No. FM23-0*** Model Name ATW-T1801

ATW-T1801 Adjustment Procedure

1. Required Equipment

a. Audio Signal Generator : Leader LAG-126 b. Oscilloscope : Kenwood CS-4135 c. Spectrum Analyzer : Advantest R3361A d. Modulation Analyzer : Anritsu MS616B e. Noise Meter : National VP-9680A f. DC Power Supply : Kenwood PA18-1.2A g. Multi Meter : Agilent 34401A

h. RF Custom cable, BNC to MM121454 : Audio-Technica custom made RF cable

2. How to enter the Adjustment Mode

- 2-1 Push and hold both SW300 (SET) and SW340 (Power) together until turn the power "ON"
- 2-2 Push and hold both SW302 (UP) and SW301 (Down) together until "ADJ" appeared on LCD screen.

3. Adjustment

3-1 Frequency response

3-2-1 Spectrum Analyzer set up:

Center Frequency	668.000MHz
Frequency Span	100KHz
Counter Mode	ON

3-2-2 T1801 set up

Frequency	668.000MHz
RF HI / LOW	RF HI
AF Gain	-6DB
Lock	NO.LOC
MIC/INST	MIC
PE ON/OFF	PE ON
LMT. ON / OFF	LMT.OFF
PRESET	PRESET
QUIT	QUIT

3-2-3 Adjustment

- a. Adjust the VC300 to put main carrier signal to center of the screen on spectrum analyzer.
- b. Adjust the VR101 to set main carrier peak leading to 120.1dBuV.
- c. Using power button and switch T1801 output power setting to "RF LOW"
- d. Adjust the VR100 to set main carrier peak leading to 115dBuV.

3-2 Pilot tone deviation level

3-3-1 Spectrum Analyzer set up

Center Frequency	668.000MHz
Span	100KHz

Counter Mode	ON
DSP LINE	ON, Set it to
	20dBc below peak

3-3-2 T1801 set up

Frequency	668.000MHz
RF HI / LOW	RF HI
AF Gain	-6DB
Lock	NO.LOC
MIC/INST	MIC
PE ON/OFF	PE ON
LMT. ON / OFF	LMT.OFF
PRESET	PRESET
QUIT	QUIT

3-3-3 Adjustment

a. Adjust the VR200 to set level difference between main carrier and tone peak to 20dBc

3-3 Audio deviation level

3-4-1 Modulation Analyzer set up

Deviation Sens.	p-p /2
Range	40KHz
HPF	50Hz
LPF	3KHz
Frequency	668.000MHz

3-4-2 Audio Signal Generator set up

Signal Level	-3dB
Frequency	1KHz

3-4-3 T1801 set up

Frequency	668.000MHz
RF HI / LOW	RF HI
AF Gain	-6DB
Lock	NO.LOC
MIC/INST	MIC
PE ON/OFF	PE ON
LMT. ON / OFF	LMT.OFF
PRESET	PRESET
QUIT	QUIT

3-4-4 Adjustment

- a. Apply audio signal from the Audio Signal Generator to the CNP201
- b. Adjust the VR201 to set deviation to +/- 33KHz

4. Performance check

- 4-1 Microphone input frequency response
 - 4-1-1 Modulation Analyzer set up

Deviation Sens.	p-p /2
Range	40KHz
HPF	50Hz
LPF	20KHz
Frequency	668.000MHz

4-1-2 Noise Meter set up

Response	AVE
Weighting	WIDE

4-1-3 Audio Signal Generator set up

Level	-33dB
Frequency	1KHz

4-1-4 T1801 set up

Frequency	668.000MHz
RF HI / LOW	RF HI
AF Gain	-6DB
Lock	NO.LOC
MIC/INST	MIC
PE ON/OFF	PE ON
LMT. ON / OFF	LMT.OFF
PRESET	PRESET
QUIT	QUIT

4-1-5 Measurement procedure

- a. Record the Noise Meter reading and set it as reference (0dB).
- b. Turn the Audio Signal Generator frequency to 100Hz.
- c. Read the Noise meter and confirm that level difference from 1KHz reference not exceeding -1 +/- 1dB of range.
- d. Turn the Audio Signal Generator frequency to 10KHz.
- e. Read the Noise meter and confirm that level difference from 1KHz reference not exceeding +8 +/- 1dB of range.

4-2 Guitar input frequency response

4-2-1

Deviation Sens.	p-p /2
Range	40KHz
HPF	50Hz
LPF	20KHz
Frequency	668.000MHz

4-2-2 Noise Meter set up.

Response	AVE
Weighting	WIDE

4-2-3 Audio Signal Generator set up

Level	-31dB
Frequency	1KHz

4-2-4 T1801 set up

Frequency	668.000MHz
RF HI / LOW	RF HI
AF Gain	-6DB
Lock	NO.LOC
MIC/INST	INST
PE ON/OFF	PE ON
LMT. ON / OFF	LMT.OFF
PRESET	PRESET
QUIT	QUIT

4-2-5 Measurement procedure

- a. Record the Noise Meter reading and set it as reference (0dB).
- b. Turn the Audio Signal Generator frequency to 100Hz
- c. Read the Noise meter and confirm that level difference from 1KHz reference not exceeding $0 + -1 \, dB$ of range.
- d. Turn the Audio Signal Generator frequency to 10KHz.
- e. Read the Noise meter and confirm that level difference from 1KHz reference not exceeding +8 +/- 1dB of range.

4-3 Current consumption

- a. Set RF power to Hi
- b. Measure the current consumption by the Multi Meter and confirm that it not exceeded 210mA.
- c. Turn the RF power to Low
- d. Measure the current consumption by Multi Meter and confirm that it not exceeded 190mA