

TEST REPORT					
FCC ID:	M6E-ALW301W				
Test Report No::	TCT250414E032	TCT250414E032			
Date of issue::	May 19, 2025				
Testing laboratory:	SHENZHEN TONGCE TESTING	G LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factor Fuhai Subdistrict, Bao'an District 518103, People's Republic of Ch	, Shenzhen, Guangdong,			
Applicant's name:	Cheng Uei Precision Industry Co	Ltd			
Address:	No.18, Chung Shan Road, Tu Cl Taiwan, R.O.C., 23680 Taiwan	heng District, New Taipei City,			
Manufacturer's name:	Cheng Uei Precision Industry Co	Ltd			
Address:	No.18, Chung Shan Road, Tu Cl Taiwan, R.O.C., 23680 Taiwan	heng District, New Taipei City,			
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Product Name::	2K Window Camera				
Trade Mark::	FOXLINK, AMCREST LINK				
Model/Type reference:	AL-W301W, AL-W302W, W301V	V, W302W, F-CW8341A			
Rating(s):	Adapter Information: MODEL: BS05A-0501000US INPUT: AC 100-240V, 50/60Hz, OUTPUT: DC 5V, 1000mA	0.25A Max			
Date of receipt of test item:	Apr. 14, 2025				
Date (s) of performance of test:	Apr. 14, 2025 ~ May 19, 2025				
Tested by (+signature):	Onnado YE	Onnado Jangce			
Check by (+signature):	Beryl ZHAO Boy(2 TCT)				
Approved by (+signature):	Tomsin	Tomsies &			

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. General Product Informa			
1.1. EUT description	(0)	(0)	3
1.2. Model(s) list			3
1.3. Test Frequency			
2. Test Result Summary			5
3. General Information			
3.1. Test environment and n			
3.2. Description of Support	Units		7
4. Facilities and Accreditate	tions		8
4.1. Facilities	\mathcal{O} \mathcal{O}	<u>(4</u>	8
4.2. Location			
4.3. Measurement Uncertain	nty		8
5. Test Results and Measu	rement Data	(6)	9
5.1. Antenna requirement			9
5.2. Conducted Emission			
5.3. Maximum Conducted O	utput Power	<u> </u>	14
5.4. 6dB Emission Bandwid			
5.5. 26dB Bandwidth and 99	9% Occupied Bandwidtl	h	17
5.6. Power Spectral Density			18
5.7. Band edge			
5.8. Unwanted Emissions)(<u>,</u> ,	30
5.9. Frequency Stability Mea	asurement		45
Appendix A: Test Result	of Conducted Test		
Appendix B: Photographs	s of Test Setup		
Appendix C: Photographs	s of EUT		

1. General Product Information

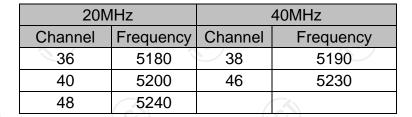
1.1. EUT description

Product Name:	2K Window Camera	(C)	
Model/Type reference:	AL-W301W		
Sample Number:	TCT250414E006-0101		
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 3: 5745 MHz ~ 5825 MHz		
Channel Bandwidth:	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz 802.11ax: 20MHz, 40MHz		
Modulation Technology:	Orthogonal Frequency Division Mu	ultiplexing(OFDM)	
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK	, QPSK	
Antenna Type:	Chip Antenna		
Antenna Gain:	Band 1: 2.61dBi Band 3: 3.76dBi		
Rating(s):	Adapter Information: MODEL: BS05A-0501000US INPUT: AC 100-240V, 50/60Hz, 0.2 OUTPUT: DC 5V, 1000mA	25A Max	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1 /	AL-W301W	
Other models	AL-W302W, W301W, W302W, F-CW8341A	


Note: AL-W301W is tested model, other models are derivative models. The models are identical in circuit and PCB layout, different on the model names, image pixel and color. So the test data of AL-W301W can represent the remaining models.

Page 3 of 147

1.3. Test Frequency

Band 1

Band 3

20MHz		40MHz		
Channel Frequency		Channel	Frequency	
149	5745	151	5755	
157	5785	159	5795	
165	5825			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 4 of 147

Report No.: TCT250414E032

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5.For the band 5.15-5.25GHz, EUT meet the requirements of 15.407(a)(ii).

Page 5 of 147

TESTING CENTRE TECHNOLOGY Report No.: TCT250414E032

2.4. Took on vivon mont and mode

3. General Information

3.1. Test environment and mode

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	22.8 °C	24.5 °C			
Humidity:	49 % RH	48 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			
Test Software:					
Software Information:	SSCOM V5.13.1				
Power Level:	13				
Test Mode:					
Engineer mode: Keep the EUT in continuous transmitting by select channel and modulations with max duty cycle.					

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	6.5 Mbps
802.11n(HT40)	13.5 Mbps
802.11ac(VHT20)	6.5 Mbps
802.11ac(VHT40)	13.5 Mbps
802.11ax(HE20)	6.5Mbps
802.11ax(HE40)	13.5Mbps

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
	1	1		

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 147

Report No.: TCT250414E032

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

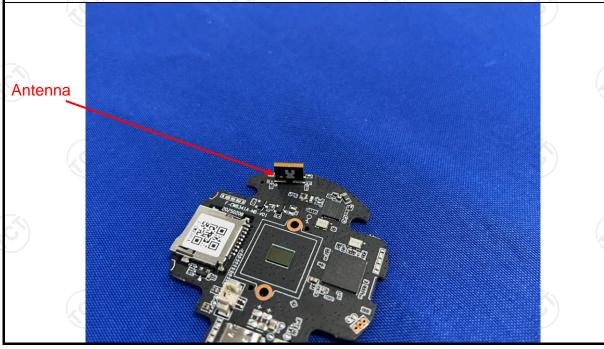
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT250414E032

5. Test Results and Measurement Data

5.1. Antenna requirement


Standard requirement: FCC Part15 C Section 15.203 /247(c)

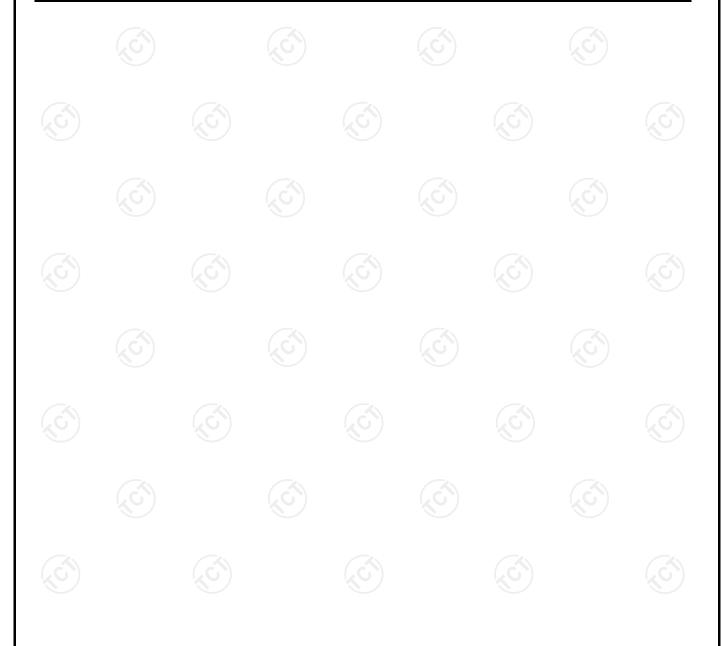
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The WIFI antenna is chip antenna which permanently attached, and the best case gain of the antenna is 3.76dBi of Band 3.

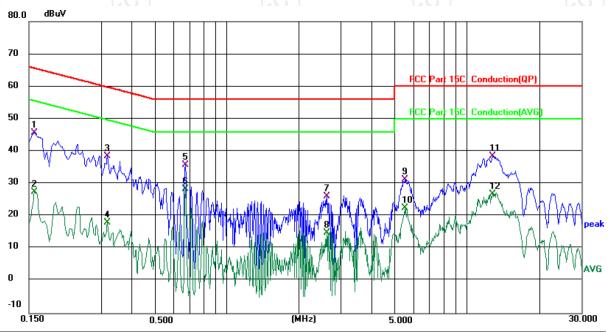
5.2. Conducted Emission


5.2.1. Test Specification

			(.0)	
Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2020			
Frequency Range:	150 kHz to 30 MHz			
Receiver setup:	RBW=9 kHz, VBW=30	RBW=9 kHz, VBW=30 kHz, Sweep time=auto		
	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak	Average	
Limits:	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	Reference	e Plane		
Test Setup:	Remark: E.U.T AC power Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Mode:	Transmitting Mode			
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2020 on conducted measurement. 			
Test Result:	PASS			

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)						
Equipment	Due Date					
EMI Test Receiver	R&S	ESCI3	100898	Jun. 27, 2024	Jun. 26, 2025	
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 21, 2025	Jan. 20, 2026	
Attenuator	N/A	10dB	164080	Jun. 27, 2024	Jun. 26, 2025	
Line-5	тст	CE-05	/	Jun. 27, 2024	Jun. 26, 2025	
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2		1	



5.2.3. Test data

Report No.: TCT250414E032

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 24.6 (°C)

Humidity: 51 %

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/ 60 Hz Reading Correct

No. M	lk. Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1	0.1580	35.85	9.95	45.80	65.57	-19.77	QP	
2	0.1580	17.54	9.95	27.49	55.57	-28.08	AVG	
3	0.3180	28.64	9.94	38.58	59.76	-21.18	QP	
4	0.3180	8.09	9.94	18.03	49.76	-31.73	AVG	
5	0.6740	26.00	9.90	35.90	56.00	-20.10	QP	
6 *	0.6740	18.55	9.90	28.45	46.00	-17.55	AVG	
7	2.6179	16.06	10.05	26.11	56.00	-29.89	QP	
8	2.6179	4.92	10.05	14.97	46.00	-31.03	AVG	
9	5.5419	21.10	10.17	31.27	60.00	-28.73	QP	
10	5.5419	12.25	10.17	22.42	50.00	-27.58	AVG	
11	12.7900	28.23	10.36	38.59	60.00	-21.41	QP	
12	12.7900	16.35	10.36	26.71	50.00	-23.29	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

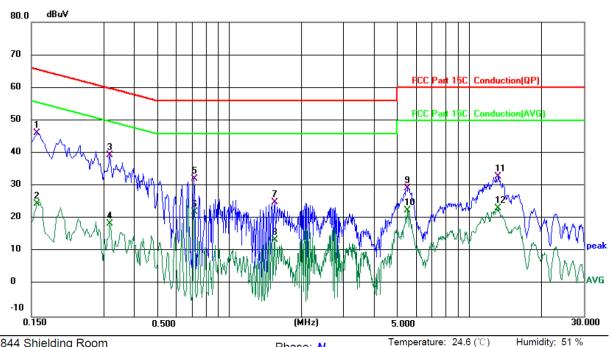
Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average


^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Limit: FCC Part 15C Conduction(QP)

Report No.: TCT250414E032

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Power: AC 120 V/ 60 Hz

Temperature: 24.6 (°C) Site 844 Shielding Room Phase: N

				,					
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1	*	0.1580	36.11	9.94	46.05	65.57	-19.52	QP	
2		0.1580	14.64	9.94	24.58	55.57	-30.99	AVG	
3		0.3180	29.47	9.93	39.40	59.76	-20.36	QP	
4		0.3180	8.64	9.93	18.57	49.76	-31.19	AVG	
5		0.7139	22.20	9.94	32.14	56.00	-23.86	QP	
6		0.7139	12.05	9.94	21.99	46.00	-24.01	AVG	
7		1.5460	15.05	10.00	25.05	56.00	-30.95	QP	
8		1.5460	3.62	10.00	13.62	46.00	-32.38	AVG	
9		5.5500	19.13	10.17	29.30	60.00	-30.70	QP	
10		5.5500	12.30	10.17	22.47	50.00	-27.53	AVG	
11		13.2019	22.34	10.42	32.76	60.00	-27.24	QP	
12		13.2019	12.69	10.42	23.11	50.00	-26.89	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

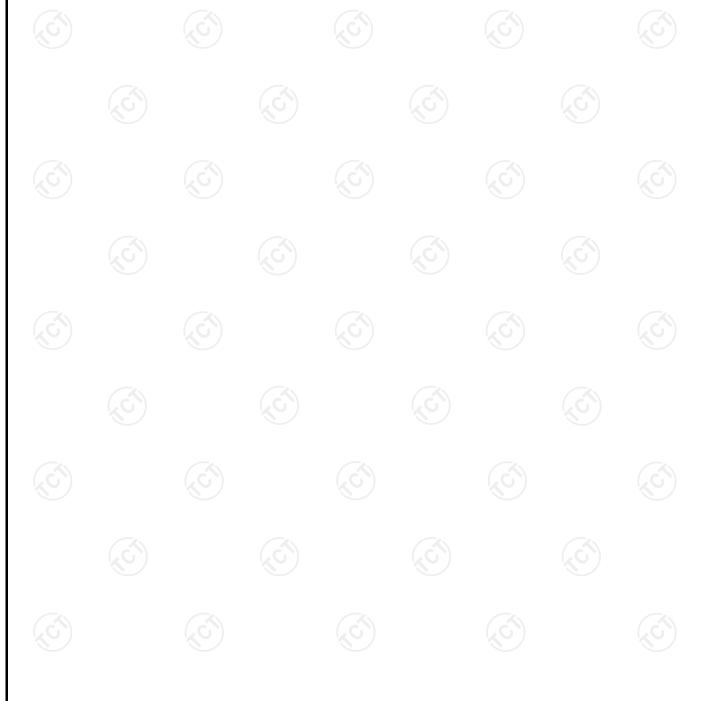
Q.P. =Quasi-Peak

AVG =average

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(HE40) and the worst case Mode (Lowest channel and 802.11ax(HE20)) was submitted only.

