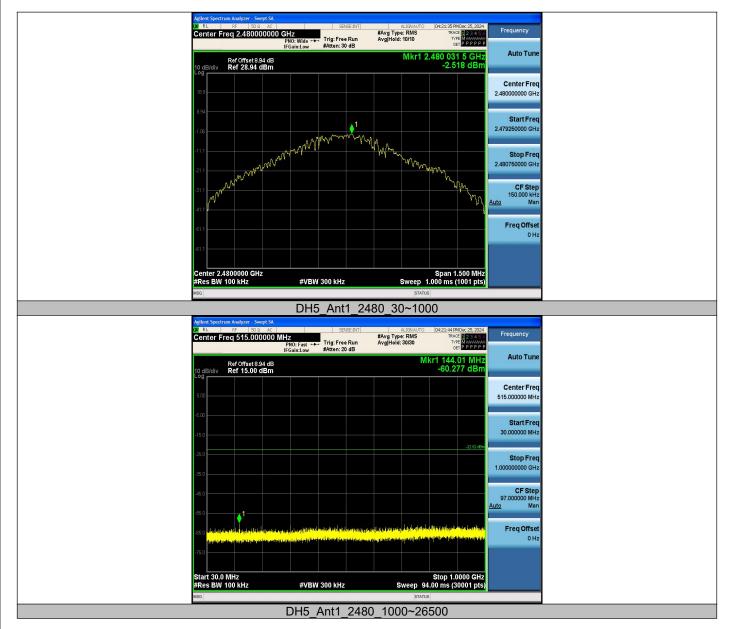


DH5_Ant1_2402_0~Reference Allent Spectrum Andyzer - Swedt SA Center Freq 2.402000000 GHz PRO: Wide ++ Trig: Free Run #Avg Type: RNS Reference PRO: Wide ++ Trig: Free Run #Avg Type: RNS Reference PRO: Wide ++ Trig: Free Run #Avg Type: RNS Reference PRO: Wide ++ Trig: Free Run #Avg Type: RNS Reference Center Freq 2.402000000 GHz 2.402000000 GHz 2.402000000 GHz 2.402000000 GHz



