENCY RANGE 40GHz ~ 100GHz DETECTOR FUNCTION Peak (PK)

|                                                                                                      | ANTENNA POLARITY: HORIZONTAL |        |               |          |    |      |  |  |  |
|------------------------------------------------------------------------------------------------------|------------------------------|--------|---------------|----------|----|------|--|--|--|
| NO. Frequency (GHz) EIRP Level (dBm/MHz) Raw Value (dBm/MHz) Receiver Antenna Gain (dBm/MHz) PASS/F. |                              |        |               |          |    |      |  |  |  |
| 2                                                                                                    | 76.5                         | 20.4   | -29.6         | 23.6     | 55 | PASS |  |  |  |
|                                                                                                      |                              | ANTENN | A POLARITY: V | /ERTICAL |    |      |  |  |  |
| NO. Frequency (GHz) EIRP Level (dBm/MHz) Raw Value (dBm/MHz) Receiver Antenna Gain (dBm/MHz)         |                              |        |               |          |    |      |  |  |  |
| 2                                                                                                    | 76.5                         | -6.6   | -56.7         | 23.6     | 55 | PASS |  |  |  |

# **REMARKS:**

1.The measured power level is converted to EIRP using the equation:

EIRP = Raw Value - Receiver Antenna Gain + 20\*log(4\*3.1416\*D/λ)

where:

D is the measurement distance

 $\lambda \quad \text{is the wavelength} \quad$ 

\*Measurements made at 1.5 meter distance.



FREQUENCY RANGE 100GHz ~ 231GHz DETECTOR FUNCTION Average (AV)

|     | ANTENNA POLARITY: HORIZONTAL                                                                                |            |       |          |        |       |               |  |  |
|-----|-------------------------------------------------------------------------------------------------------------|------------|-------|----------|--------|-------|---------------|--|--|
| NO. | O. Frequency (GHz) EIRP Level (dBm/MHz) Raw Value (dBm/MHz) Raw Value (dBm/MHz) Gain (dBi) (pW/cm²) PASS/FA |            |       |          |        |       | PASS/FAIL     |  |  |
| 1   | 153                                                                                                         | -24.7 AV   | -80.7 | 23.7     | 2.996  | 600   | PASS          |  |  |
| 2   | 231                                                                                                         | -17.0 AV   | -76.6 | 23.6     | 17.643 | 1000  | PASS          |  |  |
|     | ANTENNA POLARITY: VERTICAL                                                                                  |            |       |          |        |       |               |  |  |
|     | Frequency                                                                                                   | EIRP Level | Raw   | Receiver | Power  | Power | D. 0.0 (T. 1) |  |  |

| NO. | Frequency<br>(GHz) | EIRP Level<br>(dBm/MHz) | Raw<br>Value<br>(dBm/MHz) | Receiver<br>Antenna<br>Gain (dBi) | Power<br>Density<br>(pW/cm <sup>2</sup> ) | Power<br>Density Limit<br>(pW/cm²) | PASS/FAIL |  |  |  |
|-----|--------------------|-------------------------|---------------------------|-----------------------------------|-------------------------------------------|------------------------------------|-----------|--|--|--|
| 1   | 153                | -24.9 AV                | -80.9                     | 23.7                              | 2.861                                     | 600                                | PASS      |  |  |  |
| 2   | 231                | -17.5 AV                | -77.1                     | 23.6                              | 15.724                                    | 1000                               | PASS      |  |  |  |

# **REMARKS:**

1.The measured power level is converted to EIRP using the equation:

EIRP = Raw Value - Receiver Antenna Gain + 20\*log(4\*3.1416\*D/λ)

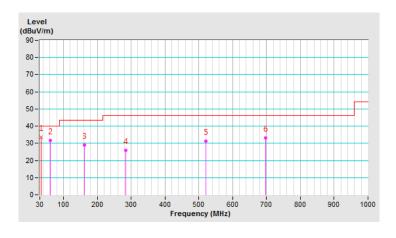
where:

D is the measurement distance

 $\lambda$  is the wavelength

\*Measurements made at 1.5 meter distance.




