

Test Report No.: FCCSZ2025-0019-RF

RF Test Report

FCC ID	:	2BB34INR10
NAME OF SAMPLE	:	SENSOR-INTERIOR RADAR
APPLICANT	:	Freetech Intelligent Systems Co., Ltd.
CLASSIFICATION OF TEST	:	N/A

CVC Testing Technology (Shenzhen) Co., Ltd.

Correction1:Apr.07,2025 Test Report No.: FCCSZ2025-0019-RF

		Name: Freetec	h Intelligent S	ystem	s Co., Ltd		
Applicant			Address: 16 Xingfa Road, Tongxiang City, Jiaxing City, Zhejiang Province, China				
		Name: Freetec	h Intelligent S	ystem	s Co., Ltd		
Manufacturer		Address: 16 Xi Zhej	ngfa Road, To jiang Province			axing City,	
		Name: SENSOF	R-INTERIOR RA	ADAR			
		Model/Type: INI	R10				
Equipment Under	Test	Additional Mod	el: N/A				
		Serial NO.: N/A					
		Sample NO.: 2-	1				
Date of Receipt.				Date of Testing Feb.14,2025 ~ Mar.20,2025			
Test Spec	cificatio	n	Test Result				
FCC Part 15, Subpart C (15.255)			PASS				
		The equipm	nent under test was found to comply with the				
		requirements of the standards applied.					
Evaluation of Test Re	sult				c	eal of CVC	
		Date	of issue: Mar	21 20	_	tion 1: 2025-04-07	
Commiled by:				-			
Compiled by:		Reviewed by:		Appro	oved by:	ł	
Liong Jiatong		Moxie	anbiao		YV	w D	
Liang Jiatong		Mo X	anbiao Dong Sanbi		g Sanbi		
Name Signature		Name	Signature		Name	Signature	
Other Aspects: NONE	•						
Abbreviations:OK, Pass= passed		Fail = failed N/A:	= not applicable	EUT	= equipment, sa	mple(s) under tested	

This test report relates only to the EUT, and shall not be reproduced except in full, without written approval of CVC.

Test Report No.: FCCSZ2025-0019-RF

Page 3 of 37

TABLE OF CONTENTS

R	ELEASE	CONTROL RECORD	. 4
1	SUI	MMARY OF TEST RESULTS	. 5
	1.1	LIST OF TEST AND MEASUREMENT INSTRUMENTS	
	1.2	MEASUREMENT UNCERTAINTY	
	1.3	TEST LOCATION	.7
2	GEN	NERAL INFORMATION	. 8
	2.1	GENERAL PRODUCT INFORMATION	.8
	2.2	OTHER INFORMATION	
	2.3	TEST MODE	
	2.4	GENERAL DESCRIPTION OF APPLIED STANDARDS	. 9
	2.5	DESCRIPTION OF SUPPORT UNITS	.9
	2.6	FAR FIELD CONDITION FOR FREQUENCY ABOVE 18GHz	10
	2.7	RADIATED TEST SETUP	11
3	TES	T TYPES AND RESULTS	13
	3.1	CONDUCTED EMISSION MEASUREMENT	13
	3.2	TRANSMITTER SPURIOUS EMISSIONS MEASUREMENT	15
	3.3	DUTY CYCLE, OFF TIME REQUIREMENT	26
	3.4	BANDWIDTH MEASUREMENT	29
	3.5	EIRP POWER MEASUREMENT	31
	3.6	FREQUENCY STABILITY	
	3.7	ANTENNA REQUIREMENT	
4	PHO	DTOGRAPHS OF TEST SETUP	35
5	РНС	DTOGRAPHS OF THE EUT	36

Correction1:Apr.07,2025 Test Report No.: FCCSZ2025-0019-RF

Page 4 of 37

RELEASE CONTROL RECORD

ISSUE NO. REASON FOR CHANGE		DATE ISSUED
FCCSZ2025-0019-RF Original release		Mar.21,2025
FCCSZ2025-0019-RF	Adding support units information	Apr.07,2025

Test Report No.: FCCSZ2025-0019-RF

Page 5 of 37

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15.255							
STANDARD SECTION	TEST TYPE	RESULT	REMARK				
15.207	AC Power Conducted Emission	N/A	DC power supply				
15.255(d)	Transmitter Spurious Emissions	PASS	See section 3.2				
15.215(c)	Occupied Bandwidth	PASS	See section 3.4				
15.255(c)	Duty cycle, Off Time Requirement	PASS	See section 3.3				
15.255(c)	EIRP	PASS	See section 3.5				
15.255(f)	Frequency stability	PASS	See section 3.6				
15.255(h)	Group Installation	N/A	The test is not applicable since there are no external phase-locking inputs in this EUT				
15.203	Antenna Requirement	PASS	See section 3.7				