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

5.3. Maximum Conducted Output Power


5.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407(a)& Part 2 J Section 2.1046					
Test Method:		ultiple Transmitter Output v02r01 eneral UNII Test Procedures New n E				
	Frequency Band (MHz)	Limit				
	5180 - 5240	24dBm(250mW) for client device				
Limit:	5260 - 5320 5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz 24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz				
	5745 - 5825	30dBm(1W)				
Test Setup:	Spectrum Analyzer	EUT				
Test Mode:	Transmitting mode w	vith modulation				
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 2, b The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 					
Test Result:	PASS	•				
Remark:	+10log(1/x) X is duty	ower= measurement power cycle=1, so 10log(1/1)=0 ower= measurement power				

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Date of Cal.	Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 27, 2024	Jun. 26, 2025
Power Meter	Agilent	E4418B	MY45100357	Jun. 27, 2024	Jun. 26, 2025
Power Sensor	Agilent	8184A	MY41096530	Jun. 27, 2024	Jun. 26, 2025
Power detector box	MWRFtest	MW100-RFCB	MW210531TCT	Jan. 21, 2025	Jan. 20, 2026

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049						
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C						
Limit:	>500kHz						
Test Setup:	Spectrum Analyzer EUT						
Test Mode:	Transmitting mode with modulation						
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 						
Test Result:	PASS						

5.4.2. Test Instruments

Equipment	Manufacturer	Model No.	Serial Number	Date of Cal.	Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 27, 2024	Jun. 26, 2025
Power detector box	MWRFtest	MW100-RFCB	MW210531TCT	Jan. 21, 2025	Jan. 20, 2026

Page 16 of 147

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Limit:	No restriction limits
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Equipment	Manufacturer	Model No.	Serial Number	Date of Cal.	Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 27, 2024	Jun. 26, 2025
Power detector box	MWRFtest	MW100-RFCB	MW210531TCT	Jan. 21, 2025	Jan. 20, 2026

Page 17 of 147

5.6. Power Spectral Density

5.6.1. Test Specification

FCC Part15 E Section 15.407 (a)
KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F
≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470-5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz
Spectrum Analyzer EUT
Transmitting mode with modulation
 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.
PASS

5.6.2. Test Instruments

Equipment	Manufacturer	Model No.	Serial Number	Date of Cal.	Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 27, 2024	Jun. 26, 2025
Power detector box	MWRFtest	MW100-RFCB	MW210531TCT	Jan. 21, 2025	Jan. 20, 2026

Page 18 of 147

5.7. Band edge

5.7.1. Test Specification

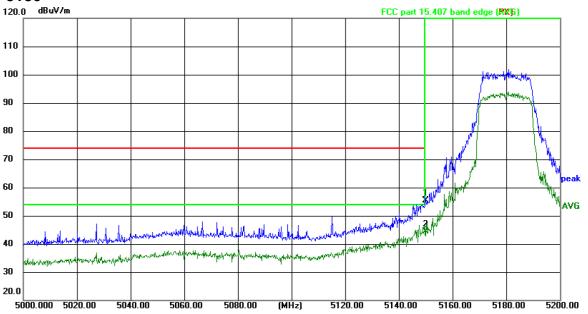
Test Requirement:	FCC CFR47 Part 15E Section 15.407							
Test Method:	ANSI C63.10:20	ANSI C63.10:2020						
	In un-restricted band: For Band 1&2A&2C: -27dBm/MHz For Band 3:							
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)				
1	< 5650 5650~5700	-27 -27~10	5850~5855 5855~5875	27~15.6 15.6~10				
Limit:	5700~5720 5720~5725	10~15.6 15.6~27	5875~5925 > 5925	10~-27				
	E[dBµV/m] = EIR In restricted band:	P[dBm] + 95.2						
	Detec		Limit@					
	Pea		74dBµ 54dBµ					
Test Setup:	80 cm							
Test Mode:	Transmitting mo	de with mod	ulation					
Test Procedure:	1. The EUT was meters above the was rotated 360 highest radiation 2. The EUT was interference-received the top of a vari 3. The antennameters above the value of the field polarizations of measurement. 4. For each sus to its worst case heights from 1 returned from 0 demaximum readi 5. The test-received from and Specific polarizations of measurement.	ne ground at a degrees to degree degrees to degree degrees to degree degrees to degree	a 3 meter cambed as away from the part of	per. The table position of the consition of the mounted on eter to four maximum and vertical ethe constant and to table was at table was at table was at the constant at table was at				

Report No.: TCT250414E032

Mode.

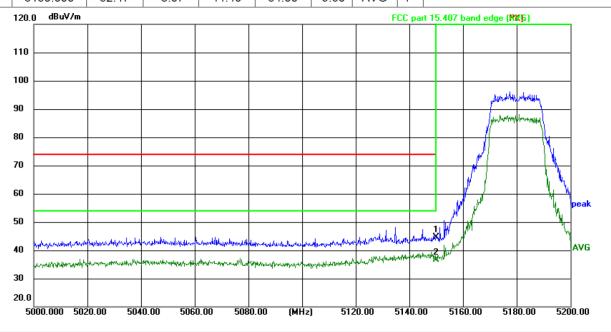

Report No.: TCT250414E032

		10dB lo stopped reported 10dB m quasi po	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet.					
Test	Result:	PASS						


5.7.2. Test Instruments

	Radiated Emission Test Site (966)											
Equipment	Manufacturer	Model	Serial Number	Date of Cal.	Due Date							
EMI Test Receiver	R&S	ESCI7	100529	Jan. 21, 2025	Jan. 20, 2026							
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 27, 2024	Jun. 26, 2025							
Pre-amplifier	SKET	LNPA_0118G-45	SK2021012102	Jan. 21, 2025	Jan. 20, 2026							
Pre-amplifier	SKET	LNPA_1840G-50	SK202109203500	Jan. 21, 2025	Jan. 20, 2026							
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024	Jun. 26, 2025							
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 27, 2024	Jun. 26, 2025							
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 29, 2024	Jun. 28, 2025							
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 29, 2024	Jun. 28, 2025							
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jan. 23, 2025	Jan. 22, 2026							
Coaxial cable	SKET	RE-03-D	/	Jun. 27, 2024	Jun. 26, 2025							
Coaxial cable	SKET	RE-03-M	1-2	Jun. 27, 2024	Jun. 26, 2025							
Coaxial cable	SKET	RE-03-L		Jun. 27, 2024	Jun. 26, 2025							
Coaxial cable	SKET	RE-04-D	/	Jun. 27, 2024	Jun. 26, 2025							
Coaxial cable	SKET	RE-04-M	1	Jun. 27, 2024	Jun. 26, 2025							
Coaxial cable	SKET	RE-04-L	1	Jun. 27, 2024	Jun. 26, 2025							
Antenna Mast	Keleto	RE-AM	/	/	/							
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	1) /							

5.7.3. Test Data AX20-5180



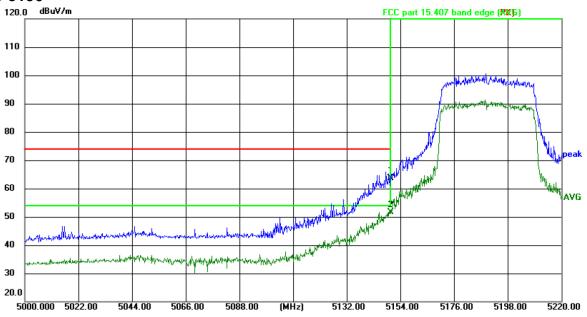
Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.2(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	l	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	63.40	-8.07	55.33	74.00	-18.67	peak	Р	
2 *	5150 000	52 47	-8.07	44 40	54 00	-9 60	AVG	Р	

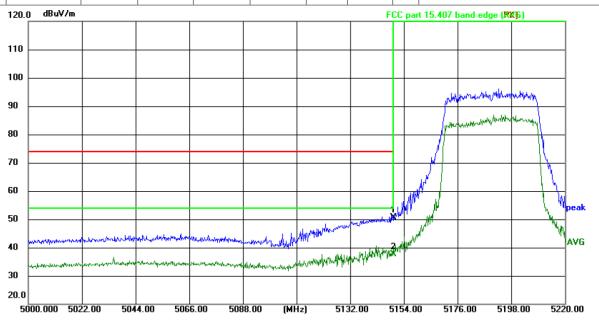
Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.2(°C) Humidity: 52 %


Limit: FCC part 15.407 band edge (PK) Power:AC 120V/60Hz

N	1 0.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5150.000	52.64	-8.07	44.57	74.00	-29.43	peak	Р	
2	2 *	5150.000	44.72	-8.07	36.65	54.00	-17.35	AVG	Р	

Report No.: TCT250414E032

AX40-5190

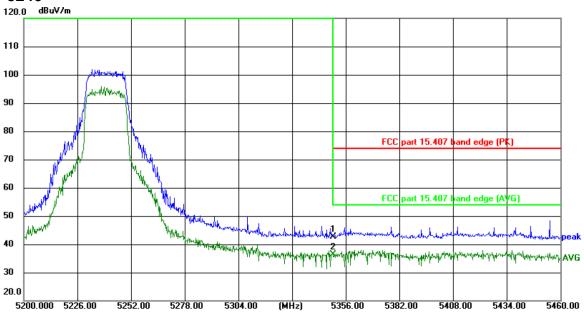


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.2(℃) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120V/60Hz

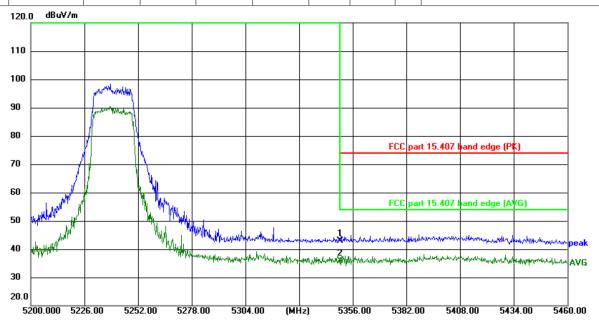
No.	Frequency (MHz)	Reading (dBuV)	l	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	71.58	-8.07	63.51	74.00	-10.49	peak	Р	
2 *	5150.000	59.67	-8.07	51.60	54.00	-2.40	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.2(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5150.000	58.74	-8.07	50.67	74.00	-23.33	peak	Р	
2 *	5150.000	45.63	-8.07	37.56	54.00	-16.44	AVG	Р	

AX20-5240

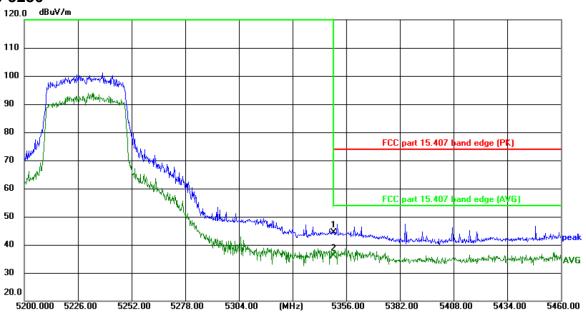


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.2($^{\circ}$ C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120V/60Hz

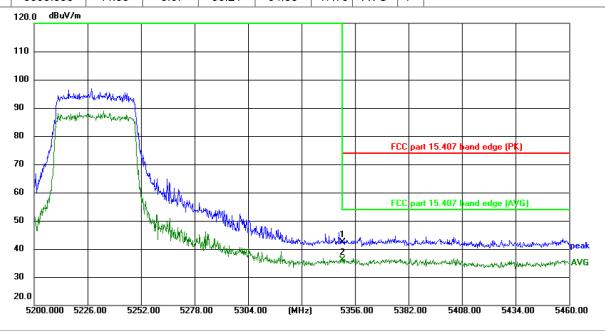
Ì	No.	Frequency (MHz)	Reading (dBuV)	l .	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1	5350.000	51.42	-8.67	42.75	74.00	-31.25	peak	Р	
	2 *	5350.000	44.95	-8.67	36.28	54.00	-17.72	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.2(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	51.52	-8.67	42.85	74.00	-31.15	peak	Р	
2 *	5350.000	44.45	-8.67	35.78	54.00	-18.22	AVG	Р	

AX40-5230

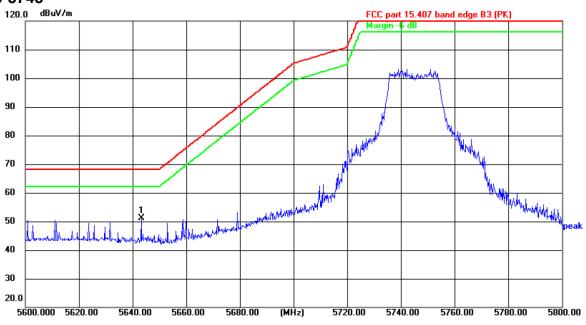


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.2(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

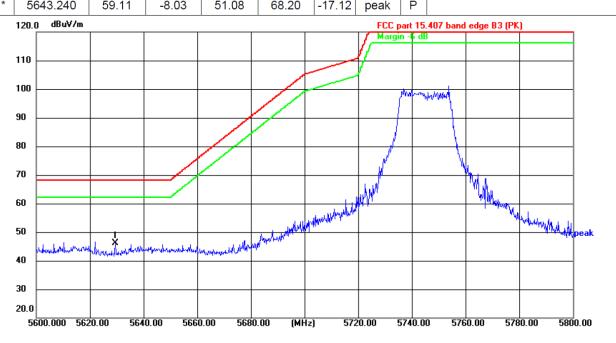
Power:AC 120V/60Hz

- 6										
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1	5350.000	53.05	-8.67	44.38	74.00	-29.62	peak	Р	
	2 *	5350,000	44.88	-8.67	36.21	54.00	-17.79	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.2(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	51.14	-8.67	42.47	74.00	-31.53	peak	Р	
2 *	5350.000	44.71	-8.67	36.04	54.00	-17.96	AVG	Р	


AX20-5745

Site: 3m Anechoic Chamber Polarization:

Polarization: *Horizontal* Temperature: 24.2(°C)

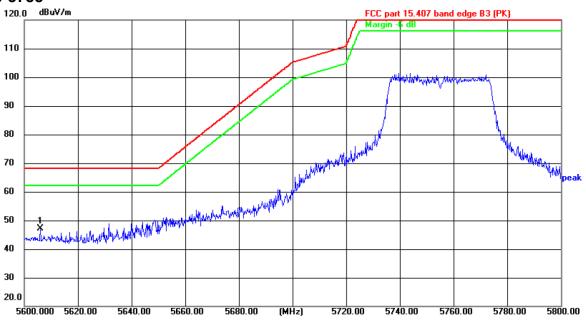
Limit:	FCC part 15.	407 band e	edge B3 (P	K)	Pov	ver:AC	120V/60H	Ηz	
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	l	Margin (dB)	Detector	P/F	Remark
4 *	EC42 040	EO 44	0.00	E4 00	CO 00	47.40			

Site: 3m Anechoic Chamber

Polarization: Vertical

Temperature: 24.2(℃)

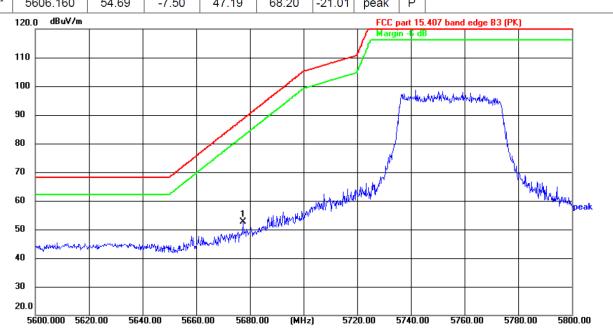
Humidity: 52 %


Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5629.500	54.03	-7.83	46.20	68.20	-22.00	peak	Р	

AX40-5755

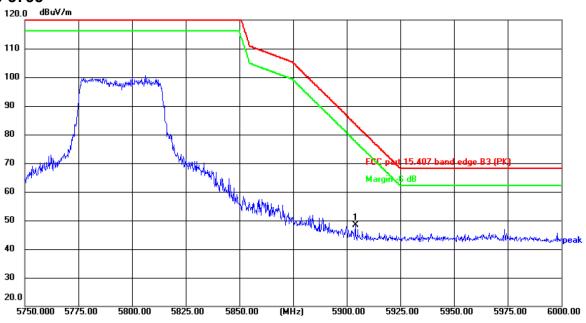


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.2(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

