Att	30 d	IB SWT	9.7 ms 🕯	VBW 300 kHz	Mode Auto Sw	еер		
1Pk Max								
30 dBm—		-			M1[1]	е е	-41.19 dBm 888.40 MHz	
20 dBm—						-		
10 dBm—		-						
0 dBm						_		
-10 dBm—	01 -13.000	0 dBm						
-20 dBm—								E l
-30 dBm—								Fundamenta
-40 dBm-	1 Marcal States And Strand	yman	mound	Noncoment Marked House	ulus work way	remaintenent	4 MI	
-50 dBm—								
-60 dBm—								
Start 30.	0 MHz			691 pt	5	· ·	Stop 1.0 GHz	
Marker								
Type F	ter Trc	X-value		Y-value	Function	Function	n Result	

30 MHz – 1 GHz (QPSK, 3.0 MHz, High Channel)

Date: 13.JAN.2023 10:32:27

1 GHz – 20 GHz (QPSK, 3.0 MHz, High Channel)

Date: 13.JAN.2023 10:31:02

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 185 of 297

Ref Level	35.00 dBm	Offset	17.00 dB 📢	RBW 100 kHz				
Att	30 dB	SWT	9.7 ms 🍯	• VBW 300 kHz	Mode Auto Swe	ер		
1Pk Max								
10 dBm					M1[1]	е е з	-39.05 dBm 895.40 MHz	
0 dBm								
0 dBm								
dBm				_		-		
10 dBm	D1 -13.000	dBm						
20 dBm								
30 dBm								Fundament
40 dBm	and the set to set	Cold de reals			an war and has we are	La reaction where a start of	Man Jur Maderson La co	
50 dBm-		New order to control						
60 dBm								
tart 30.0	MHz			691 pt	5		Stop 1.0 GHz	
arker								
Type Ref	Trc	X-value	•	Y-value	Function	Function	Result	

30 MHz – 1 GHz (QPSK, 5.0 MHz, High Channel)

Date: 13.JAN.2023 10:43:50

1 GHz – 20 GHz (QPSK, 5.0MHz, High Channel)

Date: 13.JAN.2023 10:44:10

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 186 of 297

30 MHz – 1 GHz (QPSK, 10.0 MHz, High Channel)

Date: 13.JAN.2023 10:58:02

B Spectrum 2 (X) Ref Level 35.00 dBm Offset 17.00 dB 🖷 RBW 1 MHz Att 30 dB SWT 76 ms 👄 VBW 3 MHz Mode Auto Sweep 😑 1Pk Max M1[1] 25.57 dBm 30 dBm 15.7240 GHz 20 dBm 10 dBm 0 dBm -10 dBm-01 -13.000 dBm -20 dBm 41 T. A NK -30 dBm . . 110mm 40 dBm -50 dBm -60 dBm-Stop 20.0 GHz Start 1.0 GHz 691 pts Marker Type Ref Trc M1 1 X-value 15.724 GHz Y-value -25.57 dBm Function Function Result 1

Date: 13.JAN.2023 10:58:22

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 187 of 297

Date: 13.JAN.2023 11:09:53

1 GHz – 20 GHz (QPSK, 1.4 MHz, Low Channel)

Date: 13.JAN.2023 11:09:01

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 188 of 297

Ref Lo	evel :	35.00 dBm	Offset 17.00 dB	🖷 RBW 100 kHz			
Att		30 dB	SWT 9.7 ms	💿 VBW 300 kHz	Mode Auto Swe	ер	_
1Pk M	эх						
30 dBm	+				M1[1]	-40.40 dBn 727.00 MHz	2
20 dBm	-						-
LO dBm	-						-
) dBm—	_						-
10 dBm		1 -13.000	dBm-				
20 dBm	-						-
30 dBm	+						Fundamen
40 dBm	-				Jan J	M1	
50 dBm	w. w. w	an merele when	and an and a second	uneveneed montante	Remains Shillson and rota		-
60 dBm							-
Start 3	0.0 M	Hz		691 pts		Stop 1.0 GHz	1
larker							ז
Туре	Ref	Trc	X-value	Y-value	Function	Function Result	1