Test Report No.: FCCSZ2025-0019-RF

Page 6 of 37

1.1 LIST OF TEST AND MEASUREMENT INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial Number	Cal. interval	Cal. Due
Radiation Spurious(1GHz-40GHz)					/
Signal&Spectrum Analyzer	Rohde&Schwarz	FSV 40	101898	1 year	2025.4.27
EMI Test Receiver	Rohde&Schwarz	ESR3	102693	1 year	2025.5.24
Antenna(30MHz~1001MHz)	SCHWARZBECK	VULB 9168	1133	1 year	2026.1.22
Horn antenna(1GHz-18GHz)	ETS	3117	227611	1 year	2025.4.02
Horn antenna(18GHz-40GHz)	QMS	QMS-00880	22051	1 year	2025.3.24
3m anechoic chamber	MORI	966	CS0300011	3 year	2026.5.18
Filter group(RSE-BT/WiFi)	Rohde&Schwarz	WiFi /BT Variant 1	100820	1 year	2025.4.28
Filter group(RSE-Cellular)	Rohde&Schwarz	Cellular Variant 1	100768	1 year	2025.4.28
Preamplifier(1GHz-18GHz)	Rohde&Schwarz	SCU-18F	100801	1 year	2025.4.28
Preamplifier(18GHz-40GHz)	Rohde&Schwarz	SCU40A	101209	1 year	2025.4.28
#2 control room	MORI	433	CS0300028	3 year	2026.5.16
Temperature and humidity meter	/	C193561517	C193561517	1 year	2025.4.28
Radiation Spurious(Below 1GHz)					/
EMI Test Receiver	Rohde&Schwarz	ESR 26	101718	1 year	2025/5/24
Antenna(30MHz~1000MHz)	SCHWARZBECK	VULB 9168	1510	1 year	2026/1/12
Horn antenna(1GHz-18GHz)	ETS	3117	227634	1 year	2025/3/25
Horn antenna(18GHz-40GHz)	SCHWARZBECK	BBHA 9170	01003	1 year	2025/3/25
3m anechoic chamber	MORI	966	CS0200019	3 year	2026/5/18
LISN (single-phase)	Rohde&Schwarz	ESH3-Z6	102152/102156	1 year	2025/4/27
Preamplifier(10kHz-1GHz)	Rohde&Schwarz	SCU-01F	100298	1 year	2025/4/28
Radiation Spurious(Above 40GHz)	-	ſ	r		/
Equipment	Manufacturer	Model No.	Serial Number	Cal. interval	Cal. Due
3m anechoic chamber	MORI	966	CS0300011	3 year	2026.5.18
#2 control room	MORI	433	CS0300028	3 year	2026.5.16
Temperature and humidity meter	/	C193561517	C193561517	1 year	2025.4.28
Signal&Spectrum Analyzer	keysight	N9040B	CS0300074	1 year	2025.7.02
SA Expansion Module(40-60GHz		N9029AV19	CS0300075	3 year	2025.9.14
SA Expansion Module(60-90GHz		N9029AV12	CS0300076	3 year	2025.9.14
SA Expansion Module(90-140GHz	,	N9029AV08	CS0300077	3 year	2025.9.14
SA Expansion Module(140-220GH	z) VDI	N9029AV05	CS0300078	3 year	2025.9.14
SA Expansion Module(220-330GH	,	N9029AV03	CS0300079	3 year	2025.9.14
Horn antenna(40-60GHz)	СМІ	HO19R	CS0300086	3 year	2025.9.14
Horn antenna(60-90GHz)	СМІ	HO12R	CS0300088	3 year	2025.9.14
Horn antenna(90-140GHz)	CMI	HO08R	CS0300090	3 year	2025.9.14
Horn antenna(140-220GHz)	CMI	HO05R	CS0300092	3 year	2025.9.14
Horn antenna(220-330GHz)	CMI	HO03R	CS0300094	3 year	2025.9.14

Test Report No.: FCCSZ2025-0019-RF

Page 7 of 37

1.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement Uncertainty							
No.	Item	Measurement Uncertainty					
1	Occupied Channel Bandwidth	±1.86%					
2	Radiated emission(9kHz-30MHz)	+/-5.6 dB					
3	Radiated Emissions(30MHz-1GHz)	±5.0dB					
4	Radiated Emissions(1GHz-18GHz)	±4.8dB					
5	Radiated Emissions(18GHz-40GHz)	±5.1dB					
6	Radiated Emissions(40GHz-60GHz)	±4.8dB					
7	Radiated Emissions(60GHz-90GHz)	±4.8dB					
8	Radiated Emissions(90GHz-140GHz)	±5.0dB					
9	Radiated Emissions(140GHz-220GHz)	±5.1dB					
10	Radiated Emissions(220GHz-300GHz)	±4.8dB					
11	Temperature	±0.73°C					
12	Supply voltages	±0.37 %					
13	Humidity	±3.9 %					
Rema	rk: 95% Confidence Levels, k=2.						

1.3 TEST LOCATION

The tests and measurements refer to this report were performed by EMC testing Lab. of CVC Testing Technology (Shenzhen) Co., Ltd.