#### **Below 1GHz Data**

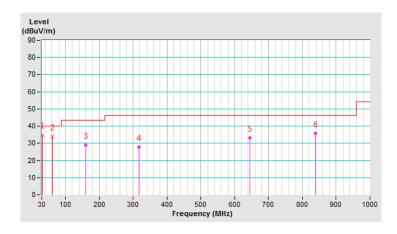
| FREQUENCY RANGE | 9kHz ~ 1GHz | DETECTOR FUNCTION | Quasi-Peak (QP) |
|-----------------|-------------|-------------------|-----------------|
|-----------------|-------------|-------------------|-----------------|

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |             |                       |                            |                     |                             |
|-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|
| NO. | FREQ. (MHz)                                         | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |
| 1   | 33.43                                               | 33.5 QP                       | 40.0              | -6.5        | 2.00 H                | 356                        | 42.9                | -9.4                        |
| 2   | 61.67                                               | 31.6 QP                       | 40.0              | -8.4        | 2.00 H                | 0                          | 40.6                | -9.0                        |
| 3   | 160.95                                              | 28.8 QP                       | 43.5              | -14.7       | 4.00 H                | 26                         | 36.8                | -8.0                        |
| 4   | 284.21                                              | 25.9 QP                       | 46.0              | -20.1       | 3.00 H                | 84                         | 32.9                | -7.0                        |
| 5   | 520.19                                              | 31.4 QP                       | 46.0              | -14.6       | 3.00 H                | 316                        | 32.5                | -1.1                        |
| 6   | 696.58                                              | 33.0 QP                       | 46.0              | -13.0       | 4.00 H                | 42                         | 30.6                | 2.4                         |

#### **REMARKS:**

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

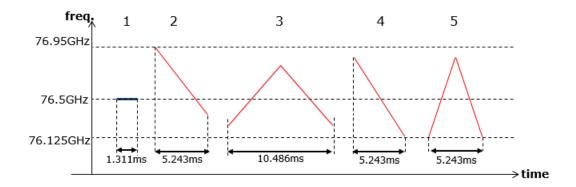





| FREQUENCY RANGE 9 | 9kHz ~ 1GHz | DETECTOR FUNCTION | Quasi-Peak (QP) |
|-------------------|-------------|-------------------|-----------------|
|-------------------|-------------|-------------------|-----------------|

|     | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M |                               |                   |             |                       |                            |                     |                             |
|-----|---------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|
| NO. | FREQ. (MHz)                                       | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |
| 1   | 32.53                                             | 34.9 QP                       | 40.0              | -5.1        | 1.00 V                | 7                          | 44.4                | -9.5                        |
| 2   | 61.71                                             | 33.9 QP                       | 40.0              | -6.1        | 1.01 V                | 284                        | 42.9                | -9.0                        |
| 3   | 159.83                                            | 29.1 QP                       | 43.5              | -14.4       | 1.50 V                | 108                        | 37.1                | -8.0                        |
| 4   | 317.24                                            | 27.9 QP                       | 46.0              | -18.1       | 1.00 V                | 39                         | 33.7                | -5.8                        |
| 5   | 644.37                                            | 33.3 QP                       | 46.0              | -12.7       | 3.00 V                | 17                         | 31.6                | 1.7                         |
| 6   | 839.08                                            | 35.9 QP                       | 46.0              | -10.1       | 3.00 V                | 0                          | 30.8                | 5.1                         |

#### **REMARKS:**


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

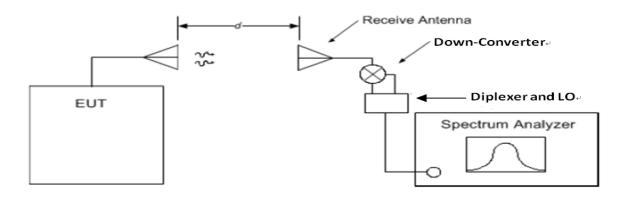




# 4.2 Modulation characteristics Measurement

In addition to the reporting requirements of FCC 2.1047, the following information shall be provided, as per the applicable modulation type:




| Chirp# | Modulation Type   | Sweep Time | Sweep Bandwidth | Center Frequency |
|--------|-------------------|------------|-----------------|------------------|
| 1      | Unmodulated       | 1.311ms    | -               | 76.5GHz          |
| 2      | Negative sawtooth | 5.243ms    | 500MHz          | 76.7GHz          |
| 3      | Triangle          | 10.486ms   | 500MHz          | 76.5GHz          |
| 4      | Negative sawtooth | 5.243ms    | 750MHz          | 76.5GHz          |
| 5      | Triangle          | 5.243ms    | 750MHz          | 76.5GHz          |