30 MHz - 1 GHz (QPSK, 3.0 MHz, Low Channel)

Date: 13.JAN.2023 11:23:21

1 GHz – 20 GHz (QPSK, 3.0 MHz, Low Channel)

Date: 13.JAN.2023 11:23:42

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 189 of 297

Offset 17.00 dB	
SWT 9.7 ms e VBW 300 kHz Mode Auto Sweep	
M1[1] -4	42.07 dBm 85.60 MHz
d8m	
<u>/</u>	
M1 M1	Fundament
691 pts Sto	p 1.0 GHz
X-value Y-value Function Function Result	

30 MHz - 1 GHz (QPSK, 5.0 MHz, Low Channel)

Date: 13.JAN.2023 11:34:59

1 GHz - 20 GHz (QPSK, 5.0MHz, Low Channel)

Date: 13.JAN.2023 11:35:18

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 190 of 297

Spectru	um	Spec	trum 2	X	DRUU 100 l						
Att	Vel 35.00	авт 30 dB	SWT	9.7 ms 👄	VBW 300 k	Hz Mode	Auto Swee	p			
1Pk Max	4		Artic 10.70]
30 dBm—						M	1[1]	r		-40.40 dBm 725.60 MHz	
20 dBm—										-	-
10 dBm—						0		· · · · · · · · · · · · · · · · · · ·			
0 dBm—						-				-	
-10 dBm-	01 -13	3.000 dB	m								
-20 dBm-			-		-	-		9. 9.			
-30 dBm-								8			
-40 dBm-	المكن والمطاعمة	diamentica de	homenture	intrational states	inner	monerature	moreneral	M1 Roberton	wardhade	Howard	Fundament
-50 dBm-					-						
-60 dBm-		-						-			
Start 30	.0 MHz				691	pts			Ste	op 1.0 GHz	1
larker				ä		1					
N1	Ker Trc		x-value 725	6 MHz	-40.40 dF	Func	tion	Fui	iction Resul		

30 MHz - 1 GHz (QPSK, 10.0 MHz, Low Channel)

Date: 13.JAN.2023 12:45:15

1 GHz – 10 GHz (QPSK, 10.0 MHz, Low Channel)

Date: 13.JAN.2023 12:45:36

30 MHz – 1 GHz (QPSK, 1.4 MHz, Middle Channel)

Date: 13.JAN.2023 11:14:00

Date: 13.JAN.2023 11:14:20

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 192 of 297

RefL	evel	35.00 dBr	n Offset	17.00 dB (RBW 100 k	Hz					
Att		30 d	B SWT	9.7 ms	• VBW 300 k	Hz Mode	Auto Swee	p			
1Pk M	ах]	
30 dBm	-		-		-	M	1[1]		2	42.04 dBm 44.10 MHz	
20 dBm											
i0 dBm	-										
) dBm—					-	-					
10 dBm		1 .13.000	dBm					-			
20 dBm											
-30 dBm	+				_						
40 dBm		and the second	M1		be the second		A Martin In	Musician	altermen	munder	Fundamenta
50 dBm									11		
60 dBm											
Start 3	0.0 M	Hz			691	pts	L		Sto	p 1.0 GHz	
larker						10			· · · · · · · · · · · · · · · · · · ·		
Туре	Ref	Trc	X-valu	e	Y-value	Func	tion	Fund	tion Result		

30 MHz – 1 GHz (QPSK, 3.0 MHz, Middle Channel)

Date: 13.JAN.2023 11:27:22

Date: 13.JAN.2023 11:27:48

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 193 of 297

30 MHz – 1 GHz (QPSK, 5.0 MHz, Middle Channel)

Date: 13.JAN.2023 12:37:30

1 GHz -20 GHz (QPSK, 5.0MHz, Middle Channel)

Date: 13.JAN.2023 12:37:45

Ref Level	35.00 dBm 30 dB	Offset 1 SWT	7.00 dB 🖷	RBW 100 kHz	Mode Auto S	veen		
1Pk Max	00 00	ann	211 112 4		Hous Add St	veeb.		
30 dBm					M1[1]		-40.46 dBm 742.40 MHz	
20 dBm								
10 dBm								
0 dBm								
-10 dBm	1 -13.000	dBm						
-20 dBm								
-30 dBm				-				
-40 dBm	al and a second for	www.dowenso	Antonia		Monterpremeror	MI Therewand	undurch an adams	Fundament
-50 dBm					9			
-60 dBm								
Start 30.0 M	1Hz			691 pt	s .		Stop 1.0 GHz	
larker					· · · · · ·			
Type Ref	Trc	X-value		Y-value	Function	Functio	n Result	