Lab Address: No. 1301-14&16, Guanguang Road, Xinlan Community, Guanlan Subdistrict, Longhua District, Shenzhen, Guangdong, China Post Code: 518110 Tel: 0755-23763060-8805 Fax: 0755-23763060 E-mail: sz-kf@cvc.org.cn FCC(Test firm designation number: CN1363) IC(Test firm CAB identifier number: CN0137) CNAS(Test firm designation number: L16091)

Test Report No.: FCCSZ2025-0019-RF

Page 8 of 37

2 GENERAL INFORMATION

2.1 GENERAL PRODUCT INFORMATION

PRODUCT	SENSOR-INTERIOR RADAR
BRAND	N/A
TEST MODEL	INR10
ADDITIONAL MODEL	N/A
POWER SUPPLY	DC 9V ~ 16V
MODULATIONTECHNOLOGY	FMCW
FREQUENCY RANGE	60 ~ 64GHz
PEAK OUTPUT POWER	9.97dBm (Maximum)
ANTENNA TYPE(Note 4)	Array patch antenna with 7.2dBi Gain
I/O PORTS	Refer to user's manual
CABLE SUPPLIED	N/A

Note:

- 1. For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 3. EUT photo refer to report.
- 4. Since the above data and/or information is provided by the client, CVC is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 5. Only differences are the model name

2.2 OTHER INFORMATION

The EUT only have one channel.

CHANNEL	FREQUENCY (MHz)	
1	62000	

2.3 TEST MODE

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis (if EUT with antenna diversity architecture) and packet type.

The worst case was found when positioned on x axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

MODE	DESCRIPTION	ANTENNA	TEST ITEM
TM 1	FMCW	Array Antenna	ALL

Correction1:Apr.07,2025 Test Report No.: FCCSZ2025-0019-RF

Page 9 of 37

LT13-R-1103-FCCmmwave-A1

2.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product, according to the specifications of the manufacturers. It must comply with the requirements of the following standards:

FCC PART 15, SUBPART C. SECTION 15.255 KDB 364244 D01 MEAS 15.255 RADARS V01 ANSI C63.10-2020 TCBC Workshop(2023.10.25) Part 15.255 Rules Amendment Keysight Application Note 5952-1039

All test items have been performed and recorded as per the above standards.

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

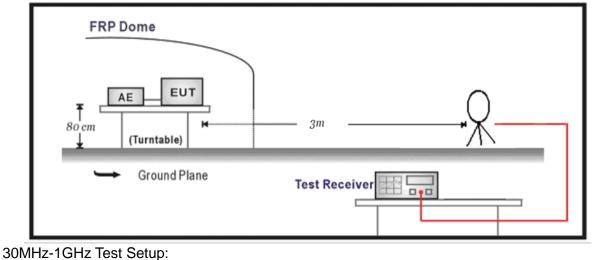
	Support Equipment								
NO	NO Description		rand	Model No.	Serial N	umber	Supplied by		
1	Laptop	Le	novo	K4e-ARE120	MP20k	kshe	Lab		
2	CAN bus	CHU	ANXIN	CANALYST-II	31F000	194B	Cilent		
			S	upport Cable					
NO	Description	Quantity (Number)	Length (cm)	Detachable (Yes/ No)	Shielded (Yes/ No)	Cores (Numb	Supplied by		

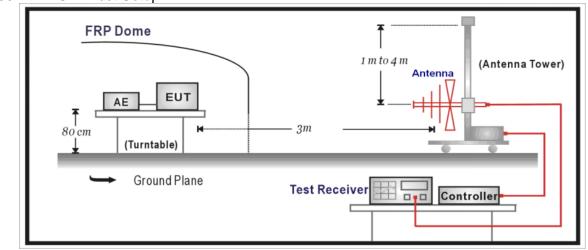
Test Report No.: FCCSZ2025-0019-RF

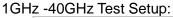
Page 10 of 37

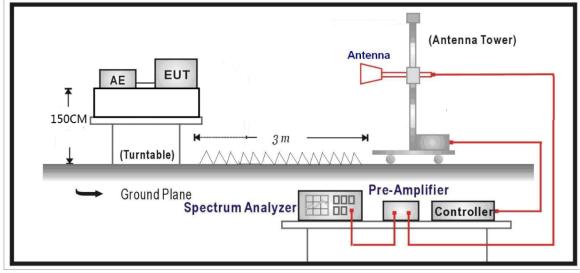
2.6 FAR FIELD CONDITION FOR FREQUENCY ABOVE 18GHz

The equipment under test was transmitting while connected to its integral antenna and is placed on a turn table. The measurement antenna is in the far field of the EUT per formula $2D^2/\lambda$ where D is the larger between the dimension of the measurement antenna and the transmitting antenna of the EUT. In this case, "D" is the largest dimension of the measurement antenna. The EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