Average cycle time: 60 ms
RF on time: 27.53 ms
Duty cycle: 55.1%



# 4.3 Occupied Bandwidth Measurement

#### 4.3.1 Test Setup



#### 4.3.2 Test Instruments

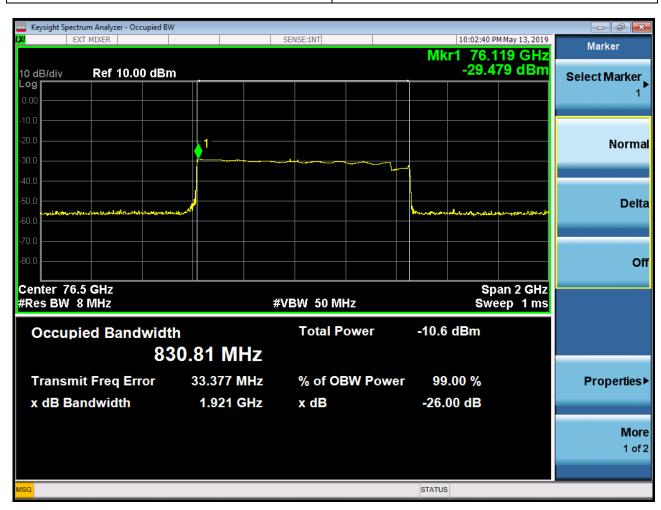
Refer to section 4.1.2 to get information of above instrument.

#### 4.3.3 Test Procedure

The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to PEAK. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean power of a given emission.

#### 4.3.4 Deviation from Test Standard

No deviation.


# 4.3.5 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.



# 4.3.6 Test Results

| Frequency Range (MHz) | Occupied Bandwidth (MHz) |
|-----------------------|--------------------------|
| 76000~81000           | 830.81                   |





# 4.4 Frequency Stability Measurement

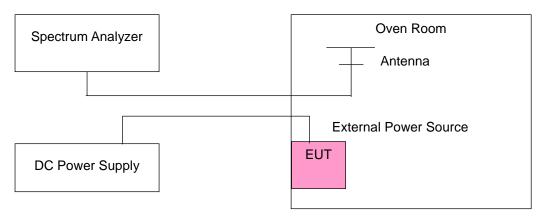
#### 4.4.1 Limits of Conducted Emission Measurement

Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation.

#### 4.4.2 Test Instruments

| DESCRIPTION & MANUFACTURER                                                                  | MODEL NO.        | SERIAL NO.  | CALIBRATED DATE | CALIBRATED UNTIL |
|---------------------------------------------------------------------------------------------|------------------|-------------|-----------------|------------------|
| True RMS Clamp Meter FLUKE                                                                  | 325              | 31130711WS  | May 22, 2018    | May 21, 2019     |
| Temperature & Humidity<br>Chamber<br>Giant Force                                            | GTH-150-40-SP-AR | MAA0812-008 | Jan. 09, 2019   | Jan. 08, 2020    |
| DC Power Supply<br>Topward                                                                  | 6603D            | 795558      | NA              | NA               |
| Spectrum Analyzer<br>R&S                                                                    | FSV40            | 100964      | June 20, 2018   | June 19, 2019    |
| *Millimeter-Wave Signal<br>Generator Frequency<br>Extension Module (75~110<br>GHz) Keysight | E8257DV10        | US53250009  | Oct. 17, 2017   | Oct. 16, 2019    |
| *Waveguide Harmonic Mixer<br>Keysight                                                       | M1971E           | MY55270157  | Oct. 17, 2017   | Oct. 16, 2019    |

#### NOTE:


- 1. The test was performed in Oven room 2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. \*The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 4. Tested Date: May 13, 2019

#### 4.4.3 Test Procedure

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the  $\pm 0.5$  °C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.