30 MHz – 1 GHz (QPSK, 10.0 MHz, Middle Channel)

Date: 13.JAN.2023 12:54:24

1 GHz – 20 GHz (QPSK, 10.0 MHz, Middle Channel)

Date: 13.JAN.2023 12:54:44

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 195 of 297

Spect	rum evel :	Sp 35.00 dBm	offset	8	RBW 100 k	17					
Att		30 dB	SWT	9.7 ms e	VBW 300 kH	iz Mode	Auto Swe	ер			
1Pk Ma	эх										
30 dBm-	+		-			M	1[1]	1	1	-40.39 dBm 749.40 MHz	
20 dBm-	+					· · · · · ·			-		
i0 dBm-	-				0	ù.					
0 dBm—	-				-	<u> </u>					
-10 dBm	0	1 -13.000	dBm			-		-			
-20 dBm					-	-					
-30 dBm								A			
-40 dBm	محد	lation of the Martine	بالأورسيد فيساسعها	بدريها والمراجع	undurtration and	www.	ununul	(MI	a goodhaan araan ah	in marken and	Fundamenta
-50 dBm		2	2								
-60 dBm	-										
Start 3	0.0 M	Hz			691	pts			Ste	op 1.0 GHz	
1arker		-	2								
Type M1	Ref	Trc	X-value 749	e 4 MHz	Y-value -40.39 dB	Func m	tion	Fur	ction Resul	t	
		Υ				1 Stee			144	101012002	

30 MHz – 1 GHz (QPSK, 1.4 MHz, High Channel)

Date: 13.JAN.2023 11:17:45

1 GHz – 20 GHz (QPSK, 1.4 MHz, High Channel)

Date: 13.JAN.2023 11:16:17

30 MHz – 1 GHz (QPSK, 3.0 MHz, High Channel)

Date: 13.JAN.2023 11:31:23

1 GHz -20 GHz (QPSK, 3.0 MHz, High Channel)

Date: 13.JAN.2023 11:30:11

Ref L	evel	35.00 dBr 30 d	n Offset 8 SWT	17.00 dB	RBW 100 k	Hz Hz Mode	Auto Swee	n			
1Pk M	ах	00 0	5 6111	217 112	1011 000 K	ne muue	Auto Swee	P.			
30 dBm						M	1[1]	<i>1</i> 2		38.17 dBm 738.20 MHz	
20 dBm											
10 dBm	-					G					
0 dBm–	_				-						
-10 dBn		1 -13.000) dBm			-		-			
-20 dBn	-					-					
-30 dBn	+							MI			
-40 dBn	م سابط سابط	untrolite	unener alu	philipping	and allowed as the	Manhanders	ensurphismeters)	Mahanara	murmulo	llgenthine_chingstates	Fundamenta
-50 dBn	1						a	2			
-60 dBn											
Start 3	0.0 M	Hz	1		691	pts			Sto	p 1.0 GHz	
Marker											
Type	Ref	Trc	X-valu		Y-value	Funct	tion	Fun	ction Result		

30 MHz – 1 GHz (QPSK, 5.0 MHz, High Channel)

Date: 13.JAN.2023 12:42:19

1 GHz – 20 GHz (QPSK, 5.0MHz, High Channel)

Date: 13.JAN.2023 12:41:41

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 198 of 297

30 MHz – 1 GHz (QPSK, 10.0 MHz, High Channel)

Date: 13.JAN.2023 12:49:17

Date: 13.JAN.2023 12:48:43

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 199 of 297

LTE Band 13 30 MHz – 1 GHz (QPSK, 5.0 MHz, Low Channel)