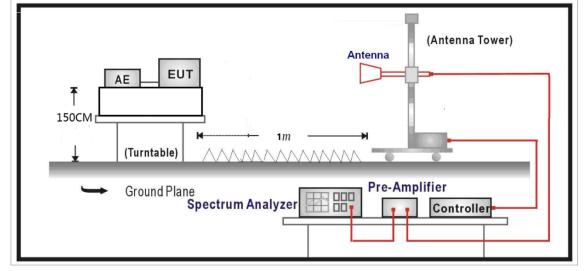

Horn Antenna	Frequency (GHz)	Antenna Dimension A(m)	Wavelength (λ)(m)	Far field R(m)>=2D²/λ	Measurement Distance(D)(m)
	18	0.08	0.0167	0.77	3
QMS-00880	40	0.08	0.0075	1.71	3
	40	0.046	0.0075	0.56	1
HO19R	60	0.046	0.005	0.85	1
	60	0.03	0.005	0.36	1
HO12R	90	0.03	0.0033	0.55	1
	90	0.019	0.0033	0.22	1
HO8R	140	0.019	0.0021	0.34	1
	140	0.012	0.0021	0.14	
HO5R	220	0.012	0.0014	0.21	1
	220	0.008	0.0014	0.09	
HO3R	330	0.008	0.0009	0.14	1


Test Report No.: FCCSZ2025-0019-RF


Page 11 of 37


2.7 RADIATED TEST SETUP

Below 30MHz Test Setup:



LT13-R-1103-FCCmmwave-A1

Test Report No.: FCCSZ2025-0019-RF

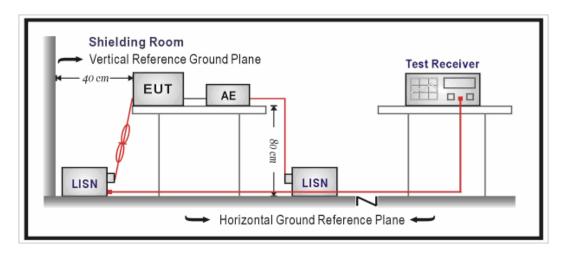
Page 12 of 37

Above 40GHz Test Setup:

Test Report No.: FCCSZ2025-0019-RF

Page 13 of 37

3 TEST TYPES AND RESULTS


3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 Limit

Frequency	Conducted L	.imits(dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 to 56 [*]	56 to 46^{*}
0.5 - 5	56	46
5 - 30	60	50
	II apply at the transition frequencies. s in line with the logarithm of the frequen	cy in the range of 0.15 to 0.50MHz.

3.1.2 Measurement procedure

- a. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the Test photographs) Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. The equipment under test shall be placed on a support of non-metallic material, the height of which shall be1.5m above the ground,
- b. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- c. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

3.1.3 Test setup

Test Report No.: FCCSZ2025-0019-RF

Page 14 of 37

3.1.4 Test results

N/A,DC power supply

利

Test Report No.: FCCSZ2025-0019-RF

Page 15 of 37

3.2 TRANSMITTER SPURIOUS EMISSIONS MEASUREMENT

3.2.1 Limit

Below 40 GHz radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

FREQUENCIES (MHz)	FIELD STRENGTH (Microvolts/Meter)	MEASUREMENT DISTANCE (Meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3
NOTE: 1. The lower limit shall ap NOTE: 2. Emission level (dBuV/n	n) = 20 log Emission level (uV/m).	nath limite are based as sucress detector

NOTE: 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90pW/cm2 at a distance of 3 meters.

FCC Frequency [GHz]	EIRP
40 - 200	-10dBm
Limit conversion	$EIRP[dBm] = 10 \times \log(4 \times \pi \times d^2 \times PD[W/m^2])$
according to ANSI C63.10-2020 9.2.3 (pW/cm ² to dBm):	According to this formula, an emission limit of PD = 90 pW/cm ² at a distance of d = 3 m corresponds to an equivalent isotropically radiated power of EIRP = -10 dBm.

Test Report No.: FCCSZ2025-0019-RF

3.2.2 Measurement procedure

Measurement of harmonic and spurious emissions below 40 GHz

- a. The EUT was placed on the top of a rotating table 1.5 meters(above 1GHz) and 0.8 meters(below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. For below 1GHz was used bilog antenna, and above 1GHz was used horn antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f.For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- g. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 5. The testing of the EUT was performed on all 3 orthogonal axes; the worst-case test configuration was reported on the file test setup photo.

Measurement of harmonic and spurious emissions above 40 GHz

- a. Connect the test antenna covering the appropriate frequency range to a spectrum analyzer via an external mixer.
- b. Set spectrum analyzer RBW = 1MHz, VBW = 3MHz, average detector.
- c. Maximize all observed emissions. Note the maximum power indicated on the spectrum analyzer. Adjust this reading, if necessary, by the conversion loss of the external mixer used at the frequency under investigation and the external mixer IF cable loss.
- d. Calculate the maximum field strength of the emission at the measurement distance
- e. Calculate the power density at the distance specified by the limit from the field strength at the distance specified by the limit
- f. Repeat the preceding sequence for every emission observed in the frequency band under investigation.