Report No. LP24120045C10-01 page 46 of 73



Report No. LP24120045C10-01 page 47 of 73

Report No. LP24120045C10-01 page 48 of 73

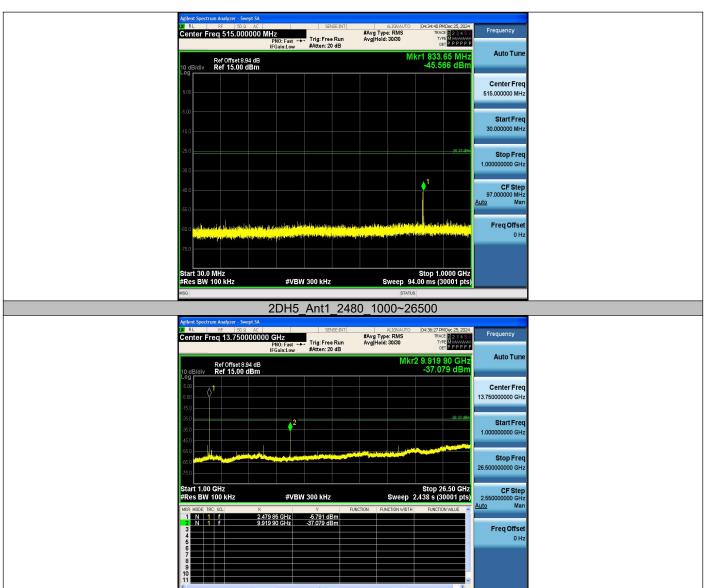


Report No. LP24120045C10-01 page 49 of 73

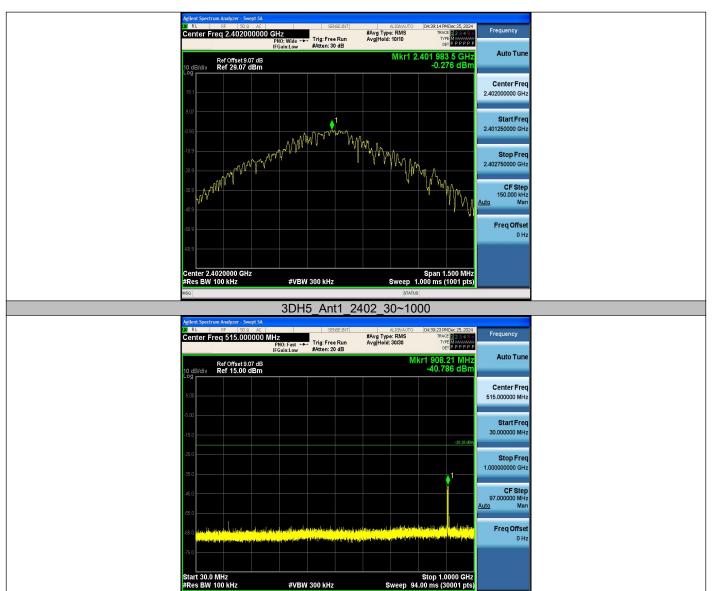
Report No. LP24120045C10-01 page 50 of 73

2DH5 Ant1 2441 0~Reference

Report No. LP24120045C10-01 page 51 of 73



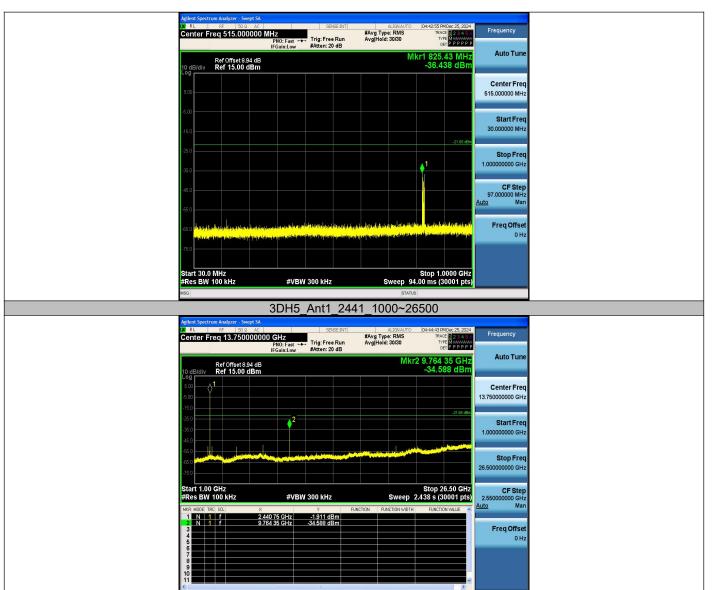
Report No. LP24120045C10-01 page 52 of 73