Date: 13.JAN.2023 12:58:44

1 GHz – 20 GHz (QPSK, 5.0MHz, Low Channel)

Date: 13.JAN.2023 12:57:33

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 200 of 297

Ref Level Att	10.00 dBn 20 dB	Offset	17.00 dB 👄 568.9 µs 🖷	RBW 10 kHz VBW 30 kHz	Mode	Auto FF T		
1Pk Max								
					N	11[1]	5.15	-62.71 dBr 769.6600 MH
0 dBm	1					1 1		
-10 dBm-				-				
-20 dBm								
-30 dBm	the second							
-40 dBm	01 -35.000	dBm	-					
-50 d8m								
-60 dBm-					MI			
-70 dBm	-mana and and and and and and and and and	herowen-line	work mall	nound	www.wlowed	upper and so the	manufada	utradio anterio de la contra del
-80 dBm								
Start 763.0	MHz			691	ots			Stop 775.0 MHz
Marker	1 Tool		- 1		1 5	N 1	F	Deer la
M1 M1	1	x-valu 769	e .66 MHz	-62.71 dBr	n Fund	cion	Function	Kesult

763 MHz – 775 MHz (QPSK, 5.0MHz, Low Channel)

Date: 28.APR.2023 11:16:26

793 MHz - 806 MHz (QPSK, 5.0MHz, Low Channel)

Date: 28.APR.2023 11:18:26

Ref Level	0.00 dBm	Offset 17.00 dB 🖷	RBW 1 MHz		('
Att	10 dB	SWT 7.6 μs 🖷	VBW 3 MHz	Mode Auto FFT	
∋1Pk Max			71 - 1V	1000	
				M1[1]	-52.70 dBi 1.5594800 GH
-10 dBm					
-20 dBm			_		
-30 dBm			_		
-40 dBm0	1 -40.000) dBm			
50 dBm					
-60 dBm-	~~~~	m	hund		
-70 dBm					
-80 dBm		-			
-90 dBm					
Start 1.559	GHz		691 pt	s	Stop 1.61 GHz
Marker					
Type Ref M1	Trc 1	X-value 1.55948 GHz	Y-value -52.70 dBm	Function	Function Result

1559 MHz – 1610 MHz (QPSK, 5.0MHz, Low Channel)

Date: 28.APR.2023 11:21:37

Spectrum	Sp	ectrum 2	×						
Ref Level 3	35.00 dBm 30 dP	Offset 17.00	dB 🖷 RBW	100 kHz 300 kHz	Mode Auto Sv	veen			
1Pk Max	00 00			000 1112	NOUE AUTO SV	тер			
30 dBm					M1[1]	r 31	5	40.97 dBm 10.90 MHz	
20 dBm									
10 dBm									
0 dBm						_			
-10 dBm	1 -13.000	dBm						-	
-20 dBm									
-30 dBm				_		$+$ \wedge			Fundame
-40 dBm	enablished	Bunnunukanin	and man and have	Northernorth	والاستهما فيم معرومتورس	municer W 4	Inderesand	M1 Therewould	T undunic
-50 dBm					1.				
-60 dBm									
Start 30.0 M	Hz			691 pts			Sto	p 1.0 GHz	
larker	- 1		1						
Type Ref	Trc	X-value	-40	97 dBm	Function	Fun	ction Result		

30 MHz – 1 GHz (QPSK, 5.0 MHz, Middle Channel)

Date: 13.JAN.2023 13:02:05

1 GHz – 20 GHz (QPSK, 5.0MHz, Middle Channel)

Date: 13.JAN.2023 13:02:21

Ref Level	10.00 dBm 20 dB) Offset 17.00 di SWT 568.9 ป	3 RBW 10 kHz S VBW 30 kHz	Mode Auto FFT	
1Pk Max					
				M1[1]	-62.89 dBr 774.3140 MH
0 d8m	3				
-10 dBm					
-20 dBm					
-30 dBm	ter som some				
-40 dBm	01 -35.000	dBm	_		
-50 dBm	-				
-60 dBm					MI
Withours	supportent	che Martin March	when and and	Wardinkingenturky	numeral and the stand of the st
-70 dBm					
-80 d8m	3			-0	
Start 763.0	MHz		691 pl	s	Stop 775.0 MHz
Marker	1 1		1 (22/40/4/4/ C)		
Type Ref M1	1 Trc	X-value 774.314 MHz	-62.89 dBm	Function	Function Result