3.2.3 Test setup

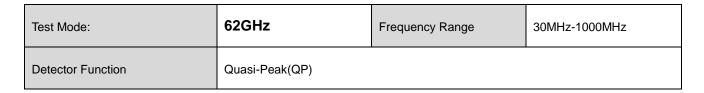
See section 2.5 of this report.

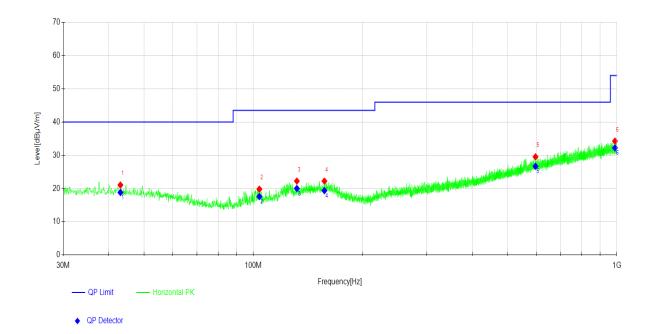
Test Report No.: FCCSZ2025-0019-RF

Page 17 of 37

3.2.4 Test results(9kHz-30MHz)

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

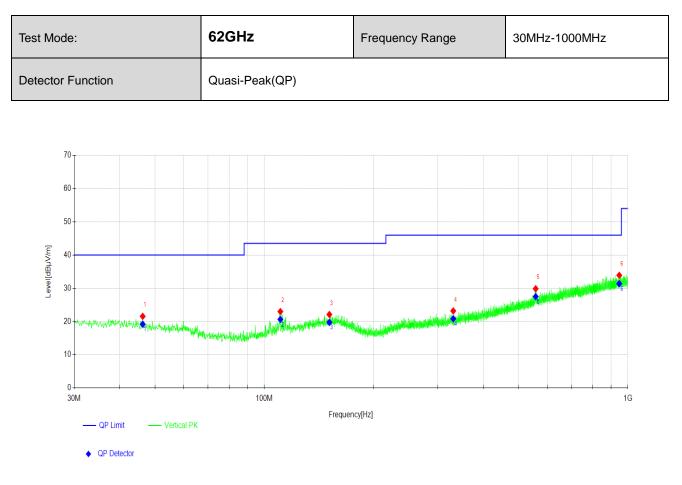

Test Report No.: FCCSZ2025-0019-RF


Page 18 of 37

E N

7

3.2.5 Test results(30MHz-1GHz)


NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]
1	43.096	1.16	19.89	21.05	40.00	18.95	200	22
2	103.921	2.66	17.16	19.82	43.50	23.68	200	209
3	131.763	2.71	19.54	22.25	43.50	21.25	100	316
4	156.889	1.54	20.70	22.24	43.50	21.26	100	320
5	597.410	3.61	25.95	29.56	46.00	16.44	100	329
6	987.971	3.93	30.34	34.27	54.00	19.73	100	203

Remark: 1. Level (dBuV/m) = Reading (dBuV) + Factor (dB/m).

- 2. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. Margin(dB) = Limit[dBµV/m] Level [dBµV/m]

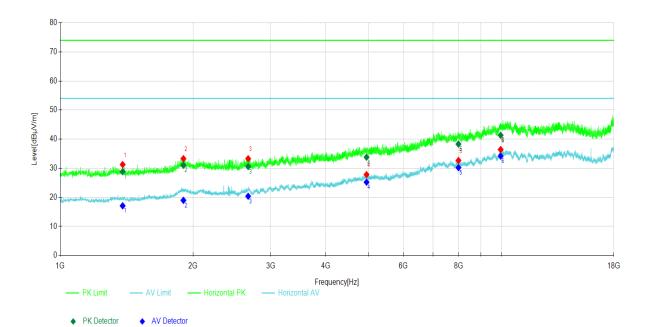
Test Report No.: FCCSZ2025-0019-RF

Page 19 of 37

NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]
1	46.298	1.78	19.79	21.57	40.00	18.43	100	275
2	110.712	5.20	17.82	23.02	43.50	20.48	200	135
3	150.971	1.50	20.62	22.12	43.50	21.38	100	112
4	330.924	2.68	20.52	23.20	46.00	22.80	200	316
5	557.830	4.85	25.03	29.88	46.00	16.12	100	57
6	947.130	3.69	30.23	33.92	46.00	12.08	100	138

Remark: 1. Level (dBuV/m) = Reading (dBuV) + Factor (dB/m).

2. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

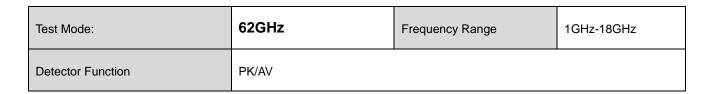

3. Margin(dB) = Limit[dB μ V/m] - Level [dB μ V/m]

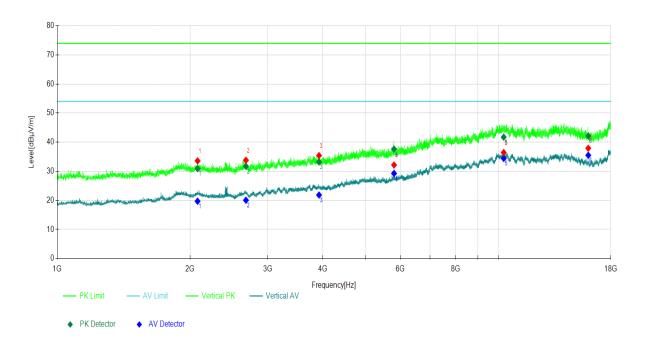
Test Report No.: FCCSZ2025-0019-RF

Page 20 of 37

3.2.6 Test results(1GHz-18GHz)

Test Mode:	62GHz	Frequency Range	1GHz-18GHz
Detector Function	PK/AV		



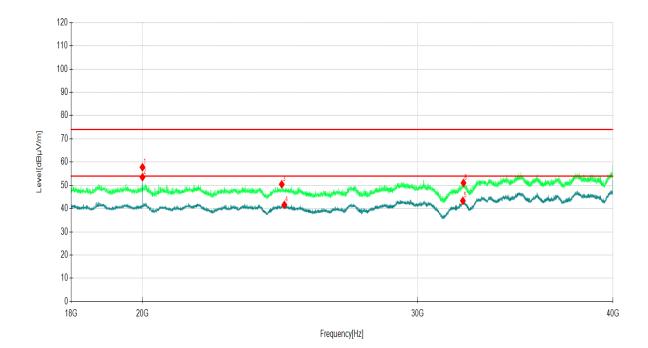

Frequen cy[MHz]	Polarity	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Height [cm]	Angle deg
1385.23	Horizontal	-23.35	54.63	31.28	74.00	42.72	PK	100	319
1902.49	Horizontal	-20.31	53.61	33.30	74.00	40.70	PK	100	30
2667.56	Horizontal	-19.30	52.59	33.29	74.00	40.71	PK	100	22
4949.59	Horizontal	-11.99	39.80	27.81	54.00	26.19	AV	100	124
7997.80	Horizontal	-5.17	37.85	32.68	54.00	21.32	AV	100	101
9968.09	Horizontal	-0.97	37.40	36.43	54.00	17.57	AV	100	109

- 2. Level (dBuV/m) = Reading (dBuV) + Factor (dB/m).
- 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 4. Margin(dB) = Limit(dBuV/m) Level (dBuV/m)

Test Report No.: FCCSZ2025-0019-RF

Page 21 of 37

Frequency [MHz]	Polarity	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Height [cm]	Angle deg
2080.708	Vertical	-20.29	53.87	33.58	74.00	40.42	PK	100	357
2678.368	Vertical	-19.26	53.06	33.80	74.00	40.20	PK	100	56
3922.892	Vertical	-15.68	51.08	35.40	74.00	38.60	PK	100	311
5803.480	Vertical	-9.85	42.01	32.16	54.00	21.84	AV	100	3
10288.229	Vertical	-0.58	37.02	36.44	54.00	17.56	AV	100	214
16000.000	Vertical	-0.83	38.75	37.92	54.00	16.08	AV	100	86

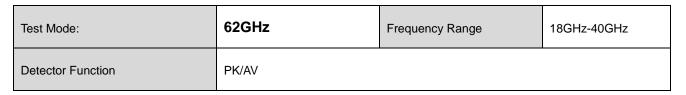

- 2. Level (dBuV/m) = Reading (dBuV) + Factor (dB/m).
- 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 4. Margin(dB) = Limit(dBuV/m) Level (dBuV/m)

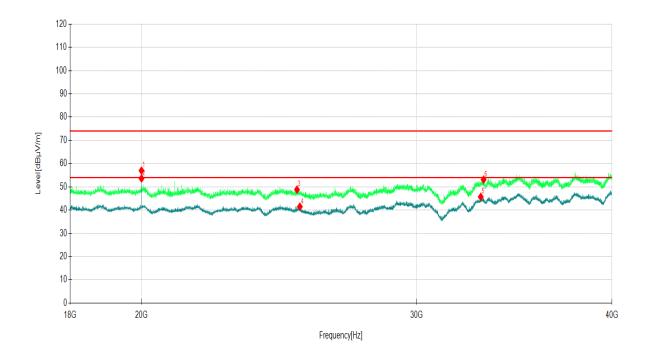
Test Report No.: FCCSZ2025-0019-RF

Page 22 of 37

3.2.7 Test results(18GHz-40GHz)

Test Mode:	62GHz	Frequency Range	18GHz-40GHz
Detector Function	PK/AV		




NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	19997.	64.15	-6.37	57.78	74.00	16.22	100	168	Vertical
2	19997.	59.88	-6.37	53.51	54.00	0.49	100	205	Vertical
3	24552.	53.57	-3.15	50.42	74.00	23.58	100	57	Vertical
4	24646.	44.77	-3.16	41.61	54.00	12.39	100	51	Vertical
5	32061.	46.08	-2.72	43.36	54.00	10.64	100	18	Vertical
6	32090.	54.04	-3.02	51.02	74.00	22.98	100	200	Vertical