Power: AC 120V/60Hz

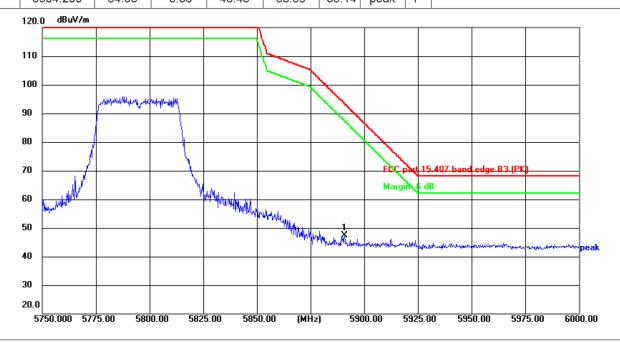
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5606 160	54 60	-7.50	17 10	68.20	-21 01	neak	Ь	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.2(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)		l .	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5677.520	60.14	-7.43	52.71	88.56	-35.85	peak	Р	

AX40-5795



Limit: FCC part 15.407 band edge B3 (PK)

Temperature: 24.2(℃) Humidity: 52 % Site: 3m Anechoic Chamber Polarization: Horizontal

	•		•	,					
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5904 200	54.83	-6.38	48 45	83 59	-35 14	neak	Р	

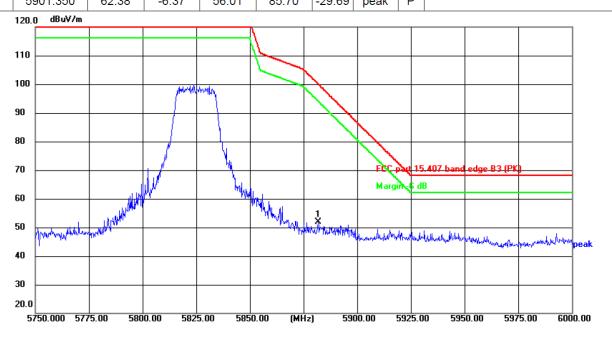
Power: AC 120V/60Hz

Temperature: 24.2(℃) Humidity: 52 % Site: 3m Anechoic Chamber Polarization: Vertical

Limit: FCC part 15.407 band edge B3 (PK) Power: AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5890.875	53.92	-6.46	47.46	93.45	-45.99	peak	Р	

AX20-5825



Site: 3m Anechoic Chamber Pol Limit: FCC part 15.407 band edge B3 (PK)

Polarization: *Horizontal* Temperature: 24.2(°C)

PK) Power:AC 120V/60Hz

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F	Remark
ı	4 *	E004 250	60.20	6 27	5C 01	05.70	20.60	naak	Ь Б	

Site: 3m Anechoic Chamber

Polarization: Vertical

Temperature: 24.2(℃)

Humidity: 52 %

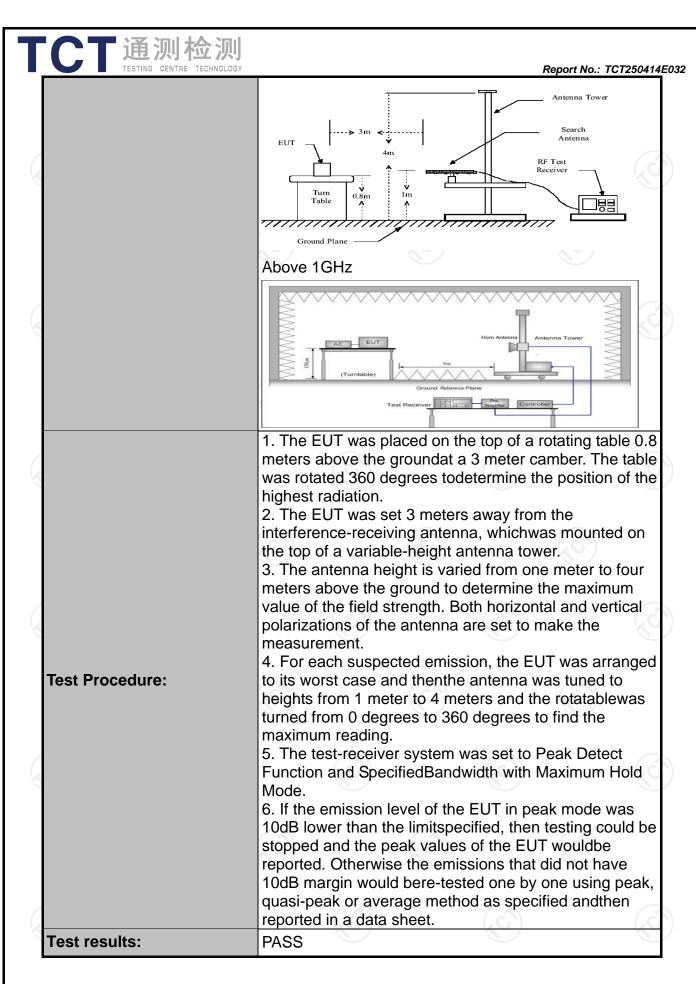
Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5881.750	58.50	-6.57	51.93	100.20	-48.27	peak	Р	

Note: All modulation (802.11a, 802.11a, 802.11ac, 802.11ax) have been tested, only the worst case in 802.11ax be reported.



5.8. Unwanted Emissions

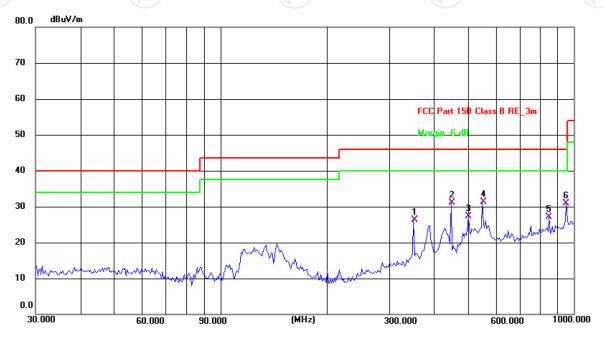
5.8.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 S	ection 15	.407 & 1	5.209 & 15.205
Test Method:	KDB 789033	D02 v02r	01		100
Frequency Range:	150kHz- 30MHz 30MHz 30MHz 120KHz 30MHz 120KHz 300KHz 120KHz 300KHz 120KHz 120K				
Measurement Distance:	3 m		<u>~</u>	tion VBW Remark 1kHz Quasi-peak Val 30kHz Quasi-peak Val 300KHz Quasi-peak Value 10Hz Average Value callen in restricted bandly with the let forth in § 15.209 ctor Limit@3m 74dBµV/m G 54dBµV/m Measurement Distance (meter) Distance (meter) J 300 z) J 3 J 30 J 3 J 3 J 3 V/m OMHz Computer	(3)
Antenna Polarization:	Horizontal &	Vertical			
Operation mode:	Transmitting	mode wit	h modulat	dulation SW	
Receiver Setup:	9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz	Quasi-peak Quasi-peak Quasi-peak Peak	200Hz 9kHz 120KHz 1MHz	1kHz 30kHz 300KHz 3MHz	Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value
Limit:	per FCC Par general field below table, In restricted I Frequency 0.009-0.490 0.49 -1.705 1.705-30 30-88 88-216 216-960 Above 960	t15.205 sl strength bands:	Detection Detection Detection Pea AVC Field Strengt (microvolts/m 2400/F(KHz) 24000/F(KHz) 30 100 150 200 500	et forth interest of the store	Limit@3m 74dBµV/m 54dBµV/m Measurement Distance (meters) 300 3 30 3 3
Test setup:	EUT 0.8m	Turn table	lm [Pre -	Amplifier

Report No.: TCT250414E032

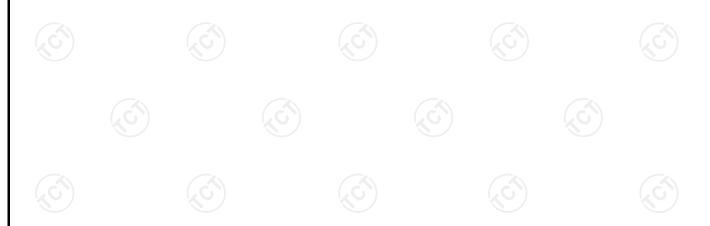
5.8.2. Test Instruments

	F	Radiated Emission	n Test Site (966)		
Equipment	Manufacturer	Model	Serial Number	Date of Cal.	Due Date
EMI Test Receiver	R&S	ESCI7	100529	Jan. 21, 2025	Jan. 20, 2026
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 27, 2024	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G-45	SK2021012102	Jan. 21, 2025	Jan. 20, 2026
Pre-amplifier	SKET	LNPA_1840G-50	SK202109203500	Jan. 21, 2025	Jan. 20, 2026
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024	Jun. 26, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 27, 2024	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 29, 2024	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 29, 2024	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jan. 23, 2025	Jan. 22, 2026
Coaxial cable	SKET	RE-03-D	/	Jun. 27, 2024	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M	1-2	Jun. 27, 2024	Jun. 26, 2025
Coaxial cable	SKET	RE-03-L		Jun. 27, 2024	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D	/	Jun. 27, 2024	Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	1	Jun. 27, 2024	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	/	Jun. 27, 2024	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM	/	/	/
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	1) 1

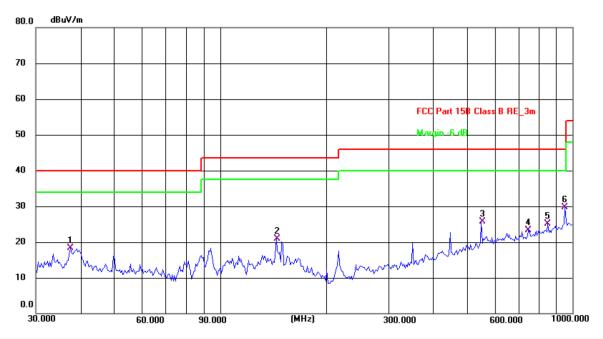


5.8.3. Test Data

Please refer to following diagram for individual


Below 1GHz

Horizontal:


Temperature: 24.5(C) Humidity: 48 % Site: 3m Anechoic Chamber1 Polarization: Horizontal

Ļir	nit: F	CC Part 15B C	lass B RE_3	sm .		Р	•			
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	351.7079	36.41	-10.12	26.29	46.00	-19.71	QP	Р	
	2	449.5558	39.40	-8.30	31.10	46.00	-14.90	QP	Р	
	3	502.9395	35.04	-7.67	27.37	46.00	-18.63	QP	Р	
	4 *	550.9480	37.90	-6.65	31.25	46.00	-14.75	QP	Р	
	5	851.0353	29.23	-2.11	27.12	46.00	-18.88	QP	Р	
	6	952 0937	30.69	0.28	30.97	46.00	-15 03	QΡ	Р	

Vertical:

Temperature: 24.5(C) Humidity: 48 % Site: 3m Anechoic Chamber1 Polarization: Vertical

Limit:	FCC Part 15B Class B RE_3m				Р	ower: A	:		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	37.5478	30.64	-12.30	18.34	40.00	-21.66	QP	Р	
2	144.3347	32.77	-11.92	20.85	43.50	-22.65	QP	Р	
3	550.9480	32.29	-6.65	25.64	46.00	-20.36	QP	Р	
4	750.1082	26.92	-3.52	23.40	46.00	-22.60	QP	Р	
5	851.0353	27.29	-2.11	25.18	46.00	-20.82	QP	Р	
6 *	952.0937	29.51	0.28	29.79	46.00	-16.21	QP	Р	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(HE20), 802.11ax(HE40) and the worst case Mode (Lowest channel and 802.11ax(HE20)) was submitted only.
- 3.Measurement (dBµV) = Reading level + Correction Factor, correction Factor= Antenna Factor + Cable loss -Pre-amplifier.

			N	lodulation Tv	pe: Band 1				
				•	•				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBμV) reading (dBμV) Factor (dB/m) Emission L (dB/m) Emission L (dBμV/m) Emission L (dBμV/m) (dBμν/m) (dBμμν/m) (dBμμν/m) (dBμμν/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)			
10360	Н	52.31		1.78	54.09		68.2		-14.11
15540	Д	39.74		5.21	44.95	·	74	54	-9.05
	(H)		[C		(, ((-C)	
				<u></u>					
10360	V	50.06		1.78	51.84		68.2		-16.36
15540	V	40.93		5.21	46.14		74	54	-7.86
(-(-)-	V	(- -		(() 		(
				11a CH40: 5	5200MHz				
Frequency (MHz)	Ant. Pol. H/V	reading	reading	Factor	Peak	AV	Peak limit (dBµV/m)		Margin (dB)
10400	Н	51 <i>1</i> 7		1 22	, ,	(dDp v/iii)	68.2		-14.9
15600	H						74	54	-10.57
13000	H				43.43		74		-10.57
	11			(,c)	}	(.(1)		(.0)
10400	V	52.88		1.83	54.71		68.2		-13.49
15600	V						74	54	-13. 43 -9.1
	V								
				11a CH48: 5	5240MHz				
_	T	Peak	AV						
Frequency	Ant. Pol. H/V		reading	Factor	Emissic	n Levei	Peak limit		Margin
(MHz)	□/ V	(dBµV)	(dBµV)	(dB/m)		AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	52.36		1.85	54.21		68.2		-13.99
15720	Н	39.59		5.25	44.84		74	54	-9.16
	Н								
		_				-11			
10480	V		-4		52.88	<i></i>	68.2	()	-15.32
15720	V	39.85		5.25	45.1		74	54	-8.9
	V								
				n(HT20) CH3	86: 5180MH	łz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	(,CH)	50.24	-(, ,Ċ)	1.78	52.02	(`رَ	68.2	(G^{-})	-16.18
15540	H	39.08		5.21	44.29	J	74	54	-9.71
	Н								
10360	V	51.18		1.78	52.96	(68.2		-15.24
15540	V	37.27		5.21	42.48		74	54	-11.52
	V								