763 MHz – 775 MHz (QPSK, 5.0MHz, Middle Channel)

Date: 28.APR.2023 11:17:02

793 MHz - 806 MHz (QPSK, 5.0MHz, Middle Channel)

Date: 28.APR.2023 11:18:40

Ref Level Att	0.00 dBm 10 dB	Offset 17.00 dB (SWT 7.6 µs (BW 1 MHz	Mode Auto FFT		
∎1Pk Max						
				M1[1]	145 - 147	-51.95 dBr 1.5984490 GH
-10 dBm						
-20 dBm						
-30 dBm					-	
-40 dBm D	1 -40.000) dBm				
-50 dBm			_		M1	
m	~~~~	m	m	m	harm	mm
-60 dBm						
-70 dBm						
-80 dBm		-				
-90 d8m						
Start 1.559	GHz		691 pt	s		Stop 1.61 GHz
larker	-		000000000000000000000000000000000000000			
M1 M1	1	1 598449 GHz	-51.95 dBm	Function	Function	Kesuit

1559 MHz – 1610 MHz (QPSK, 5.0MHz, Middle Channel)

Date: 28.APR.2023 11:21:21

Ref Level	35.00 dBm	Offset	17.00 dB 🔵	RBW	100 kHz	1			(v	1
Att	30 dB	SWT	9.7 ms 👄	VBW	300 kHa	: Mode	Auto Swee	p		1
30 dBm				-		M	1[1]		-38.55 dBm 753.60 MHz	
0 dBm				-						
0 dBm				-						
l dBm			-	-			-			
10 dBm	01 -13.000	dBm								
20 dBm				-			2			
30 dBm				-	-			ML	1	
40 dBm	nd hypertrades that the	Munhumber	getent many second	questeri	mahinau	init plantation	uhancisiona	and the	and when we want	Fundam
50 dBm	and March and Control of State									
60 dBm				-	-					
Start 30.0 M	MHz			<u> </u>	691 p	ts		I	Stop 1.0 GHz	
larker	2 2					-				
Type Ref	Trc	X-valu	le	Y-V	alue	Func	tion	Functi	on Result	

20 MH 1 011 ODSK 50 MH TE-L CI n.

Date: 13.JAN.2023 13:04:45

1 GHz -20 GHz (QPSK, 5.0MHz, High Channel)

Date: 13.JAN.2023 13:03:43

Ref Level Att	10.00 dBn 20 dB	n Offset 1 3 SWT 5	7.00 dB 👄 68.9 µs 🖷	RBW 10 kHz VBW 30 kHz	Mode	Auto FFT		
) 1Pk Max								
					M	1[1]		-62.73 dBr 773.9490 MH
0 dBm	1				1			
-10 dBm		-						
-20 dBm								
-30 dBm	the second							
-40 dBm	D1 -35.000	dBm						
-50 dBm								
-60 dBm								MI
-70 dBm	ومعطو بداللال وسعاره	andraha	mathematic	have and	wheenwalk	Andrew and the	noundation	when the state of the second
-80 d8m								
Start 763.0	MHz			691 p	ts			Stop 775.0 MHz
Marker Tyne Pef	Tre	X-value	1	Y-value	Euro	tion 1	Function	Result
M1	1	773.94	9 MHz	-62.73 dBm	runc		i anction	Nosure

763 MHz – 775 MHz (QPSK, 5.0MHz, High Channel)

Date: 28.APR.2023 11:17:11

793 MHz – 806 MHz (QPSK, 5.0MHz, High Channel)

Date: 28.APR.2023 11:18:18

Spectrum					
Ref Level Att	0.00 dBm 10 dB	Offset 17.00 dB 👄 SWT 7.6 µs 🖷	RBW 1 MHz VBW 3 MHz	Mode Auto FFT	
∎1Pk Max					
				M1[1]	-52.37 dBi 1.5743150 GH
-10 dBm-					
-20 dBm					
-30 dBm			_		
-40 dBm 0	1 -40.000	dBm			
-50 dBm		M1			
m	~~~~	m	m	m	man man
-60 dBm	E				
-70 dBm					
-80 dBm					
-90 d8m					
Start 1.559	GHz		691 pt	s	Stop 1.61 GHz
Marker Type Pef	Tre	X-value	Y-value	Eunction	Eunction Result
M1	1	1.574315 GHz	-52.37 dBm	Tunction	r unction Result