- 2. Level (dBuV/m) = Reading (dBuV) + Factor (dB/m).
- 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 4. Margin(dB) = Limit(dBuV/m) Level (dBuV/m)

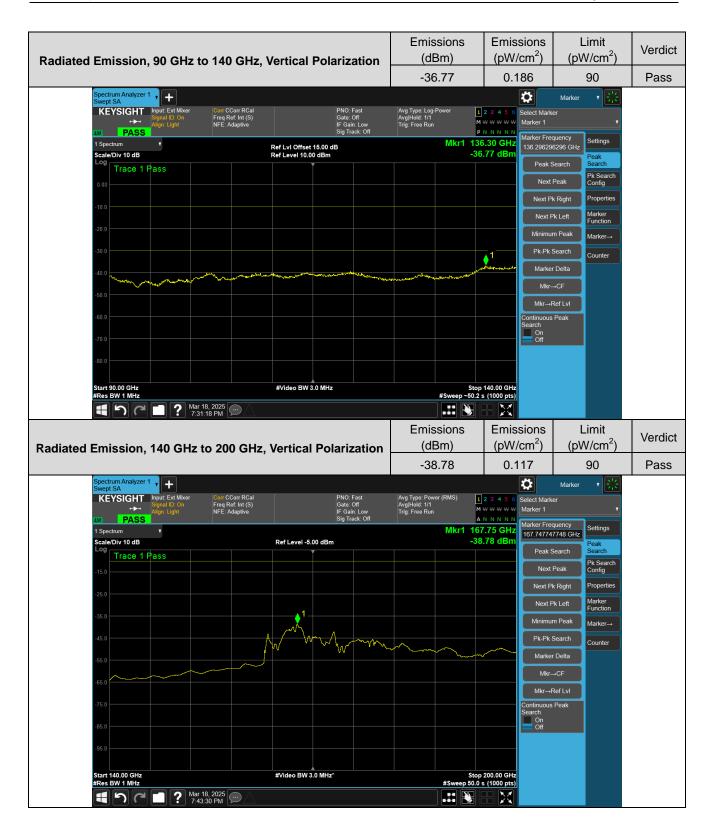
Test Report No.: FCCSZ2025-0019-RF

Page 23 of 37

NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	19997.	63.35	-6.37	56.98	74.00	17.02	100	199	Horizontal
2	19997.	59.97	-6.37	53.60	54.00	0.40	100	196	Horizontal
3	25146.	52.76	-3.95	48.81	74.00	25.19	100	342	Horizontal
4	25254.	45.16	-3.69	41.47	54.00	12.53	100	107	Horizontal
5	32965.	47.80	-2.11	45.69	54.00	8.31	100	232	Horizontal
6	33104.	55.09	-2.00	53.09	74.00	20.91	100	360	Horizontal

- 2. Level (dBuV/m) = Reading (dBuV) + Factor (dB/m).
- 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 4. Margin(dB) = Limit(dBuV/m) Level (dBuV/m)