Report No. LP24120045C10-01 page 53 of 73

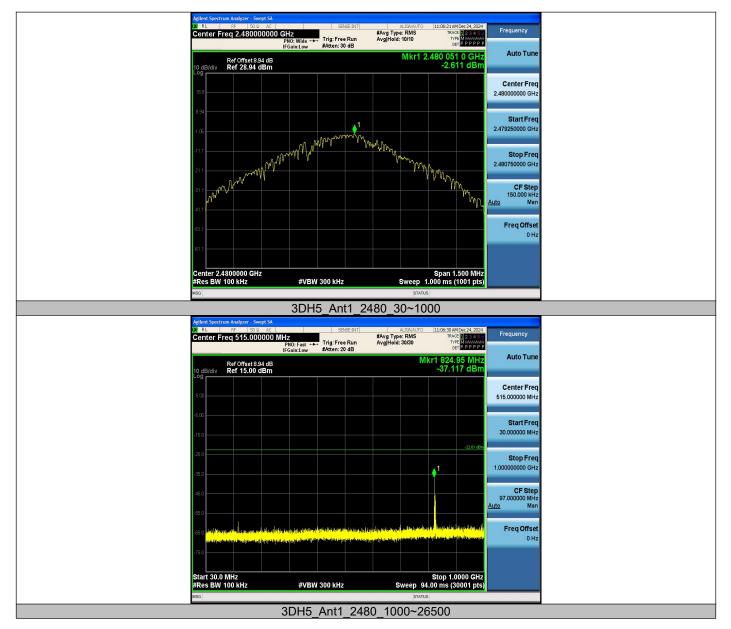
3DH5 Ant1 2402 0~Reference

Report No. LP24120045C10-01 page 54 of 73

3DH5 Ant1 2402 1000~26500



Report No. LP24120045C10-01 page 55 of 73


Report No. LP24120045C10-01 page 56 of 73

3DH5 Ant1 2480 0~Reference

Report No. LP24120045C10-01 page 57 of 73

Report No. LP24120045C10-01 page 58 of 73

	RF 50 Ω AC		SENSE:IN		ALIGNAUTO Type: RMS	11:08:17 AM Dec 2 TRACE	
Center Fred	q 13.75000000	PNO: Fast ↔ IEGain:Low	Trig: Free Rur #Atten: 20 dB	n Avgir	fold: 30/30	TYPE MIN DET P P	AMAMAM
	Ref Offset 8.94 dB Ref 15.00 dBm	II GUILLOW			Mkr	2 9.919 90 -36.284 c	
							Center Fr
-5.00							13.750000000 G
-15.0						-2	.61 dBm
-25.0							Start Fr 1.000000000 G
-45.0							1.00000000 G
-55.0	a			وروا فالمتحدثين		No. of Concession, Name	Stop Fr
-65.0							26.50000000 G
Start 1.00 G	H-1					Stop 26.50	
#Res BW 10		#VBV	V 300 kHz		Sweep 2	2.438 s (30001	pts) 2.550000000 G
#Res DW TO	SCL X		Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALU	JE Auto M
MKR MODE TRC !		0.05 CU-	1 001 dBm				
MKR MODE TRC 1 1 N 1 2 N 1	f 2.47	9 85 GHz 9 90 GHz	-1.991 dBm -36.284 dBm				Freq Offs
MKR MODE TRC 1 1 N 1 2 N 1 3 4	f 2.47						Freq Offs 0
MKR MODE TRC 5 1 N 1 2 N 1 3 4 5 5 6	f 2.47						
MKR MODE TRC 9	f 2.47						
MKR MODE TRC : 1 N 1 2 N 1 3 4 5 6 7 8	f 2.47						

4.7. RADIATED SPURIOUS EMISSION

4.7.1. Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02

4.7.2. Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

	Part 15.205, Restricted t	Danus	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part15.205, Restricted bands

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted	Field Strength	Field Strength	Measurement
Frequency(MHz)	(µV/m)	(dBµV/m)	Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

4.7.3. Test Configuration

Test according to clause 3.2 radio frequency test setup 2

4.7.4. Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings: For Above 1GHz: The EUT was placed on a turn table which is 1.5m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 1 MHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 1GHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 100 kHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 30MHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 9kHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 150KHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 200Hz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

■ Spurious Emission below 30MHz (9KHz to 30MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	H/V

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

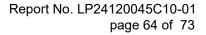
■ Spurious Emission Above 1GHz (1GHz to 25GHz)

Bluetooth (GFSK, π /4-DQPSK, 8DPSK) mode have been tested, and the worst result(π /4-DQPSK) was report as below:

Test mo	de:	π/4-DQPSK			Frequency:			hannel 0: 24	02MHz	
Frequency	Meter Readir		Factor	Emission Level		Limits	Margin		Detector	Ant. Pol.
(MHz)	(dBµV	′)	(dB)	(dBµ∖	//m)	(dBµV/m)	(d	B)	Туре	H/V
4808	43.61		-1.01	42.	6	74	-3	1.4	peak	V
4825	31.78	3	-1.02	30.7	'6	54	-23	.24	AVG	V
7086	40.23	3	5.73	45.9	45.96 74 -28.04 peak		peak	V		
7103	30.05	5	5.72	35.77		54	-18.23		AVG	V
8735	29.64	ŀ	6.68	36.3	32	54	-17.68		AVG	V
8888	40.56	6	6.99	47.5	5	74 -2		6.45	peak	V
4808	50.53	3	-1.01	49.5	52	74 -24		.48	peak	Н
4825	37.33	3	-1.02	36.3	81	54	-17	.69	AVG	Н
7103	41.48	3	5.72	47.	2	74	-20	6.8	peak	Н
7103	30.22	2	5.72	35.9	94	54	-18	6.06	AVG	Н
8684	41.54	L I	6.57	48.1	1	74	-25	.89	peak	Н
8718	29.72	2	6.65	36.3	37	54	-17	.63	AVG	Н