1559 MHz – 1610 MHz (QPSK, 5.0MHz, High Channel)

Date: 28.APR.2023 11:20:00

Ref Le	vel	35.00 dBm	Offset	17.00 dB	• RBW 100 k	:Hz		13 CT-14		, , ,	
Att		30 dB	SWT	9.7 ms 🕯	• VBW 300 k	Hz Mode	Auto Swe	ер			
30 dBm-						N	11[1]		16	-41.02 dBm 923.80 MHz	
0 dBm-	_							+			
0 dBm-	-					0					
dBm—	+							+			
10 dBm	0	1 -13.000	dBm								
20 dBm											
30 dBm											E 1
40 dBm	m	and the	in many configuration	formere	-	boundary	in the second	where they	MI	a value would	Fundament
50 dBm	-						9				
60 dBm	-										
tart 30	0.0 M	Hz			691	pts			S	top 1.0 GHz	
larker						10			- 27		
Туре	Ref	Trc	X-value		Y-value	Fund	tion	Fun	ction Resu	lt	

30 MHz – 1 GHz (QPSK, 10.0 MHz, Middle Channel)

Date: 13.JAN.2023 13:09:13

1 GHz – 10 GHz (QPSK, 10.0 MHz, Middle Channel)

Date: 13.JAN.2023 13:09:29

Pofloyel	10.00 dBm	Offset 17 00 dB				
Att	20 dB	SWT 568.9 µs	VBW 30 kHz	Mode Auto FFT		
1Pk Max	7107000-1110					
				M1[1]	77	-61.65 dBn 72.7680 MH
0 dBm						
-10 dBm						
-20 dBm			_			
-30 dBm						
-40 dBm	1 -35.000	dBm				
-50 dBm	ŧ					
-60 dBm		10 10 10 10 10 10 10 10 10 10 10 10 10 1			M1	
-70 dBm	mannihedude	watermarkene	nautritration	Konsteiner	in all in a grant and an and an	administration
-80 dBm	1					
Start 763.0	MHz		691 pt	s	Stop	775.0 MHz
Marker	Trail	W under an 1	M h	1 5	Eventine Denvi	
M1 M1	1	772,768 MHz	-61.65 dBm	Function	Function Resu	<u>n</u>