			11	n(HT20) CH	40: 5200MF	Hz			
Frequency	Ant. Pol.	Peak	AV	Correction	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading	reading	Factor			(dBµV/m)	(dBµV/m)	(dB)
(111112)	, •	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(αΣμ τ/)	(42 \(\tau \)	(42)
					(dBµV/m)	(dBµV/m)			
10400	Н	52.72		1.83	54.55		68.2		-13.65
15600	Н	39.39		5.23	44.62		74	54	-9.38
	Н								
	(.c)		(.G)	•	(,)			(G)	
10400	V	49.61		1.83	51.44		68.2		-16.76
15600	V	37.35		5.23	42.58		74	54	-11.42
	V								
			11	n(HT20) CH	48: 5240Ml	Ηz			
Frequency	Ant. Pol.	Peak	AV	Correction	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading	reading	Factor	Deal	I 417	(dBµV/m)	(dBµV/m)	(dB)
,		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(* , ,	(* ')	(-)
10480	(ACH)	51.35	140	1.85	53.2	J)	68.2	<u>(GC)</u>	-15
15720	Н	39.01		5.25	44.26	<u></u>	74	54	-9.74
	Н								
					ļ				
10480	V	50.16		1.85	52.01	(68.2		-16.19
15720	V	38.79		5.25	44.04		74	54	-9.96
	V								
	.			n(HT40) CH					
		Peak	AV	Correction					
Frequency	Ant. Pol.	reading	reading	Factor	Emissi	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		((3-4-7)	(,)	(dBµV/m)	(dBµV/m)			
10380	Н	52.04		1.80	53.84		68.2		-14.36
15570	Н	41.13		5.22	46.35		74	54	-7.65
	H								
10380	V	52.68		1.80	54.48	X\	68.2	4	-13.72
15570	V	39.49	<u> </u>	5.22	44.71	(b)	74	54	-9.29
	V								
	,			n(HT40) CH	46· 5230MF				
		Peak	AV	Correction					
Frequency	Ant. Pol.	reading	reading	Factor	Emission	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(3.2 μ. 1)	(5.2 p. 1)	(3.2,)		(dBµV/m)			
10460	Н	52.76		1.85	54.61		68.2		-13.59
15690	(H)	37.13	(.C.	5.08	42.21		74	54	-11.79
	CH/					<i></i>			
<u>!</u>					!	•	•		
10460	V	50.41		1.85	52.26		68.2		-15.94
15690	V	38.17		5.08	43.25	/	74	54	-10.75
	-			0.00					10.10

			11a	c(VHT20) CH	136: 5180M	lHz				
Frequency	Ant. Pol.	Peak	AV	Correction	Emissio	on Level	Peak limit	AV limit	Margin	
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	
10360	Н	51.34		1.78	53.12		68.2		-15.08	
15540	Н	37.12		5.21	42.33		74	54	-11.67	
	Н									
	(.c)		(.c)		(.0			(.c)		
10360	V	50.58		1.78	52.36	J	68.2		-15.84	
15540	V	38.26		5.21	43.47		74	54	-10.53	
	V									
			11a	c(VHT20) CH	140: 5200M	IHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin	
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	
10400	KH)	51.42	740	1.83	53.25) <u></u>	68.2	(0_)	-14.95	
15600	Н	38.09		5.23	43.32		74	54	-10.68	
	Н									
10400	V	52.56		1.83	54.39	()	68.2		-13.81	
15600	V	39.72		5.23	44.95		74	54	-9.05	
	V									
			1	1ac(VHT20)	CH48:5240)				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin	
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)	
10480	Н	50.31		1.85	52.16	/	68.2		-16.04	
15720	Н	38.25		5.25	43.5		74	54	-10.5	
	Н									
					•	•		<u> </u>		
10480	V	50.93		1.85	52.78		68.2	-4-	-15.42	
15720	V	39.16	-160	5.25	44.41	9)	74	54	-9.59	
	V									
			1	1ac(VHT40)	CH38:5190)				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin	
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	
10380	Н	50.22		1.80	52.02		68.2		-16.18	
15570	(CH)	38.53	+-6	5.22	43.75		74	54	-10.25	
	CH) <u></u>				
		I		1		ı				
10380	V	53.08		1.80	54.88		68.2		-13.32	
15570	V	38.89		5.22	44.11	/	74	54	-9.89	
72.	V				<i></i>		7		2	

Report No.: TCT250414E032 11ac(VHT40) CH46:5230 Peak Correction AV reading **AV** limit Ant. Pol. **Emission Level** Peak limit Frequency Margin reading Factor (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB) Peak ΑV (dBµV) (dB/m) (dBµV/m) (dBuV/m) 10460 52.41 Η 1.85 54.26 68.2 -13.9415690 Η 37.16 5.08 42.24 74 54 -11.76 ---Η ---------------------٧ 10460 52.58 1.85 54.43 68.2 -13.774---15690 V 39.19 5.08 44.27 74 54 -9.73 ٧ 11ax(HE20) CH36: 5180MHz ΑV Peak Correction Frequency Ant. Pol. **Emission Level** Peak limit **AV** limit Margin reading reading Factor H/V (dBµV/m) (MHz) (dBµV/m) (dB) ΑV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10360 Н 52.82 1.78 54.6 68.2 -13.6 15540 Ή 39.36 -44 5.21 44.57 74 54 -9.43 Η ------10360 ٧ 52.00 1.78 68.2 -14.4253.78 15540 V 38.28 5.21 43.49 -10.51 74 54 ٧ -------------11ax(HE20) CH40: 5200MHz Peak AV Correction Frequency Ant. Pol. Emission Level Peak limit **AV limit** Margin reading reading **Factor** (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10400 Н 51.35 1.83 53.18 68.2 -15.02 5.23 15600 Η 38.7 43.93 74 54 -10.07Н -4----------------*J*--------10400 V 52.99 1.83 54.82 68.2 -13.3815600 ٧ 5.23 38.61 -4-43.84 ---74 54 -10.16 ٧ 11ax(HE20) CH48:5240 ΑV Peak Correction Ant. Pol. **Emission Level** Peak limit **AV** limit Frequency Margin Factor reading reading (MHz) H/V (dBµV/m) (dB) $(dB\mu V/m)$ Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10480 Н 53.13 1.85 54.98 68.2 -13.2215720 Н 38.74 ---5.25 43.99 ---74 54 -10.01 Н 4., ---10480 V 52.52 1.85 68.2 54.37 -13.83 ٧ 15720 37.48 5.25 42.73 74 54 -11.27٧ 77 ----------------4-------

٧

Report No.: TCT250414E032 11ax(HE40) CH38:5190 AV Peak Correction Frequency **Emission Level** Ant. Pol. Peak limit **AV limit** Margin reading Factor reading H/V (MHz) $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) ΑV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10380 Н 54.08 1.80 55.88 68.2 -12.3215570 Η 38.76 5.22 43.98 74 54 -10.02 Н ------------------10380 V 54.19 1.80 55.99 68.2 -12.214--15570 ٧ 37.83 5.22 43.05 74 54 -10.95 11ax(HE40) CH46:5230 ΑV Peak Correction **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading reading Factor H/V (dBµV/m) (dBµV/m) (dB) (MHz) ΑV Peak (dBµV) (dBµV) (dB/m) $(dB\mu V/m) \mid (dB\mu V/m)$ 10460 Н 53.85 1.85 55.7 68.2 -12.5 -11.33 15690 Н 37.59 ---5.08 42.67 74 54 Н ------10460 ٧ 50.73 1.85 68.2 52.58 -15.62 15690 ٧ 37.27 5.08 74 -11.65 42.35 54

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			N	Modulation Ty	ype: Band 3	3			
				11a CH149:					
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	42.05		2.48	44.53		74	54	-9.47
17235	Н	51.37		6.50	57.87		68.2		-10.33
	(H)		1. 6		(, ((.c=	
11490	V	42.84		2.48	45.32		74	54	-8.68
17235	V	51.15		6.50	57.65		_68.2		-10.55
	V			(6		(C -		
				11a CH157:	5785MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor		on Level	Peak limit	AV limit (dBµV/m)	Margin (dB)
(1711 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(ασμ ν/ιιι)	(αΒμν/πη)	(ub)
11570	Н	41.43)	2.42	43.85		74	54	-10.15
17355	Н	52.58		7.03	59.61		68.2		-8.59
	Н			//					<i></i>
(C)		$(^{\prime}C)$		120			(C)		(70.)
11570	V	40.17		2.42	42.59		74	54	-11.41
17355	V	52.35		7.03	59.38		68.2		-8.82
	V							7	
				11a CH165:	5825MHz				
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	⊓/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	40.48		2.41	42.89	'	74	54	-11.11
17475	H	50.73		7.41	58.14		68.2		-10.06
	Н								
						7			
11650	٧	41.13	-140	2.41	43.54	٧)	74	54	-10.46
17475	V	50.69		7.41	58.1		68.2		-10.1
	V								
			11r	(HT20) CH1	49: 5745M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	(H)	41.98	-6.6	2.48	44.46		74	54	-9.54
17235	H	52.72		6.50	59.22)	68.2		-8.98
	Н								
								ı Į	
11490	V	41.95		2.48	44.43	/	74	54	-9.57
17235	V	51.34		6.50	57.84		68.2		-10.36
				_	_				_

			11n	(HT20) CH1	57: 5785M	Hz			
Frequency	Ant. Pol.	Peak	AV	Correction	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	Н	41.35		2.42	43.77		74	54	-10.23
17355	Н	51.87		7.03	58.9		68.2		-9.3
	Н		-						
	(G)		(.6)		(.0			(.c)	
11570	V	41.93		2.42	44.35	J	74	54	-9.65
17355	V	50.02		7.03	57.05		68.2		-11.15
	V								
			11n	(HT20) CH1	65: 5825M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	(H)	41.68	-KO	2.41	44.09)	74	54	-9.91
17475	H	50.24		7.41	57.65		68.2)-	-10.55
	Н								
11650	V	41.97		2.41	44.38		74	54	-9.62
17475	V	52.23		7.41	59.64		68.2		-8.56
	V								
			11n	(HT40) CH1	51: 5755M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Н	41.35		2.47	43.82	/	74	54	-10.18
17265	Н	51.88		6.62	58.5		68.2		-9.7
	Н								
11510	V	41.79		2.47	44.26	<u></u>	74	54	-9.74
17265	V	52.31	770	6.62	58.93	5)	68.2	((0.)	-9.27
	V								
			11n	(HT40) CH1	59: 5795M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
11590	Н	41.39		2.40	(dBµV/m) 43.79	(dBµV/m)	74	54	-10.21
17385	H	50.26	-t- C	7.15			68.2		
	H			/	57.41	<u></u>		(G-)	-10.79
	5								
11590	V	41.97		2.40	44.37		74	54	-9.63
17385	V	52.01		7.15	59.16	/	68.2		-9.04
	V				30.10	-			3.57

			11ac	(VHT20) CH	1149: 5745N	ИНz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor		on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(IVII 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(αυμ ν/ιιι)	(αΒμ ν/ιιι)	(GD)
11490	Н	40.33		2.48	42.81		74	54	-11.19
17235	Н	52.06		6.50	58.56		68.2		-9.64
	Н								
	(.G)		(.c)		(.0			(.c)	
11490	V	41.85		2.48	44.33	/	74	54	-9.67
17235	V	50.49		6.50	56.99		68.2		-11.21
	V								
			11ac	(VHT20) CH	1157: 5785 N	ИНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	H	41.27	-140	2.42	43.69	٠	74	54	-10.31
17355	I	52.64		7.03	59.67		68.2) <u></u>	-8.53
	Н								
						/		•	
11570	V	40.28		2.42	42.7		74	54	-11.3
17355	V	51.79		7.03	58.82		68.2		-9.38
	V								
			11ac	(VHT20) CH	1165: 5825N	ИНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	41.33		2.41	43.74	/	74	54	-10.26
17475	Н	51.56		7.41	58.97		68.2		-9.23
	Н								
	• •			ı					
11650	V	40.48	(K	2.41	42.89	X\	74	54	-11.11
17475	V	52.93	1/40	7.41	60.34	5)	68.2	(Q)	-7.86
	V								
	•		11ac	(VHT40) CH	 151: 5755	ИН г			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Н	40.21		2.47	42.68		74	54	-11.32
17265	(,CH)	50.06		6.62	56.68		68.2	()	-11.52
	H								
				•	•				
11510	V	41.58		2.47	44.05		74	54	-9.95
17265	V	50.22		6.62	56.84	/	68.2		-11.36
					00.0.				

			11ac	(VHT40) CH	1109. 07901	VIHZ			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	Н	41.16		2.40	43.56		74	54	-10.44
17385	Н	51.28		7.15	58.43		68.2		-9.77
	H		-						
	(.G)		(.c)		(.0			(G)	
11590	V	40.39		2.40	42.79	J	74	54	-11.21
17385	V	52.68		7.15	59.83		68.2		-8.37
	V								
			11a	x(HE20) CH	149: 5745N	1Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	H	41.34	1/0	2.48	43.82)	74	54	-10.18
17235	H	52.58)	6.50	59.08		68.2) !	-9.12
	Н								
11490	V	40.99		2.48	43.47	(74	54	-10.53
17235	V	51.46		6.50	57.96		68.2		-10.24
	V								
			11a	x(HE20) CH	157: 5785N	1Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	Н	41.38		2.42	43.8	/	74	54	-10.2
17355	Н	50.25		7.03	57.28		68.2		-10.92
	Н								
				•					
11570	V	42.69		2.42	45.11		74	54	-8.89
17355	V	51.85	70	7.03	58.88)	68.2	(<u>Q.</u>)	-9.32
	V								
	V			 x(HE20) CH ²					
Frequency	Ant. Pol.	Peak	11a: AV	x(HE20) CH ² Correction	 165: 5825N		Peak limit	AV limit	Margin
			11a:	x(HE20) CH	 165: 5825M Emissio	 1Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading	x(HE20) CH Correction Factor (dB/m)	 165: 5825N Emissic Peak (dBµV/m)	 IHz on Level AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	x(HE20) CH ² Correction Factor (dB/m)	 165: 5825N Emissic Peak (dBµV/m) 42.64	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit	Margin (dB)
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	x(HE20) CH Correction Factor (dB/m)	 165: 5825N Emissic Peak (dBµV/m)	 IHz on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
Frequency (MHz) 11650 17475	Ant. Pol. H/V	Peak reading (dBµV) 40.23 50.18	AV reading (dBµV)	x(HE20) CH Correction Factor (dB/m) 2.41 7.41	165: 5825N Emissic Peak (dBµV/m) 42.64 57.59	AV (dBµV/m)	Peak limit (dBµV/m) 74 68.2	AV limit (dBµV/m)	Margin (dB) -11.36 -10.61
Frequency (MHz) 11650 17475	Ant. Pol. H/V	Peak reading (dBµV) 40.23 50.18	AV reading (dBµV)	x(HE20) CH Correction Factor (dB/m) 2.41 7.41	 165: 5825N Emissic Peak (dBµV/m) 42.64	AV (dBµV/m)	Peak limit (dBµV/m) 74 68.2	AV limit (dBµV/m)	Margin (dB) -11.36 -10.61

V

51.08

Report No.: TCT250414E032 11ax(HE40) CH151: 5755MHz ΑV Peak Correction Frequency **Emission Level** Ant. Pol. Peak limit **AV** limit Margin reading reading Factor (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) ΑV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11510 Н 41.35 2.47 43.82 74 54 -10.18 17265 Н 52.72 6.62 59.34 68.2 -8.86 Н ------------11510 ٧ 41.94 2.47 44.41 74 54 -9.59 ---

57.7

68.2

-10.5

6.62

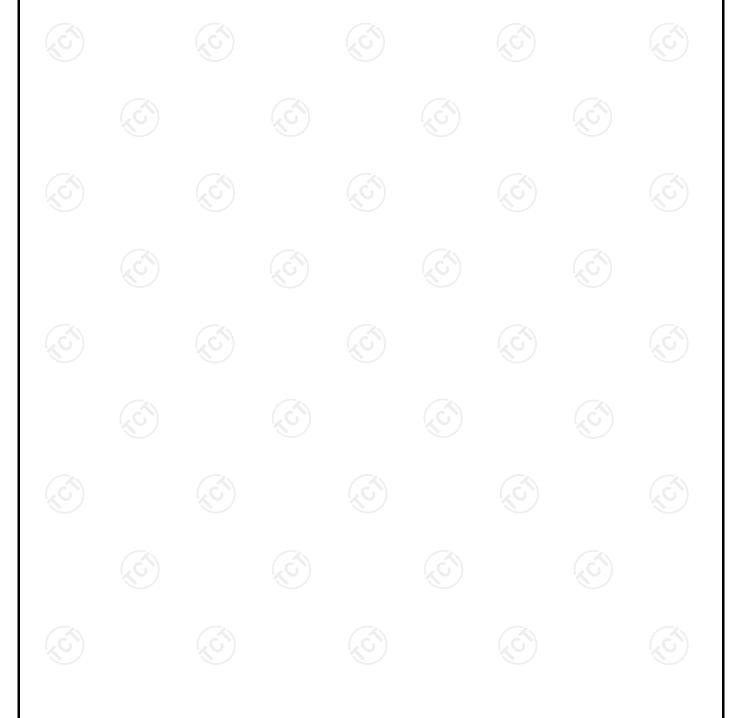
			11a	x(HE40) CH	159: 5795N	1Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emission Level		1. 00		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	H	40.17	7	2.40	42.57	<u> </u>	74	54	-11.43
17385	(H)	50.42	¥.	7.15	57.57	<i></i>	68.2	<u> </u>	-10.63
	Н		-						
	·								
11590	V	40.31		2.40	42.71		74	54	-11.29
17385	V	50.58		7.15	57.73	-	68.2		-10.47
	V)!					-		

Note:

17265

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement


5.9.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
Test Method:	ANSI C63.10:2020
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	Pre-scan was performed at all models(11a,11n,11ac, 11ax), the worst case (11ax) was found and test data was shown in this report.
	was shown in this report.