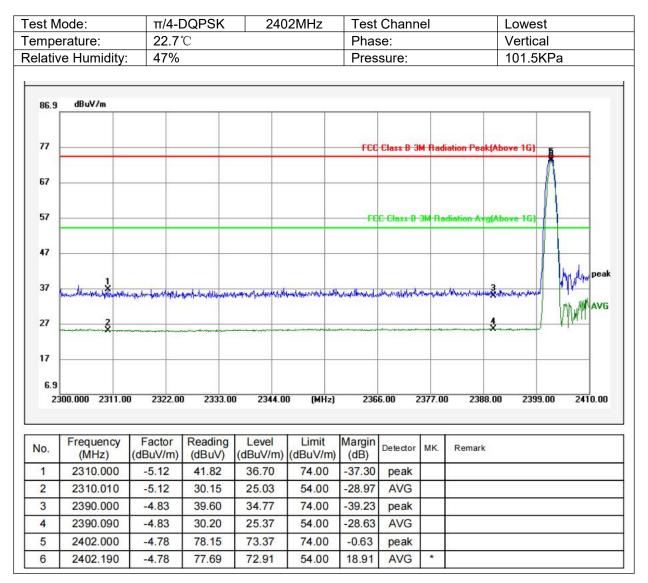
Report No. LP24120045C10-01 page 62 of 73

Test mo	de:	π/4-DQPS	π/4-DQPSK		requency:		Ch	annel 39: 24	41MHz
Frequency	Meter Reading	Factor	Emiss Lev		Limits	М	argin	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµ∖	//m)	(dBµV/m)	((dB)	Туре	H/V
4876	50.17	-1.01	49.1	16	74	-2	24.84	peak	V
4893	38.11	-1	37.1	11	54	-1	6.89	AVG	V
7103	41.53	5.72	47.25		74	-2	26.75	peak	V
7103	30.08	5.72	35.	8	54	-	18.2	AVG	V
9449	40.77	7.49	48.2	26	74	-2	25.74	peak	V
9500	29.65	7.51	37.1	16	54	-1	6.84	AVG	V
4876	50.14	-1.01	49.1	13	74	-2	24.87	peak	Н
4893	37.93	-1	36.9	93	54	-1	7.07	AVG	Н
7103	40.45	5.72	46.1	17	74	-2	27.83	peak	Н
7103	30.25	5.72	35.9	97	54	-1	8.03	AVG	Н
9415	40.58	7.46	48.0)4	74	-2	25.96	peak	Н
9500	29.63	7.51	37.1	14	54	-1	6.86	AVG	Н

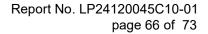


Test mo	de:	π/4-DQPSK			requency:	Ch	Channel 78: 2480MHz		
Frequency	Meter Reading	Factor	Emiss Lev		Limits	Margin	Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµ∖	//m)	(dBµV/m)	(dB)	Detector Type	H/V	
4961	48.34	-1	47.3	34	74	-26.66	peak	V	
4978	36.16	-1.01	35.1	15	54	-18.85	AVG	V	
7103	30	5.72	35.7	72	54	-18.28	AVG	V	
7120	41.21	5.72	46.9	93	74	-27.07	peak	V	
9483	40.84	7.51	48.3	35	74	-25.65	peak	V	
9500	29.74	7.51	37.2	25	54	-16.75	AVG	V	
4961	51.73	-1	50.7	73	74	-23.27	peak	Н	
4978	39.22	-1.01	38.2	21	54	-15.79	AVG	Н	
7103	30.23	5.72	35.9	95	54	-18.05	AVG	Н	
7120	41.21	5.72	46.9	93	74	-27.07	peak	Н	
9347	41.13	7.42	48.5	55	74	-25.45	peak	Н	
9466	29.42	7.49	36.9	91	54	-17.09	AVG	Н	