763 MHz – 775 MHz (QPSK, 10.0MHz, Middle Channel)

Date: 28.APR.2023 11:17:26

793 MHz - 806 MHz (QPSK, 10.0MHz, Middle Channel)

Date: 28.APR.2023 11:18:56

Ref Level Att	0.00 dBm 10 dB	Offset 17.00 dB 🧉 SWT 7.6 µs 🖷	VBW 3 MHz	Mode Auto FFT		
1Pk Max						
				M1[1]		-52.10 dBn
-10 dBm					1	1022130 GH
-20 dBm						
-30 dBm						
-40 dBm 0	1 -40.00	0 dBm				
-50 dBm					M1	_
	~~~	m	m	mm	h	m
-60 dBm						
-70 dBm						
-80 dBm		-				
-90 dBm		4	10		-	
Start 1.559	GHz		691 pt:	5	Sto	ap 1.61 GHz
larker	Trol	Y using	Y ushuo	- Function	Function Doc	.1+
M1 M1	1	1.602213 GHz	-52.10 dBm	Function	Function Rest	m

### 1559 MHz – 1610 MHz (QPSK, 10.0MHz, Middle Channel)

Date: 28.APR.2023 11:22:36



Date: 13.JAN.2023 14:36:47



### 1 GHz - 10 GHz(GPRS Mode) Low Channel

Date: 13.JAN.2023 14:56:58

Spectrum	S	ectrum 2 🛛 🕅	Spectrum 3	Spectrum	4 🗙	
Ref Level	35.00 dBr	n Offset 17.00 dB	RBW 100 kHz	Mada Auto Curr		
1Pk Max	30 u	5 <b>6141 9</b> .7 ms	- VBW 300 KH2	Mode Auto Swee	ib.	
0 dBm				M1[1]	-41.65 c 856.10 f	IBm MHz
0 dBm						
0 dBm						_
I dBm			_			_
10 dBm	D1 -13.000	l dBm				
20 dBm			-			$\mathbf{X}$
30 dBm						-
40 dBm		o marine		Latin data Managara	M1	Fundament
50 dBm-	and the second		branch and the second second	- And R. Landson and and and the Solar		
60 dBm						_
tart 30.0	MHz	I I	691 pt:	5I	Stop 1.0 G	Hz
arker	1	<b>v</b>		<b>r</b>		
Type   Ret	Irc	X-Value	Y-Value	Function	Function Result	

#### 1CHz (CPRS Mode) Middle Channel 20 1/11-

Date: 13.JAN.2023 14:32:07



### 1 GHz - 10 GHz(GPRS Mode) Middle Channel

Date: 13.JAN.2023 14:57:11

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 213 of 297

dBm Offset 30 dB SWT	17.00 dB 🖷 9.7 ms 🖷	RBW 100 kHz VBW 300 kHz	Mode Auto Swe	ер			
			House Mato SWS	ep			
			M1[1]	an an 1	9	41.89 dBm 22.10 MHz	
		+			-		
		<u></u>			_		
					~		
0.000 dBm					-		
	-						
					-		
						M1	Fundament
montender	nu na hranana	Manana Arana Aran	and the second sec	ad a harring the state of the s	and the state of the state	and we wanted a	
		691 pt	5		Sto	p 1.0 GHz	
X-val		Y-value	Function	Function	1 Result		
	3.000 dBm	3.000 dBm	3.000 dBm 	3.000 dBm 3.000 dBm 691 pts X-value Y-value Function 922.1 MHz -41.89 dBm	3.000 dBm 3.000 dBm 691 pts X-value Y-value Function Function 922.1 MHz -41.89 dBm	3.000 dBm 3.000 dBm 691 pts Sto X-value Y-value Function Function Result 922.1 MHz -41.89 dBm	3.000 dBm 3.000 dBm 3.000 dBm 6.000 dBm

### 30 MHz – 1GHz (GPRS Mode) High Channel

Date: 13.JAN.2023 14:35:24

#### X Sp Spectrum 4 Spectrum 2 X strum 3 Ref Level 35.00 dBm Offset 17.00 dB 🖷 RBW 100 kHz 30 dB SWT 90 ms 👄 VBW 300 kHz Mode Auto Sweep M1[1]

# 1 GHz - 10 GHz(GPRS Mode) High Channel

Att 1Pk Max 36.97 dBm 30 dBm-5.8780 GHz 20 dBm 10 dBm 0 dBm -10 dBm 01 -13.000 dBm -20 dBm--30 dBm-M1 -40 dBmdan -50 dBm -60 dBm· 691 pts Stop 10.0 GHz Start 1.0 GHz Marker Type | Ref | Trc | Function Function Result X-value Y-value 5.878 GHz -36.97 dBm M1 1 .....

Date: 13.JAN.2023 14:56:43



PCS Band (Part 24E) 30 MHz – 1GHz (GPRS Mode) Low Channel

Date: 13.JAN.2023 14:46:10





Date: 13.JAN.2023 14:45:49

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 215 of 297

Spectrum Ref Level	Sp 35.00 dBm	Offset 17 00 dB	Spectrum 3 RBW 100 kHz	(X) Spectru	m 4 🛛 🗶	
Att	30 dB	SWT 9.7 ms	VBW 300 kHz	Mode Auto Sw	еер	
) 1Pk Max			50 - 10 P			
30 dBm				M1[1]		-42.07 dBn 850.50 MH
20 dBm						
10 dBm						
0 dBm						
-10 dBm-0	1 -13.000	dBm				
-20 dBm					6.	
-30 dBm						
-40 dBm						M1
-50 dBm	phanhhamh	Manager and a house of the second	whenthethered	another the start	a a character and the second	an al all the second of the
-60 dBm						
Start 30.0 M	Hz		691 pts	1	- I I	Stop 1.0 GHz
larker						
Type Ref M1	Trc 1	X-value 850.5 MHz	Y-value -42.07 dBm	Function	Function	Result
	Y		1	Measurers	Example 44	19.01.7921

# 30 MHz – 1GHz (GPRS Mode) Middle Channel

Date: 13.JAN.2023 14:50:41



### 1 GHz – 20 GHz (GPRS Mode) Middle Channel

Date: 13.JAN.2023 14:51:10

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 216 of 297

Ref Level	35.00 dBm	Offset 17.00 dB	RBW 100 kHz	opecar		
Att	30 dB	<b>SWT</b> 9.7 ms	👄 VBW 300 kHz	Mode Auto Sw	veep	
30 dBm				M1[1]	20 20	-42.28 dBn 741.00 MH
20 dBm						
10 dBm						
0 dBm			_			
-10 dBm	1 -13.000	dBm				
-20 dBm						
-30 dBm						
-40 dBm					Mi	