5.9.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Date of Cal.	Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 27, 2024	Jun. 26, 2025
DC power supply	Kingrang	KR3005K)	Jun. 27, 2024	Jun. 26, 2025
Programable tempratuce and humidity chamber	JQ	JQ-2000	510101234	Jun. 27, 2024	Jun. 26, 2025

Test plots as follows:

Test mode:	802.11ax(HE20)	Freque	ency(MHz):		5180
Temperature (°C)	Voltage(V _{AC})	Measur	ement	Delta		Result
remperature (C)	voitage(v _{AC})	Frequency(MHz)		Frequency(Hz)		Nesuit
45		5180	0.04	40000		PASS
35		5180).02	20000		PASS
25	120V	5180	0.02	20000		PASS
15	1200	5180	0.02	20000		PASS
5		518	30	0		PASS
0		5180).02	20000		PASS
	102V	518	30	0		PASS
25	120V	5180	0.02	20000		PASS
	138V	518	30	0	7	PASS

Test mode:	802.11ax(l	HE20) F	reque	ency(MHz):		5200
Temperature (°C)	Voltage(V _{AC})	Measurement		Delta		Result
Temperature (C)	voitage(v _{AC})	Frequency(MHz)		Frequency(H	Hz)	Nesuit
45		5200.02	<u> </u>	20000		PASS
35		5200.02	2	20000		PASS
25	120V	5200		0		PASS
15	1200	5200.02	5200.02			PASS
5		5200.02	2	20000		PASS
0		5200.02	2	20000		PASS
	102V	5200	X	0		PASS
25	120V	5200.02	<u> </u>	20000		PASS
	138V	5200.04		40000		PASS

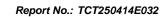
Test mode:	802.11ax(HE20) Frequ	ency(MHz):	5240
Temperature (°C)	Voltage(V _{AC})	Measurement	Delta	Result
Temperature (C)	voltage(v _{AC})	Frequency(MHz)	Frequency(Hz)	Nesuit
45		5240.04	40000	PASS
35		5240	0	PASS
25	25 120V		20000	PASS
15	1200	5240.02	20000	PASS
5		5240.02	20000	PASS
0		5240.02	20000	PASS
	102V	5240.02	20000	PASS
25	120V	5240.02	20000	PASS
	138V	5240	0	PASS

Test mode:	802.11ax(l	HE20)	Frequency(MHz):			5745	
Temperature (°C)	Voltage(V _{AC})	Measurement		Delta		Result	
remperature (C)	voitage(v _{AC})	Frequency(MHz)		Frequency(I	Hz)	Kesuit	
45	(.c.)	574	45	0		PASS	
35		5745	5.02	20000		PASS	
25	120V	5745	5.02	20000		PASS	
15	1200	5745	5.02	20000		PASS	
5		574	45	<u>() 0 </u>		PASS	
0		5745	5.04	40000		PASS	
	102V	5745	5.02	20000		PASS	
25	120V	5745	5.02	20000		PASS	
$(C_{\mathcal{O}})$	138V	5745	5.02	20000		PASS	(C_{i})

Test mode:	802.11ax(HE20)	Freque	ency(MHz):	5785		
Temperature (°C)	Voltage(V _{AC})	Measurement		Delta		Result	
remperature (C)	voltage(v _{AC})	Frequency(MHz)		Frequency(Hz)			
45		5785.02		20000		PASS	
35		5785.02		20000		PASS	
25	120V	5785.02		20000	\	PASS	
15	1200	5785.02		20000		PASS	
5		578	5.02	20000		PASS	
0		5785.02		20000		PASS	
(,C)	102V	5785	5.02	20000		PASS	
25	25 120V		5.02	20000		PASS	
	138V	578	5.02	20000		PASS	

Test mode:	802.11ax(HE20) Freque	ency(MHz):	5825
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5825.02	20000	PASS
35		5825.02	20000	PASS
25	120V	5825.02	20000	PASS
15	1200	5825.02	20000	PASS
5		5825.02	20000	PASS
0		5825.02	20000	PASS
	102V	5825.02	20000	PASS
25	120V	5825	0	PASS
	138V	5825.02	20000	PASS

Test mode:	802.11ax(l	HE40)	Frequency(MHz):		5190		
Temperature (°C)	Voltage(V _{AC})	Measurement		Delta		Result	
remperature (C)	voitage(v _{AC})	Frequency(MHz)		Frequency(Hz)			
45		5190		0		PASS	G
35		5190.04		40000		PASS	
25	120V	5190.04		40000		PASS	
15	1200	5190	.04	40000		PASS	
5		5190		0		PASS	
0		5190	.04	40000		PASS	
	102V	5190	.04	40000		PASS	
25	120V	519	90	0		PASS	
$(C_{\mathcal{O}})$	138V	519	90	0.0)	PASS	(C, J)

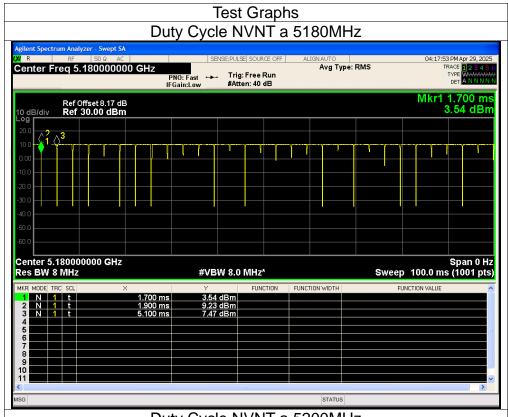

Test mode:	802.11ax(HE40)	Freque	ency(MHz):	5230				
Temperature (°C)	Voltage(V _{AC})	Measurement		Delta		Result			
remperature (C)	voltage(v _{AC})	Frequency(MHz)		Frequency(Hz)					
45		5230		0		PASS			
35		5230	5230.04		40000				
25	120V	5230		0		PASS			
15	1200	5230.04		40000		PASS			
5		5230		0		PASS			
0		5230.04		40000		PASS			
(C)	102V	5230		5230		0		PASS	
25	120V	5230	0.04	40000		PASS			
	138V	5230).04	40000		PASS			

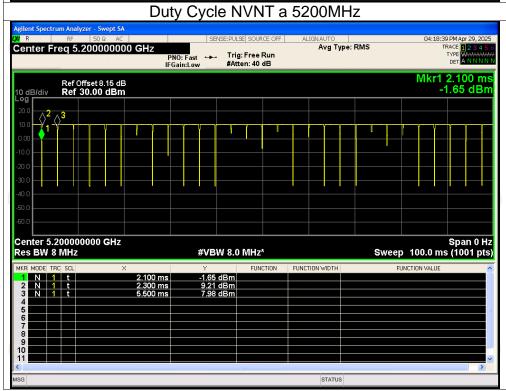
Test mode:	802.11ax(HE40) Freque	Frequency(MHz): 57	
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5755.04	40000	PASS
35		5755	0 0	PASS
25	120V	5755	0	PASS
15	1200	5755.04	40000	PASS
5		5755.04	40000	PASS
0		5755.04	40000	PASS
	102V	5755	0	PASS
25	120V	5755	0	PASS
	138V	5755.04	40000	PASS

Test mode:	802.11ax	(HE40)	Freque	ency(MHz):	5795
Temperature (°C)	Voltage(V _{AC})		Measurement Frequency(MHz)		Hz) Result
45	(6)		5795.04		PASS
35		5795	5.04	40000	PASS
25	120V	5795	5.04	40000	PASS
15	1200	579	95	0	PASS
5 (6)		5795	5.04	40000	PASS
0		579	95	0	PASS
	102V	579	95	0	PASS
25	120V	579	95	0	PASS
(C)	138V	579	95	0.0	PASS

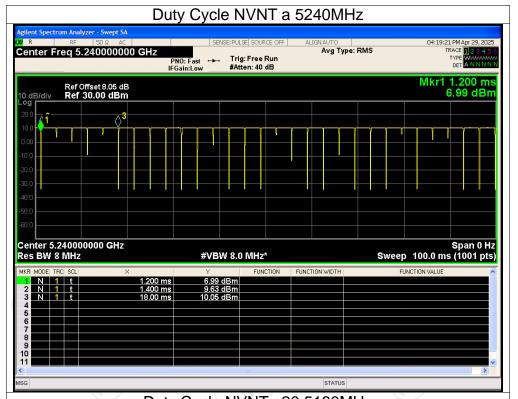
Appendix A: Test Result of Conducted Test

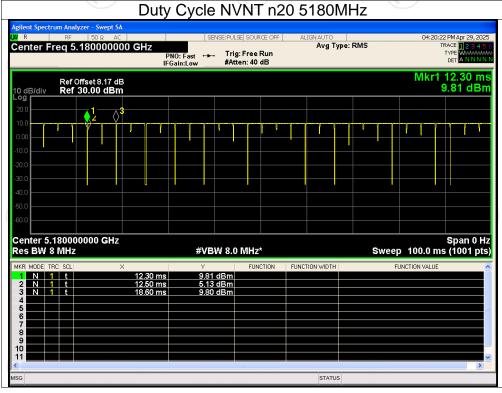
Duty Cycle

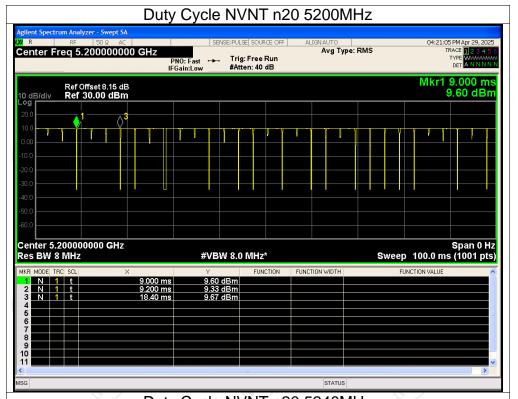

		Duty	Cycle	
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
NVNT	а	5180	98.50	0
NVNT	а	5200	97.90	0.09
NVNT	а	5240	98.00	0
NVNT	n20	5180	98.70	0
NVNT	n20	5200	97.90	0.09
NVNT	n20	5240	98.80	0
NVNT	n40	5190	99.20	0
NVNT	n40	5230	98.30	0
NVNT	ac20	5180	98.10	0
NVNT	ac20	5200	98.40	0
NVNT	ac20	5240	98.60	0
NVNT	ac40	5190	99.00	0
NVNT	ac40	5230	93.71	0.28
NVNT	ax20	5180	97.60	0.11
NVNT	ax20	5200	97.70	0.10
NVNT	ax20	5240	97.10	0.13
NVNT	ax40	5190	99.20	0
NVNT	ax40	5230	99.20	0
NVNT	а	5745	98.60	0
NVNT	а	5785	98.60	0
NVNT	а	5825	97.60	0.11
NVNT	n20	5745	98.40	0
NVNT	n20	5785	98.90	0
NVNT	n20	5825	99.20	0
NVNT	n40	5755	98.10	0
NVNT	n40	5795	98.00	0
NVNT	ac20	5745	97.60	0.11
NVNT	ac20	5785	97.90	0.09
NVNT	ac20	5825	99.10	0
NVNT	ac40	5755	99.10	0
NVNT	ac40	5795	98.90	0
NVNT	ax20	5745	98.80	0
NVNT	ax20	5785	98.50	0
NVNT	ax20	5825	99.00	0
NVNT	ax40	5755	97.80	0.10
NVNT	ax40	5795	98.90	0

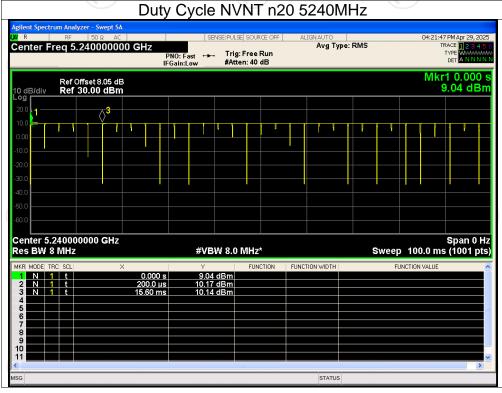

Page 51 of 147

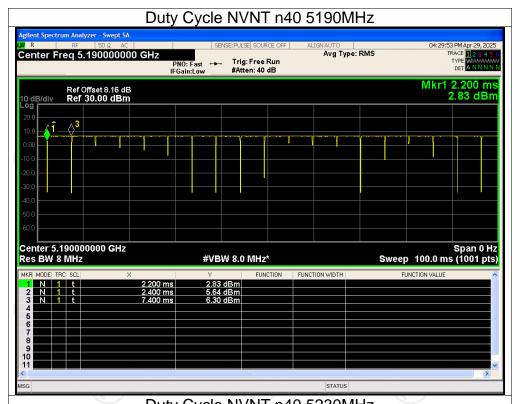
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