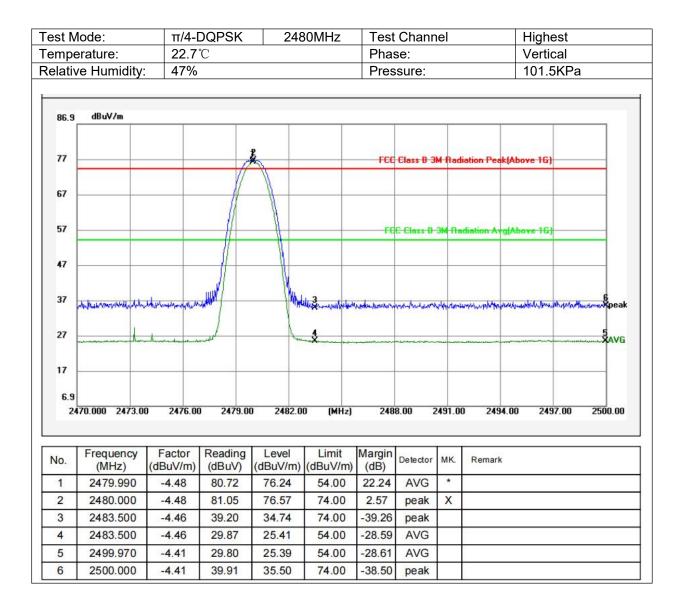
Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

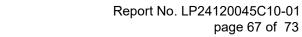

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



Spurious Emission in Restricted Band 2300-2390MHz and 2483.5-2500MHz Bluetooth (GFSK, π/4-DQPSK, 8DPSK, Hopping) mode have been tested, and the worst result(π/4-DQPSK) was report as below:





est M	lode:	π/4-[DQPSK	240	2MHz	Test	Chann	el		Lowes	st	
empe	erature:	22.7	C			Phas	se:			Horizo	ontal	
elativ	e Humidity:	47%				Pres	sure:			101.5	KPa	
86.9	dBuV/m											1
											5	
77						FEE	Class B 3	M Rad	iation Peak(At	ove 1G)	Å	
			-								11	1
67								_		1		
57						FC	C Class D	ЭМПа	diation Avg(Al	bove 1G)		
47							-	-				
											Warmach	peak
37	June Marshan Marshan	in lower Mitch	ralthaddina	and the second and the second second	w. w. w.	markan	Ja Markala Ma	mulanete	Malanin Jum Ber	turn to provide the	When And A	
						1.00	i cuiti					
27	3								4		Wentherative	AVG
17								_				
6.9	300.000 2311.00	2322.0	0 2333.0	0 2344.0	D (MHz)	236	6.00 2	2377.0	0 2388.00	2399	00 241	0.00
23	00.000 2511.00	2322.0	5 2353.0	0 2344.0	о (мпг)	230	0.00 2	.577.0	0 2500.00	2000	.00 24	0.00
			21	1 <u>49</u> A								
No.	Frequency	Factor	Reading	Level	Limit	Margin	Detector	MK.	Remark			
1	(MHz) 2310.000	(dBuV/m) -5.12	(dBuV) 41.82	(dBuV/m) 36.70	(dBuV/m) 74.00		pook					
2	2310.000	-5.12	30.15	25.03	54.00	-37.30	peak AVG	<u> </u>				
2	2310.010	-5.12	40.16	35.33	74.00	-28.97	peak					
3 4	2390.000	-4.83	30.46	25.63	54.00	-36.07	AVG		-			
4	2390.200	-4.03	82.46	77.68	74.00	3.68		x				
5	2402.000	-4.78	82.46	77.25	54.00	2010/001/0100	peak AVG	×				
0	2402.190	-4.70	02.03	11.25	54.00	23.25	AVG					

page 67 of 73

No.

1

2

3

4

5

6

6.9

2470.000 2473.00

Frequency

(MHz)

2479.990

2480.000

2483.500

2483.500

2500.000

2500.000

2476.00

Factor

(dBuV/m)

-4.48

-4.48

-4.46

-4.46

-4.41

-4.41

st Mode:	π/4-DQPSK 248	80MHz Test Channel	Highest
emperature:	22.7 ℃	Phase:	Horizontal
elative Humidity:	47%	Pressure:	101.5KPa
86.9 dBuV/m			
	E		
77		FCC Class D 3M Radiation	n Peak(Above 1G)
67			
57			
57		FCC Class D 3M Radiatio	on Avg(Above 11)
47			
	M W	<u>4.</u>	
37 month and white the shares	not method man	Redrowskind war provide and adding	wanter with the state of the st
27	when the second	man have a have have	SAVG
17			

2488.00

Detector

AVG

peak

peak

AVG

peak

AVG

Margin

(dB)

26.88

7.19

-37.22

-28.04

-37.56

-28.21

2491.00

MK.