-50 dBm	r alles in all lere	analichiddaetheuric	al barren all dalight	had have relieve to the second	lity-hald-manufactures	worker of the office with
-60 dBm						
Start 30.0 M	1Hz		691 pt	s	- I	Stop 1.0 GHz
larker						
Type Ref	Trc	X-value	Y-value	Function	Function I	Result

# 30 MHz – 1GHz (GPRS Mode) High Channel

Date: 13.JAN.2023 14:51:55





Date: 13.JAN.2023 14:51:42

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 217 of 297

# 13.FCC§2.1053, §22.917 & §24.238 & §27.53 – Spurious Radiated Emissions

### 13.1 Applicable Standard

FCC § 2.1053, §22.917, § 24.238 and § 27.53

IC RSS-130 Issue 2 clause 4.7 RSS-132 Issue 3 clause 5.5 RSS-133 Issue 6 clause 6.5 RSS-139 Issue 3 clause 6.6

### 13.2 Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis. The frequency range up to tenth harmonic of the fundamental frequency was investigated. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

ANSI C63.26-2015 the defined surrogate measurement reproduces the EUT's emission in a two-stage measurement using a well-characterized transmission path. The EUT's transmissions are replicated using alternate antenna settings and the transmit power is calculated using the known characteristics of each transmit's transmit path.

This alternative method uses the same well-characterized transmit path to establish a reference radiated power chosen by the tester to characterize the path loss from the transmit antenna to the measurement receiver. This allows calculation of correction factors that can be used to directly determine EUT emissions without having to perform two-stage measurements for each emissions.

EUT emissions correction = S.G. S.G = Result + Cable loss - Antenna gain Spurious emissions in dB = 10 lg (TX pwr in Watts/0.001) – the absolute level Spurious attenuation limit in dB = 43 + 10 Log10 (power out in Watts)

Test Mode: Transmitting (Worst case is Resource Block & RB offset : RB1#0) Pre-scan with all the bandwidth, worse case as below:

#### Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ230110032RF01

Pre-scan with all the bandwidth, worse case as below:

#### LTE Band 2

#### 20M-QPSK-LOW CHANNEL



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 219 of 297

### 20M-QPSK-MIDLE CHANNEL



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 220 of 297

#### 20M-QPSK-HIGH CHANNEL



#### 20M-16QAM-LOW CHANNEL



### 20M-16QAM-MIDLE CHANNEL



### 20M-16QAM-HIGH CHANNEL



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 224 of 297

#### LTE Band 4

#### 20M-QPSK-LOW CHANNEL



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 225 of 297

### 20M-QPSK- MIDLE CHANNEL



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 226 of 297

### 20M-QPSK- HIGH CHANNEL



### 20M-16QAM-LOW CHANNEL



### 20M-16QAM- MIDLE CHANNEL



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 229 of 297

### 20M-16QAM- HIGH CHANNEL



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 230 of 297

#### LTE Band 5

#### **10M-QPSK-LOW CHANNEL**



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 231 of 297

### 10M-QPSK- MIDLE CHANNEL



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 232 of 297

#### **10M-QPSK-HIGH CHANNEL**



### 10M-16QAM-LOW CHANNEL



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 234 of 297

### **10M-16QAM- MIDLE CHANNEL**



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 235 of 297

### 10M-16QAM-HIGH CHANNEL



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 236 of 297

#### LTE Band 12

#### **10M-QPSK-LOW CHANNEL**



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 237 of 297

### 10M-QPSK- MIDLE CHANNEL



#### 10M-QPSK- HIGH CHANNEL



### 10M-16QAM-LOW CHANNEL



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 240 of 297

### **10M-16QAM- MIDLE CHANNEL**



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 241 of 297

### 10M-16QAM- HIGH CHANNEL



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 242 of 297

#### LTE Band 13

#### **10M-QPSK- MIDLE CHANNEL**



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 243 of 297

### 10M-16QAM-MIDLE CHANNEL



EUT emissions correction = Reading

Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Margin = Level – Limit.

### Cellular Band

### LOW CHANNEL



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 245 of 297



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 246 of 297