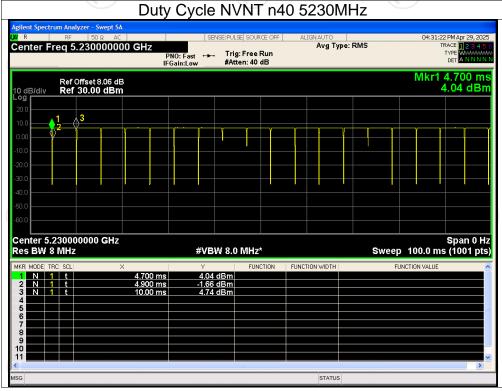


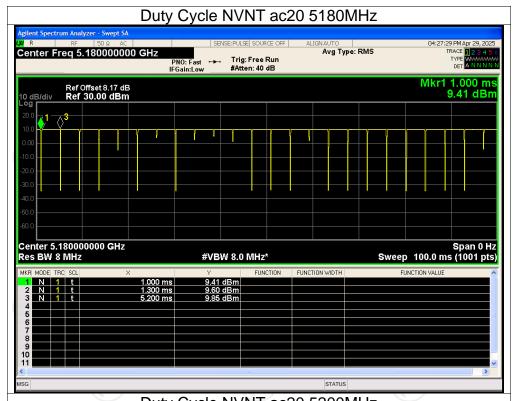


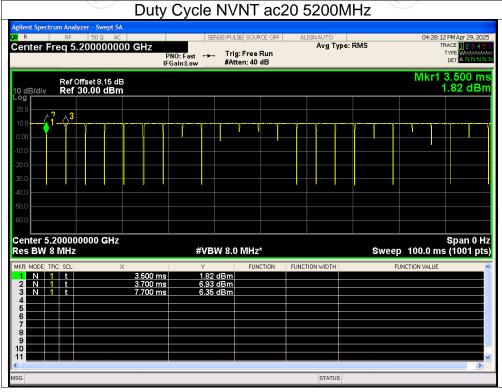


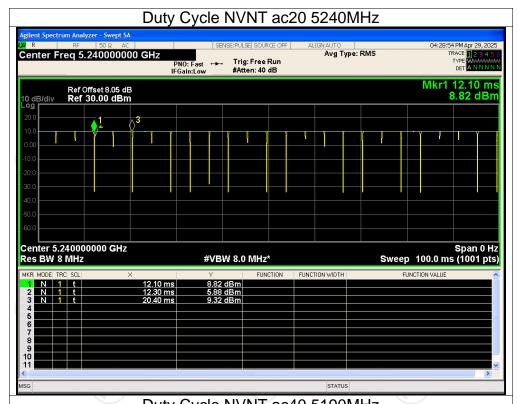


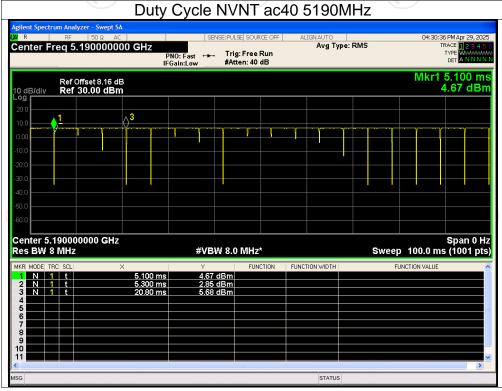


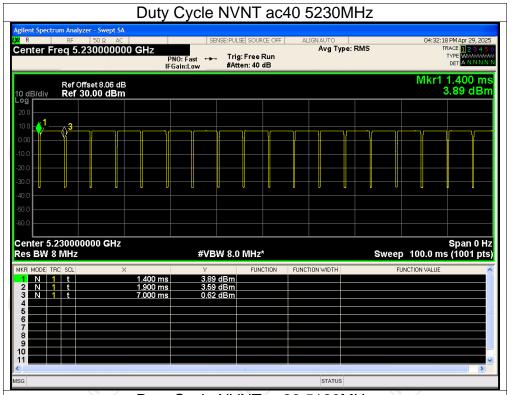


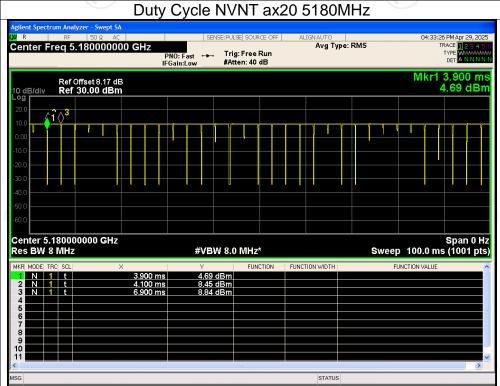


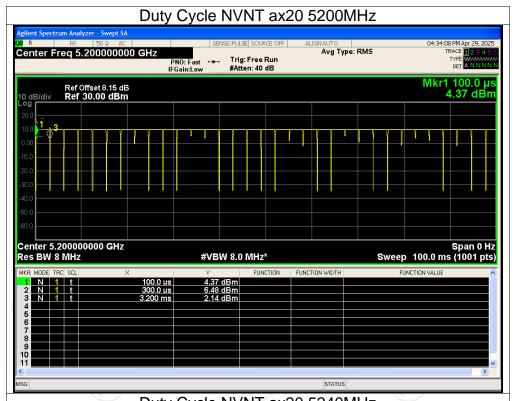


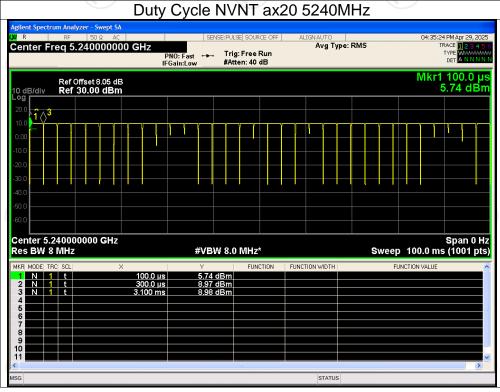


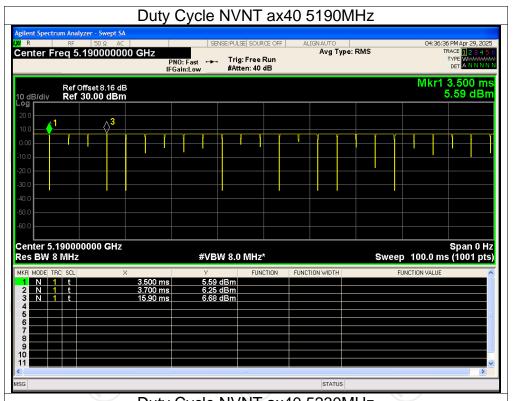


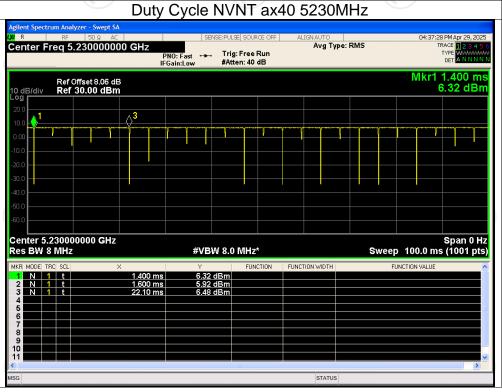


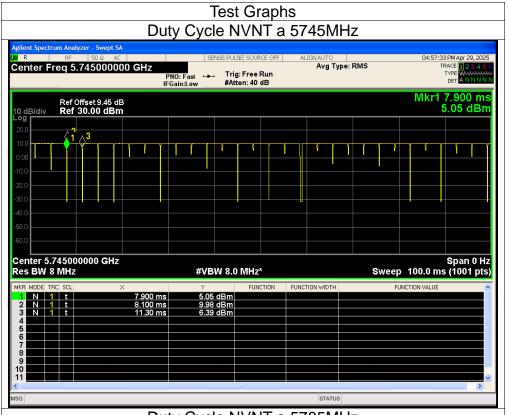


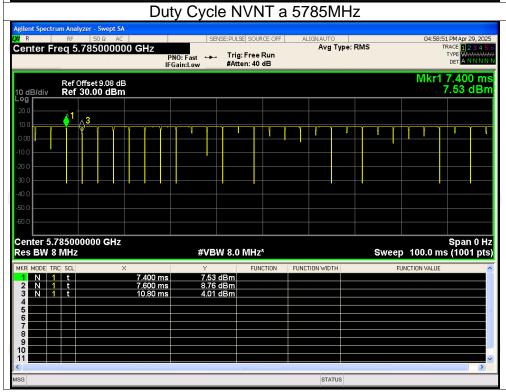


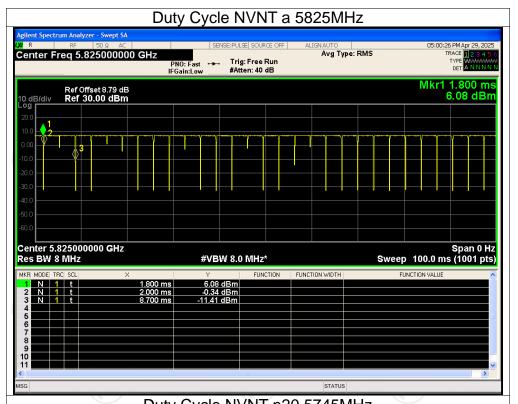


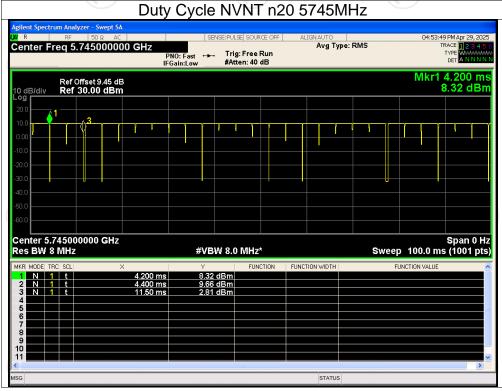


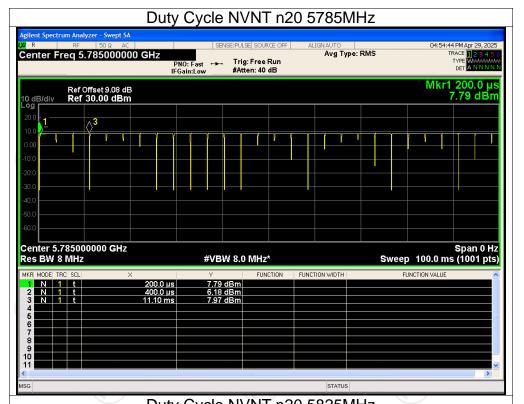


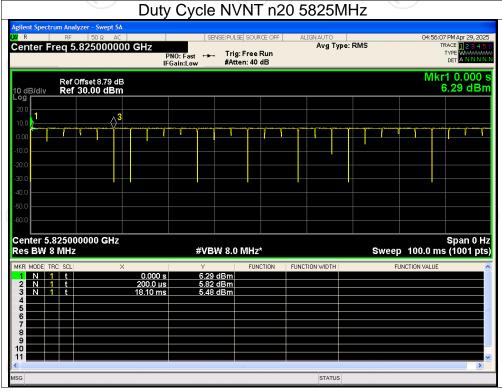


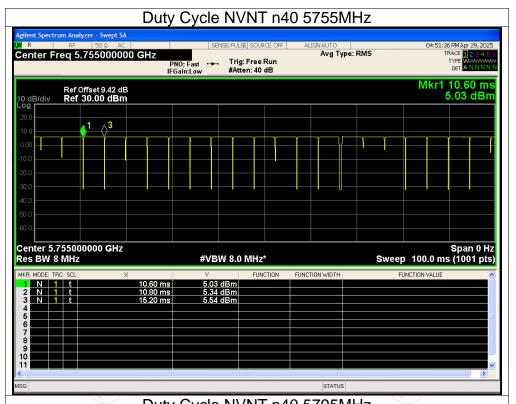


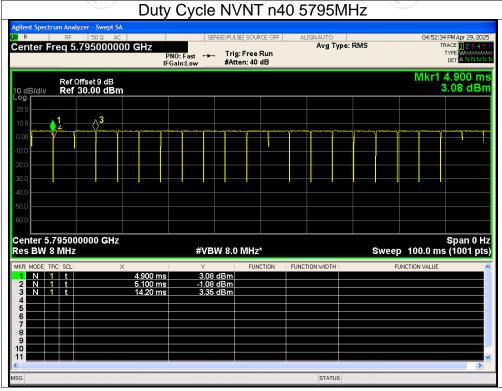


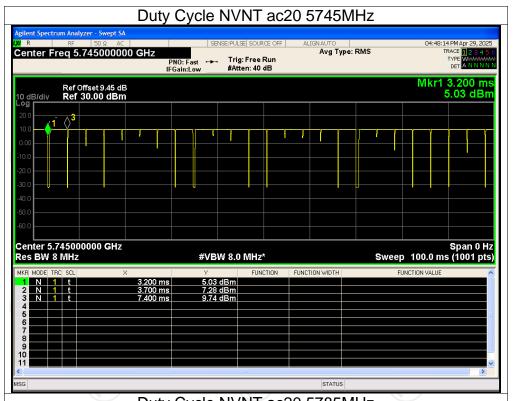


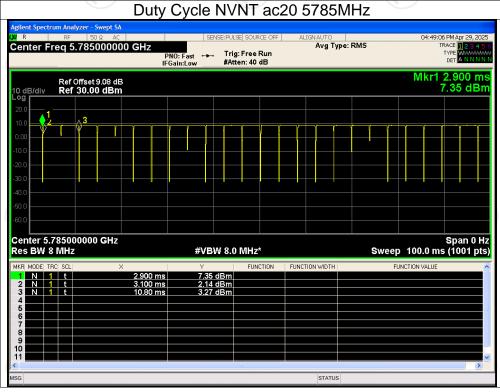


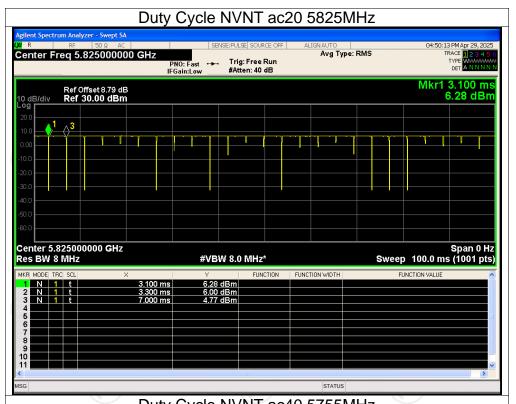


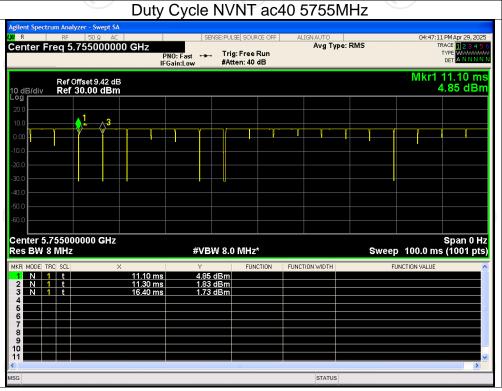


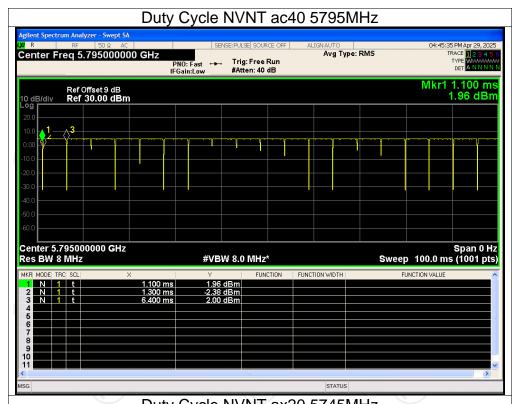


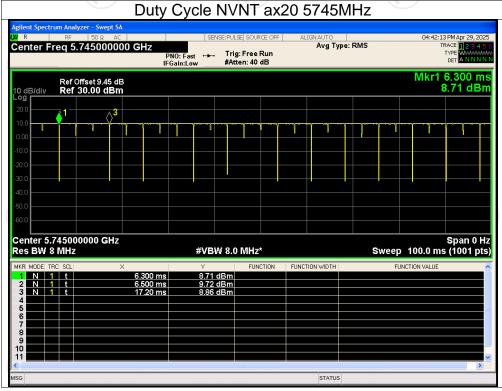


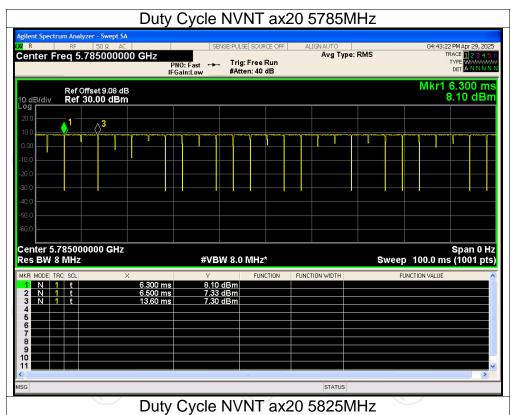


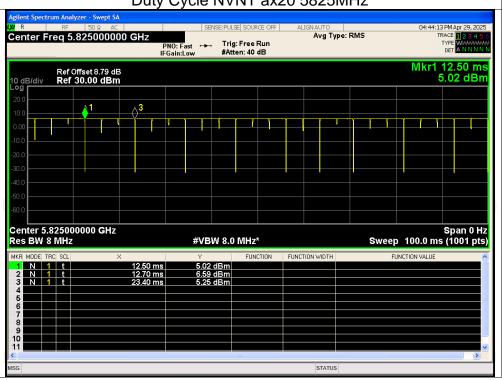


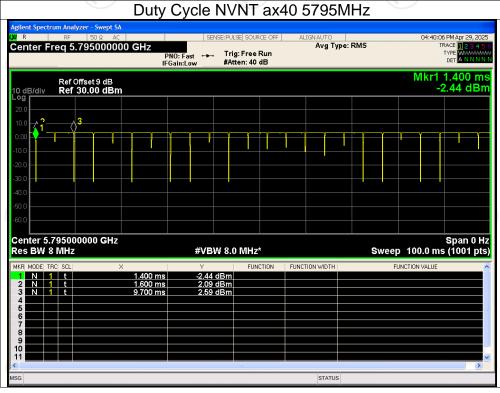


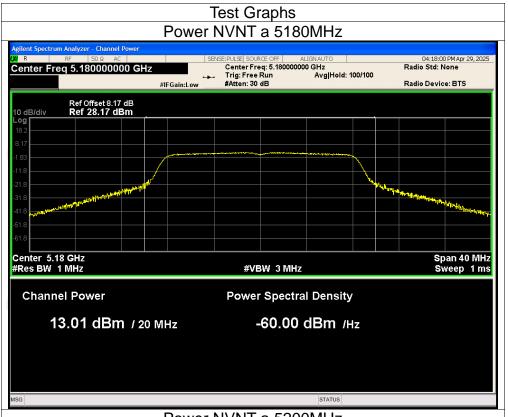


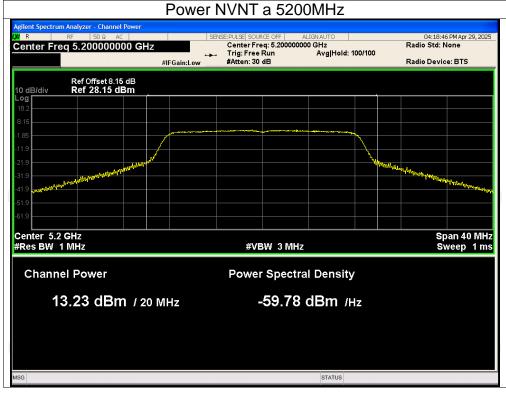




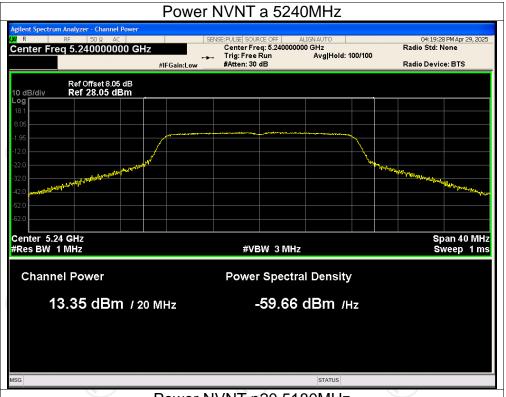


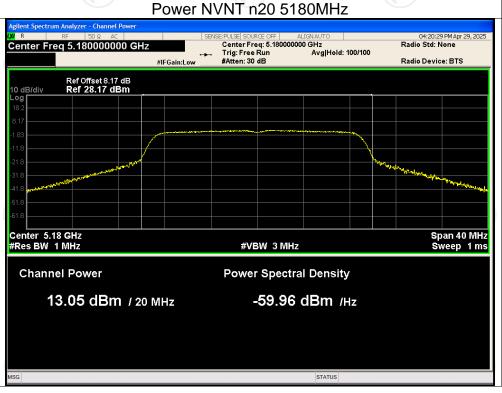


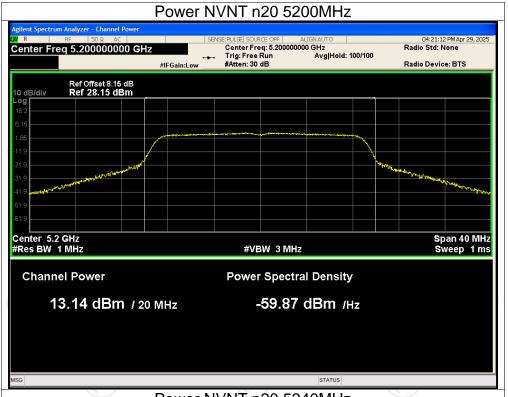


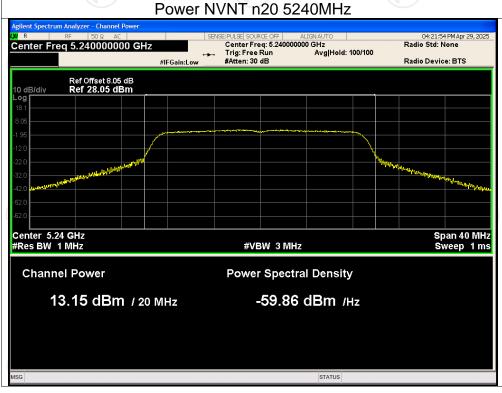