# 4.4.4 Test Setup



# 4.4.5 Test Results

|                     | Frequency Stability Versus Temp. |                                |                                         |                                |           |                                |           |                                |           |
|---------------------|----------------------------------|--------------------------------|-----------------------------------------|--------------------------------|-----------|--------------------------------|-----------|--------------------------------|-----------|
|                     | Operating Frequency: 76500 MHz   |                                |                                         |                                |           |                                |           |                                |           |
|                     | Power                            | 0 Mii                          | 0 Minute 2 Minutes 5 Minutes 10 Minutes |                                |           |                                |           |                                | nutes     |
| <b>TEMP.</b><br>(℃) | Supply<br>(Vdc)                  | Measured<br>Frequency<br>(MHz) | Pass/Fail                               | Measured<br>Frequency<br>(MHz) | Pass/Fail | Measured<br>Frequency<br>(MHz) | Pass/Fail | Measured<br>Frequency<br>(MHz) | Pass/Fail |
| 50                  | 12                               | 76500.1615                     | PASS                                    | 76500.1683                     | PASS      | 76500.2024                     | PASS      | 76500.219                      | PASS      |
| 40                  | 12                               | 76499.9596                     | PASS                                    | 76499.9582                     | PASS      | 76499.9254                     | PASS      | 76499.9003                     | PASS      |
| 30                  | 12                               | 76499.7004                     | PASS                                    | 76499.6678                     | PASS      | 76499.702                      | PASS      | 76499.7283                     | PASS      |
| 20                  | 12                               | 76499.7593                     | PASS                                    | 76499.7605                     | PASS      | 76499.7627                     | PASS      | 76499.7721                     | PASS      |
| 10                  | 12                               | 76499.9626                     | PASS                                    | 76499.9605                     | PASS      | 76500.0108                     | PASS      | 76500.0102                     | PASS      |
| 0                   | 12                               | 76500.2703                     | PASS                                    | 76500.2399                     | PASS      | 76500.253                      | PASS      | 76500.2908                     | PASS      |
| -10                 | 12                               | 76500.1262                     | PASS                                    | 76500.1362                     | PASS      | 76500.1366                     | PASS      | 76500.135                      | PASS      |
| -20                 | 12                               | 76499.8022                     | PASS                                    | 76499.7723                     | PASS      | 76499.7327                     | PASS      | 76499.7372                     | PASS      |

|                  | Frequency Stability Versus Voltage      |                                |           |                                |           |                                |           |                                |           |
|------------------|-----------------------------------------|--------------------------------|-----------|--------------------------------|-----------|--------------------------------|-----------|--------------------------------|-----------|
|                  | Operating Frequency: 76500 MHz          |                                |           |                                |           |                                |           |                                |           |
|                  | O Minute 2 Minutes 5 Minutes 10 Minutes |                                |           |                                |           |                                |           | nutes                          |           |
| <b>TEMP.</b> (℃) | Supply<br>(Vdc)                         | Measured<br>Frequency<br>(MHz) | Pass/Fail | Measured<br>Frequency<br>(MHz) | Pass/Fail | Measured<br>Frequency<br>(MHz) | Pass/Fail | Measured<br>Frequency<br>(MHz) | Pass/Fail |
|                  | 13.8                                    | 76499.7476                     | PASS      | 76499.7461                     | PASS      | 76499.7494                     | PASS      | 76499.7645                     | PASS      |
| 20               | 12                                      | 76499.7593                     | PASS      | 76499.7605                     | PASS      | 76499.7627                     | PASS      | 76499.7721                     | PASS      |
|                  | 10.2                                    | 76499.7621                     | PASS      | 76499.7626                     | PASS      | 76499.7526                     | PASS      | 76499.7649                     | PASS      |



| 5 Pictures of Test Arrangements                       |
|-------------------------------------------------------|
| Please refer to the attached file (Test Setup Photo). |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |

 Report No.: RF190502E01
 Page No. 30 / 31
 Report Format Version: 6.1.1



# Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <a href="mailto:service.adt@tw.bureauveritas.com">service.adt@tw.bureauveritas.com</a>
Web Site: <a href="mailto:www.bureauveritas-adt.com">www.bureauveritas-adt.com</a>

The address and road map of all our labs can be found in our web site also.

--- END ---