*

Х

2494.00

Remark

2497.00

2500.00

Noto:	(1) All Readings are Peak Value	(VBW=3MHz) and Average Value (VBW=10Hz).
nou.		

(MHz)

Limit

(dBuV/m)

54.00

74.00

74.00

54.00

74.00

54.00

(2) Emission Level= Reading Level+Correct Factor.

(3) Correct Factor= Ant_F + Cab_L - Preamp

2479.00

Reading

(dBuV)

85.36

85.67

41.24

30.42

40.85

30.20

2482.00

Level

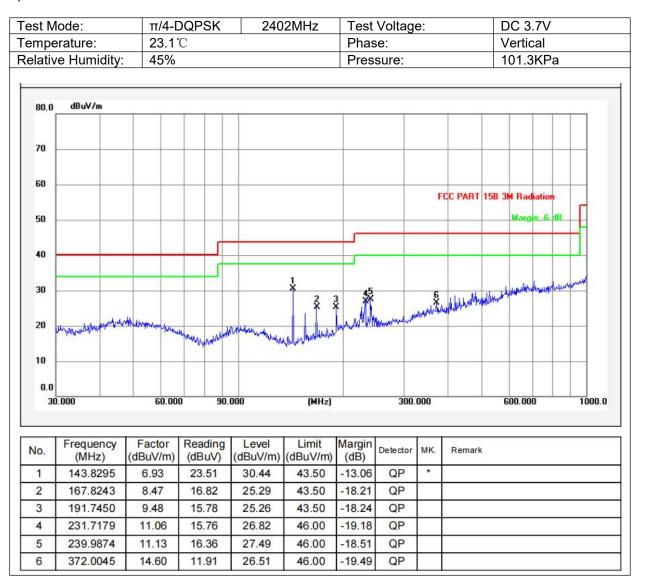
(dBuV/m)

80.88

81.19

36.78

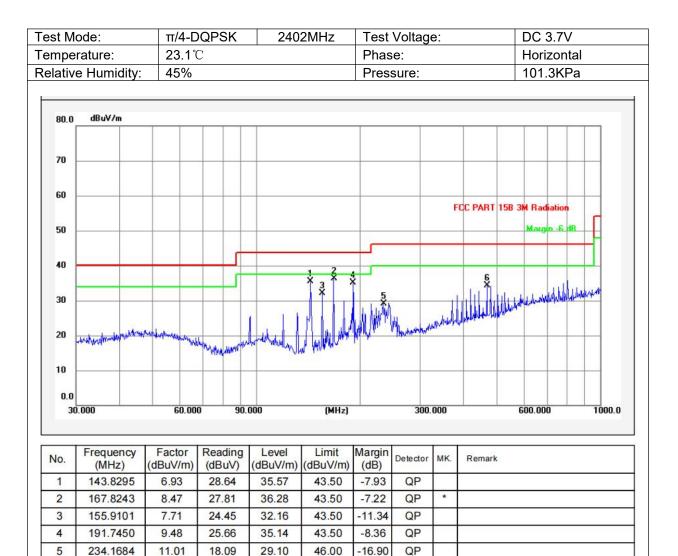
25.96


36.44

25.79

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Spurious Emission below 1GHz (30MHz to 1GHz) Bluetooth (GFSK, π/4-DQPSK, 8DPSK) mode have been tested, and the worst result(π/4-DQPSK) was report as below:


468.8762

6

15.77

18.58

34.35

46.00

-11.65

QP

4.8. CONDUCTED EMISSION TEST

4.8.1. Applicable Standard

According to FCC Part 15.207(a)

4.8.2. Conformance Limit

Conducted Emission Limit					
Frequency(MHz)	Quasi-peak	Average			
0.15-0.5	66-56	56-46			
0.5-5.0	56	46			
5.0-30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Remark: Test results were obtained from the following equation:

Measurement (dB μ V) = LISN Factor (dB) + Cable Loss (dB) + Reading (dB μ V) Margin (dB) = Measurement (dB μ V) - Limit (dB μ V)