Maximum Conducted Output Power

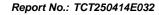
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	а	5180	13.01	0	13.01	24	Pass
NVNT	а	5200	13.23	0.09	13.32	24	Pass
NVNT	а	5240	13.35	0	13.35	24	Pass
NVNT	n20	5180	13.05	0	13.05	24	Pass
NVNT	n20	5200	13.14	0.09	13.23	24	Pass
NVNT	n20	5240	13.15	0	13.15	24	Pass
NVNT	n40	5190	13.09	0	13.09	24	Pass
NVNT	n40	5230	13.13	0	13.13	24	Pass
NVNT	ac20	5180	12.98	0	12.98	24	Pass
NVNT	ac20	5200	13.07	0	13.07	24	Pass
NVNT	ac20	5240	13.16	0	13.16	24	Pass
NVNT	ac40	5190	12.92	0	12.92	24	Pass
NVNT	ac40	5230	13.03	0.28	13.31	24	Pass
NVNT	ax20	5180	12.85	0.11	12.96	24	Pass
NVNT	ax20	5200	13.01	0.10	13.11	24	Pass
NVNT	ax20	5240	13.12	0.13	13.25	24	Pass
NVNT	ax40	5190	12.91	0	12.91	24	Pass
NVNT	ax40	5230	13.23	0	13.23	24	Pass
NVNT	а	5745	13.56	0	13.56	30	Pass
NVNT	а	5785	12.03	0	12.03	30	Pass
NVNT	a	5825	10.09	0.11	10.20	30	Pass
NVNT	n20	5745	13.59	0	13.59	30	Pass
NVNT	n20	5785	12.08	0	12.08	30	Pass
NVNT	n20	5825	10.22	0	10.22	30	Pass
NVNT	n40	5755	13.17	0	13.17	30	Pass
NVNT	n40	5795	11.64	0	11.64	30	Pass
NVNT	ac20	5745	13.48	0.11	13.59	30	Pass
NVNT	ac20	5785	12.15	0.09	12.24	30	Pass
NVNT	ac20	5825	10.31	0	10.31	30	Pass
NVNT	ac40	5755	13.26	0	13.26	30	Pass
NVNT	ac40	5795	11.65	0	11.65	30	Pass
NVNT	ax20	5745	13.65	0	13.65	30	Pass
NVNT	ax20	5785	12.19	0	12.19	30	Pass
NVNT	ax20	5825	10.24	0	10.24	30	Pass
NVNT	ax40	5755	12.71	0.10	12.81	30	Pass
NVNT	ax40	5795	10.19	0	10.19	30	Pass

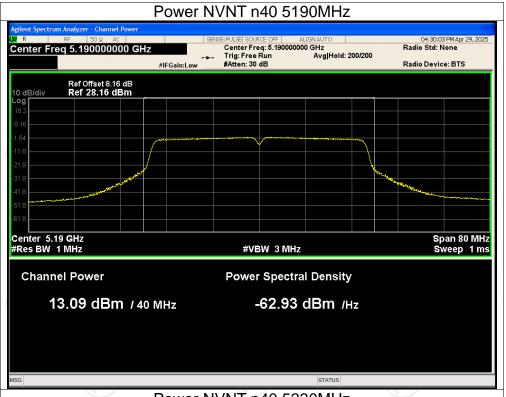


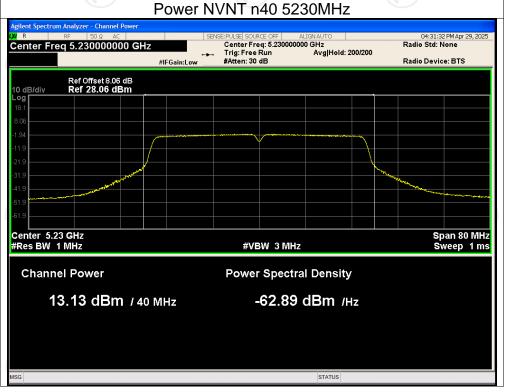


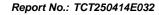


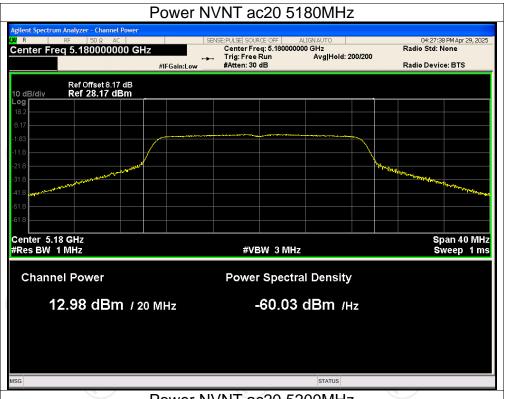


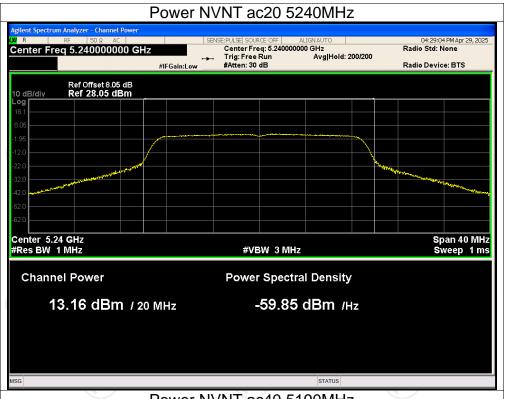


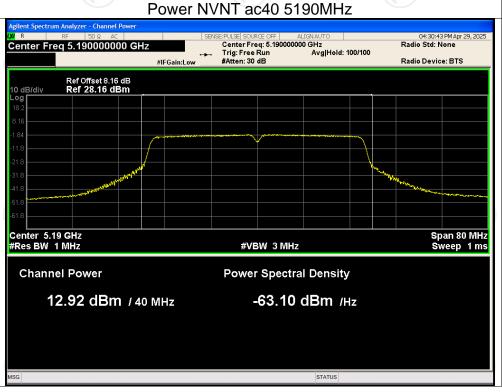


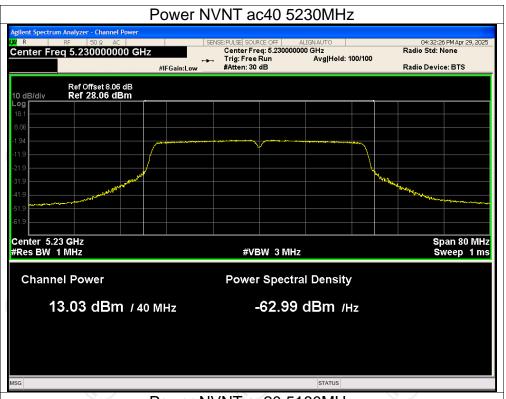


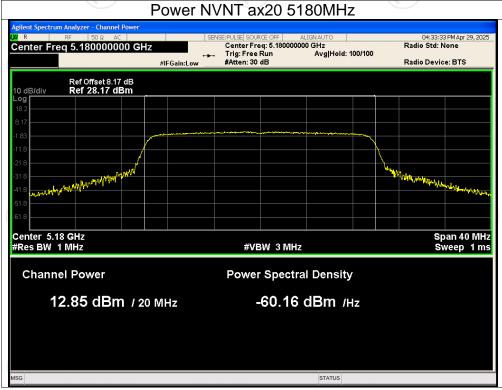


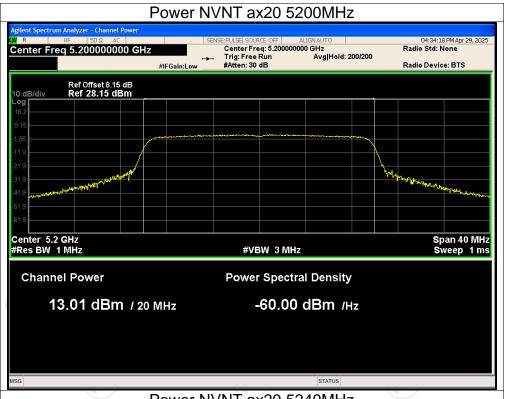


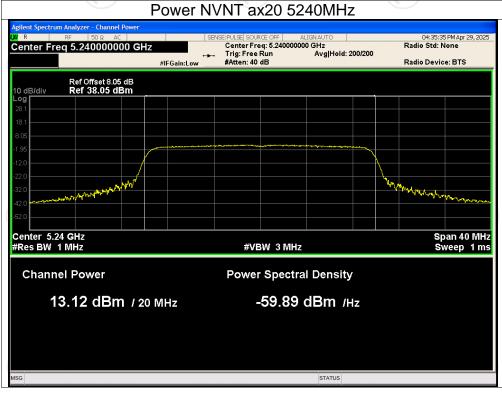


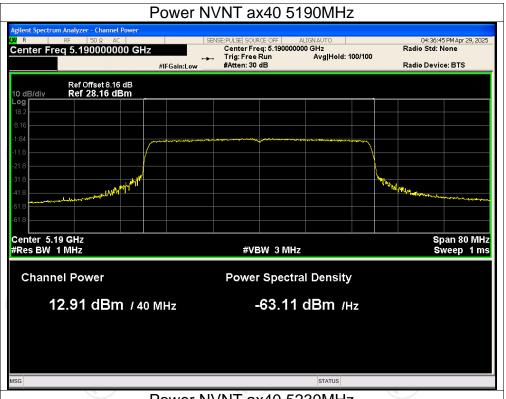


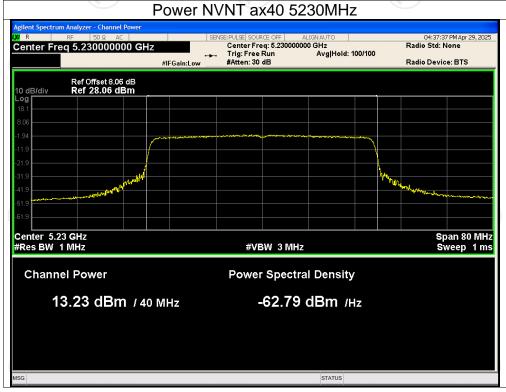


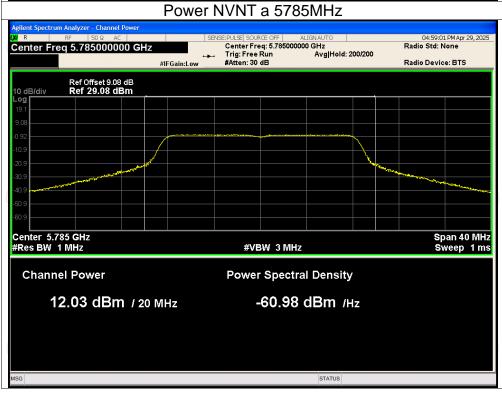


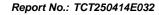


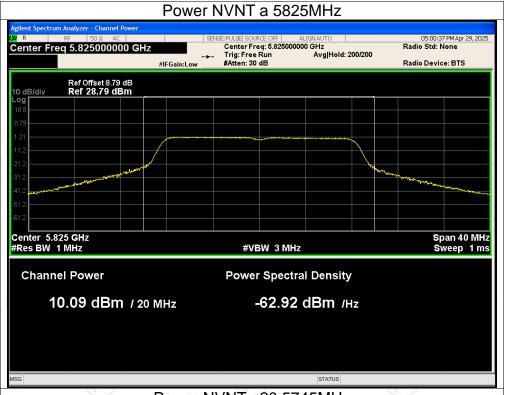


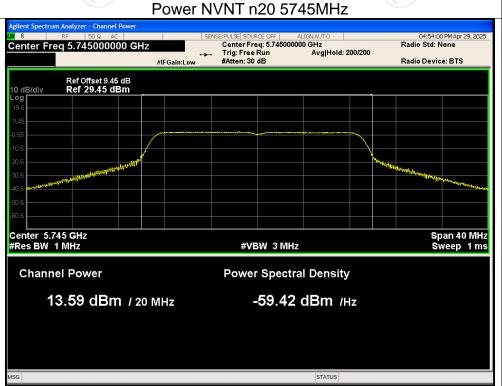


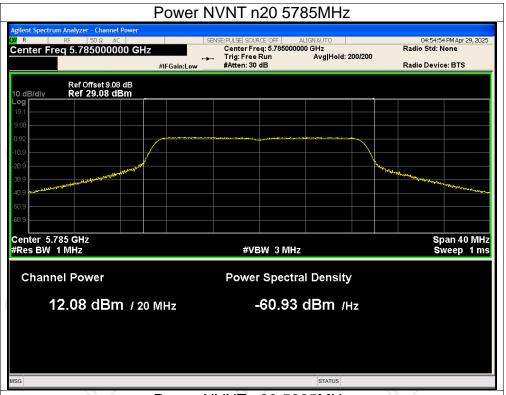


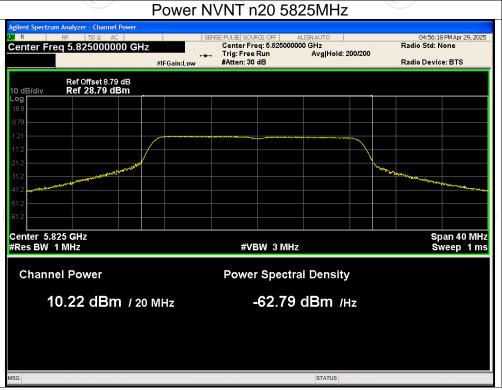


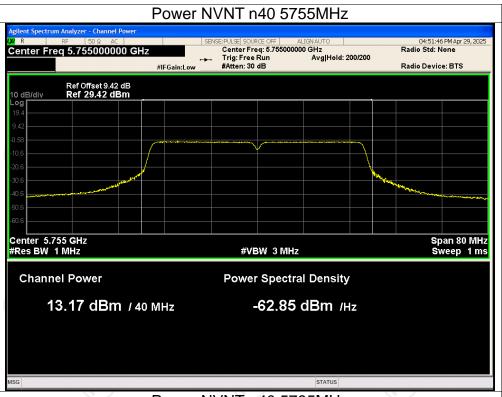


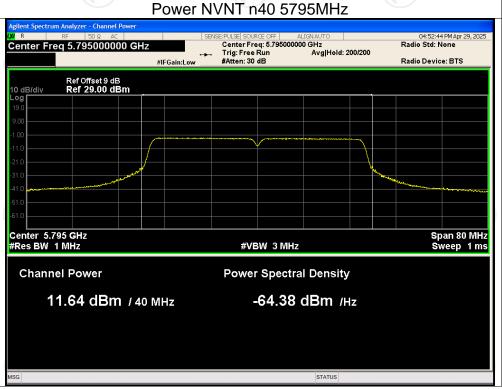


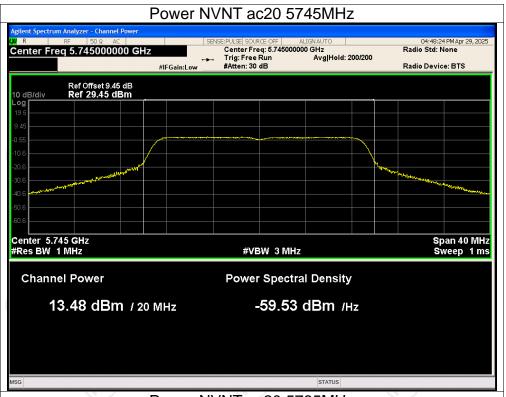


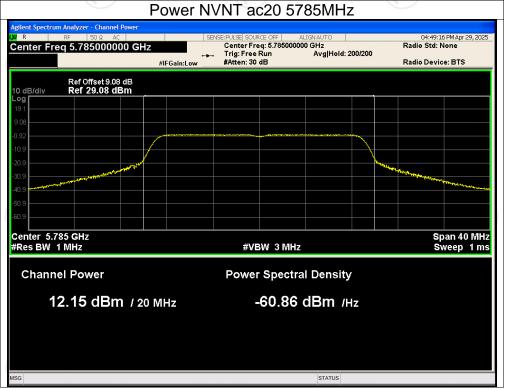


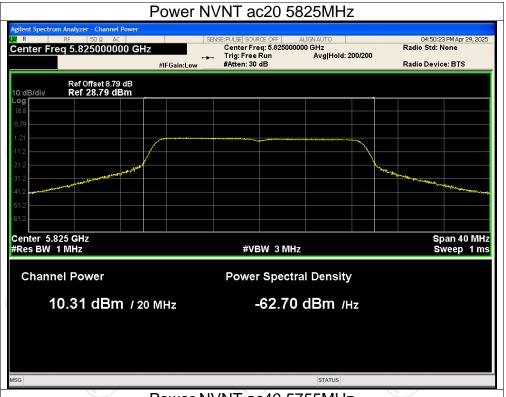


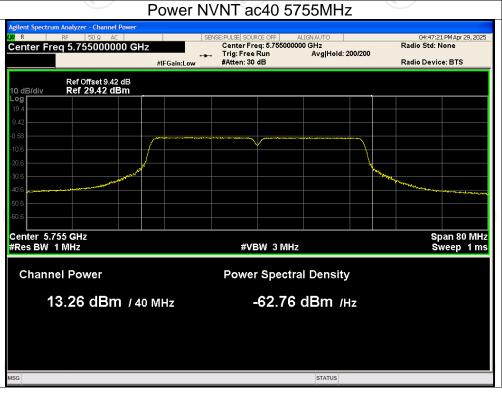


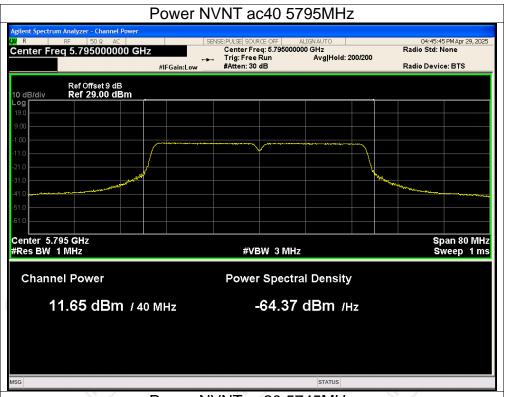


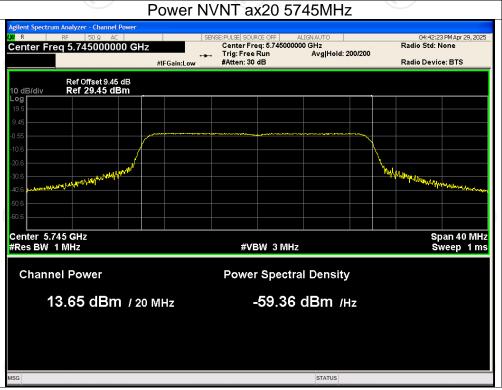


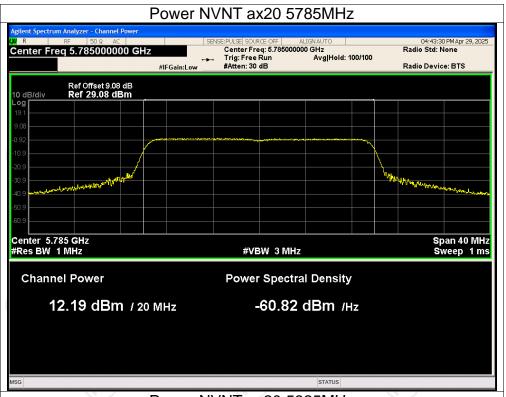


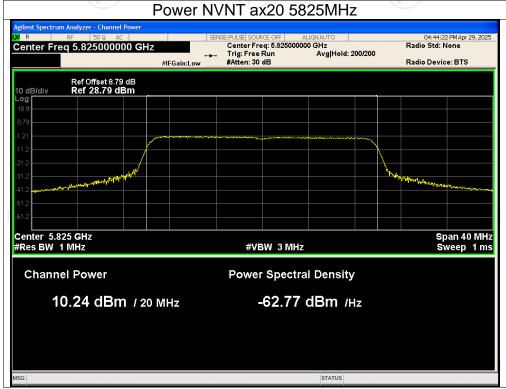


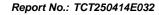


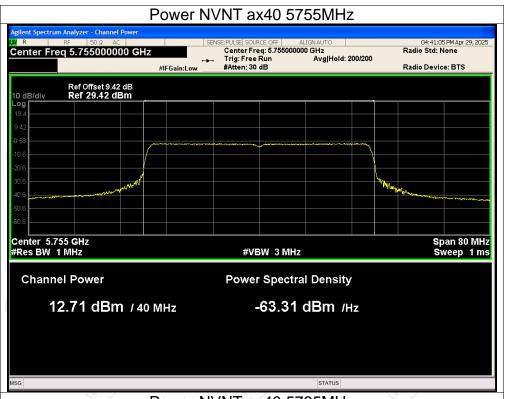


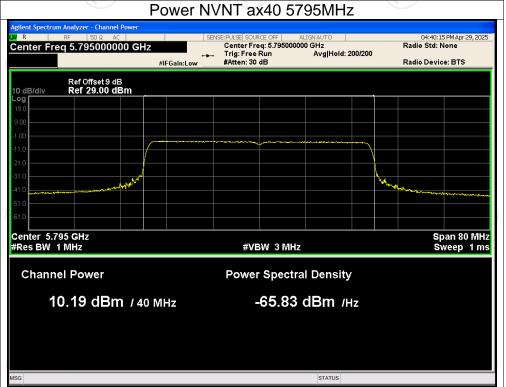




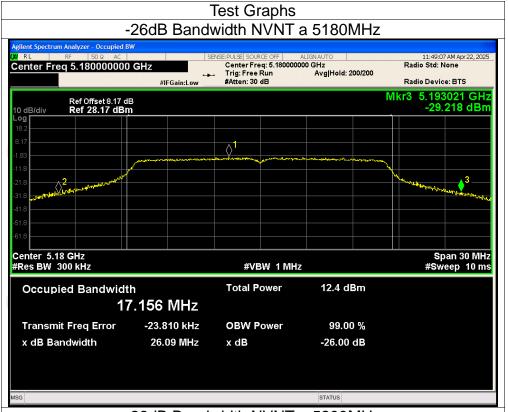








Report No.: TCT250414E032


-26dB Bandwidth

Condition	Mode	Frequency	-26 dB	Verdict
Condition	Mode	(MHz)	Bandwidth (MHz)	veralet
NVNT	a	5180	26.089	Pass
NVNT	а	5200	26.553	Pass
NVNT	а	5240	25.764	Pass
NVNT	n20	5180	27.829	Pass
NVNT	n20	5200	27.126	Pass
NVNT	n20	5240	27.571	Pass
NVNT	n40	5190	47.915	Pass
NVNT	n40	5230	47.456	Pass
NVNT	ac20	5180	26.895	Pass
NVNT	ac20	5200	26.828	Pass
NVNT	ac20	5240	28.009	Pass
NVNT	ac40	5190	47.840	Pass
NVNT	ac40	5230	49.040	Pass
NVNT	ax20	5180	25.847	Pass
NVNT	ax20	5200	25.572	Pass
NVNT	ax20	5240	24.883	Pass
NVNT	ax40	5190	46.233	Pass
NVNT	ax40	5230	44.408	Pass