4.8.3. Test Configuration

Test according to clause 3.3 conducted emission test setup

4.8.4. Test Procedure

The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

Test Results :PASS

Bluetooth (GFSK, π /4-DQPSK, 8DPSK) mode have been tested, and the worst result(π /4-DQPSK) was report as below:

10.54

10.54

10.56

10.56

9

10

11 12 1.2391

1.2391

1.4417

1.4417

20.03

10.26

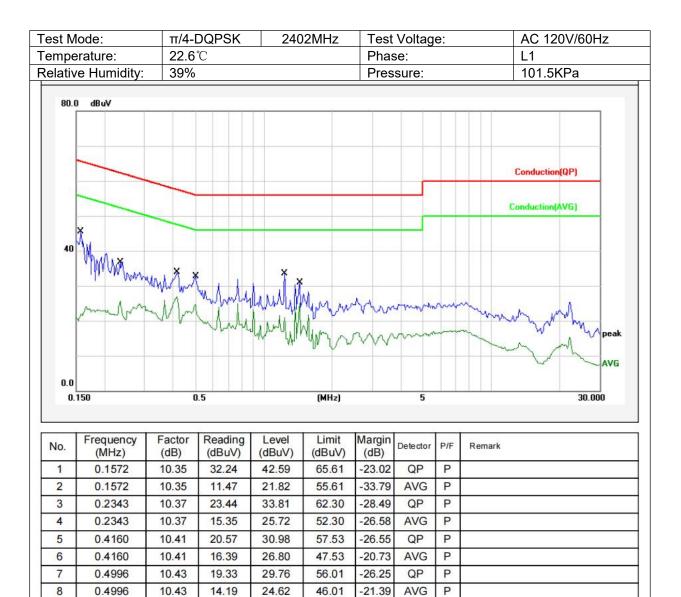
17.27

14.64

30.57

20.80

27.83


25.20

56.00

46.00

56.00

46.00

QP

AVG

QP

AVG

-25.43

-25.20

-28.17

-20.80

Ρ

Ρ

Ρ

Ρ

LEPONT 力邦检测

10

11

12

0.9010

1.4416

1.4416

10.52

10.56

10.56

12.99

16.95

13.44

23.51

27.51

24.00

46.00

56.00

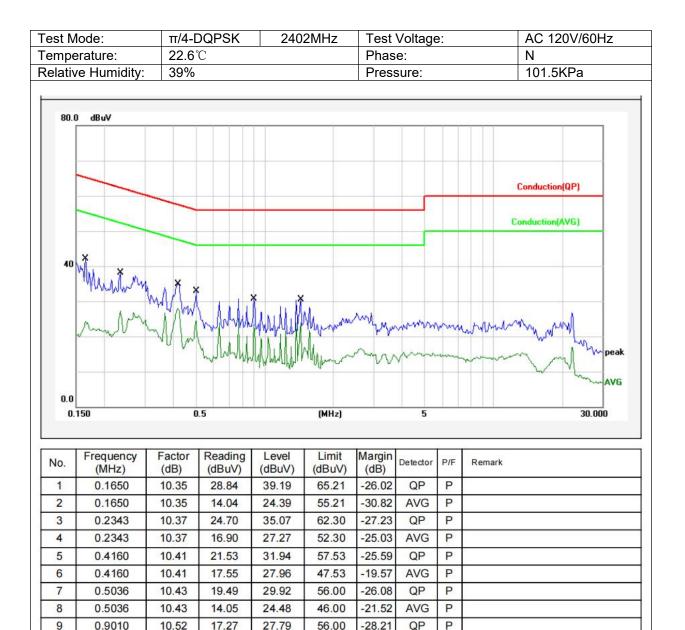
46.00

22.49

-28.49

-22.00

AVG


QP

AVG

Ρ

Ρ

P

4.9. ANTENNA APPLICATION

4.9.1. Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.9.2. Result

PASS.

The EUT has 1 antenna: Chip Antenna for BT with classic mode, the gain is 2.7dBi;

Antenna use a permanently attached antenna which is not replaceable.

Not using a standard antenna jack or electrical connector for antenna replacement

The antenna has to be professionally installed (please provide method of installation) Note: which in accordance to section 15.203, please refer to the internal photos.

----- END OF REPORT ------