Test Report No.: FCCSZ2025-0019-RF


Page 24 of 37

3.2.8 Test results(40GHz-200GHz)

Radiated Emission, 40 GHz to 57 GHz, Vertical Polarization Emissions (dBm) Emissions (pW/cm ³) Limit (pW/cm ³) Verdict S7.90 0.001 90 Pass Verdict PASS Verdict Verdict S7.90 0.001 90 Pass Verdict Verdict Verdict Verdict S7.90 Verdict Verdict Verdict S7.90 Verdict Verdict Verdict S8.000 Verdict Verdict <		
-57.90 0.001 90 Pass Sector Raw 11 Image: Contract of the Raw 1000 dbm KEYSIGHT processing and the Rel Level 1000 dbm Sector Raw 1000 dbm <t< th=""></t<>		
KEYSIGHT weit tast weit weit weit weit weit weit weit wei		
Note: Statute Net: All def Control Statute 1 Statute Mixer 52.048 GH Mixer Statute		
Mkr1 52.048 GHJ Mkr1 62.048 GHJ Mkr2 GHJ <th colspan="2" mk<="" th=""></th>		
Log Trace 1 P ass Peak Search Search 100 Trace 1 P ass Peak Search Search 100 Peak Search Marker Cella Marker 100 Peak Search Search Search Marker 100 Peak Search Marker Peak Search Marker 100 Peak Search Peak Search Peak Sear		
Radiated Emission, 64 GHz to 90 GHz, Vertical Polarization Spectrum Analyzer Spectrum A		
Radiated Emission, 64 GHz to 90 GHz, Vertical Polarization		
Radiated Emission, 64 GHz to 90 GHz, Vertical Polarization		
Additional and a set of the set of		
Image: Contraction provides and provide and pro		
and		
Start 40.000 GHz #Video BW 3.0 MHz* Stop 57.000 GHz Start 60.000 GHz Wideo BW 3.0 MHz* #Stop 57.000 GHz #Res BW 1 MHz #Stop 57.000 GHz #T 00 00 GHz Yrits 35 PM Image: Stop 57.000 GHz Image: Stop 57.000 GHz #Rediated Emission, 64 GHz to 90 GHz, Vertical Polarization Emissions Emissions (dBm) (pW/cm²) (pW/cm²) Verdict Spectrum Analyzer 1 Image: Stop 67.000 GHz Freq Ref: Int (s) Stop 57.000 GHz Verdict Spectrum Analyzer 1 Image: Stop 57.000 GHz Image: Stop 57.000 GHz Verdict Verdict Spectrum Analyzer 1 Image: Stop 57.000 GHz Image: Stop 57.000 GHz Image: Stop 57.000 GHz Verdict Spectrum Analyzer 1 Image: Stop 57.000 GHz Image: Stop 57.000 GHz Image: Stop 57.000 GHz Image: Stop 57.000 GHz Spectrum Analyzer 1 Image: Stop 57.000 GHz Image: Stop 57.000 GHz Image: Stop 57.000 GHz Image: Stop 57.000 GHz Spectrum Analyzer 1 Image: Stop 57.000 GHz Spectrum Analyzer 1 Image: Stop 57.000 GHz Imag		
Image: Start 40.000 GHz and the start 40		
Start 40.000 GHz #Video BW 3.0 MHz* Stop 57.000 GHz #Res EW 1 MHz #Sweep 50.0 s (1000 pts) Image: Control Cont		
#Sweep 50.0 s (1000 pts) Image: Spectrum Analyzer 1 Image: Spect		
Radiated Emission, 64 GHz to 90 GHz, Vertical Polarization Emissions (dBm) Emissions (pW/cm ²) Limit (pW/cm ²) Verdict Spectrum Analyzer 1 + -55.78 0.002 90 Pass KEYSIGHT Input Ext Marker Freq Ref Int (6) NFE: Adaptive PNO: Fast Gate: Off IF Gain: Covr Avg Type: Power (RMS) Ref Level 23.00 dBm 1 2 3 4 3 0 Avg Type: Power (RMS) Avg Type: Power (RMS) I Spectrum Select Marker Warker T Warker T I Spectrum Ref Level 23.00 dBm Ref Level 23.00 dBm Select Marker Warker Tequency Tace 1 Pass Peak Search		
Radiated Emission, 64 GHz to 90 GHz, Vertical Polarization (dBm) (pW/cm ²) (pW/cm ²) Verdict -55.78 0.002 90 Pass Spectrum Analyzer 1 - - - Marker - - Select Marker - - Select Marker - - - Select Marker - - - - - Select Marker -		
Spectrum Analyzer 1 -55.78 0.002 90 Pass Swept SA -55.78 0.002 90 Pass KEYSIGHT Input Ext Mixer		
Spectrum Analyzer 1 +		
KEYSIGHT Input: Ext Mixer Con: CCorr RCal PNO: Fast Avg Type Power (RMS) 1 2 3 4 5 6 Select Marker Image: Select Marker Signal (D) Con NFE: Adaptive Breq Ref. Int (S) Breq Ref. Int (S) Breq Ref. Int (S) Breq Ref. Int (S) Select Marker Marker 1 Marker 1 <td< td=""></td<>		
Ref Level 28.00 dBm Mkr1 74.072 GHz 74.072072072 GHz Settings Trace 1 Pass Peak Search Peak		
Scale/Div 10 dB Ref Level 29.00 dBm -55.78 dBm Peak Search Peak Search Pk Search Pk Search		
Pk Search		
19.0 Next Peak Config		
9.00 Next Pk Right Properties		
-1.00 Next Pk Left Marker Minimum Peak Marker→		
-11.0 Pk-Pk Search Counter		
-21.0 Marker Delta		
-31.0 MkrCF MkrRef Lvl		
-41.0 Continuous Peak Search		
-51.0		
-61 0		
Start 64.00 GHz #Video BW 3.0 MHz* Stop 90.00 GHz		
3(a) 94/0 (1) 2 3(b) 94/0 (1)		

Test Report No.: FCCSZ2025-0019-RF

Page 25 of 37

Test Report No.: FCCSZ2025-0019-RF

Page 26 of 37

3.3 DUTY CYCLE, OFF TIME REQUIREMENT

3.3.1 Limit

According to § 15.255(c)(2)(iii)

57.0-64.0 GHz: The peak EIRP shall not exceed 14 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 25.5 milliseconds within any contiguous interval of 33 milliseconds, except as specific in paragraph (c)(2)(iii)(B) of this section;

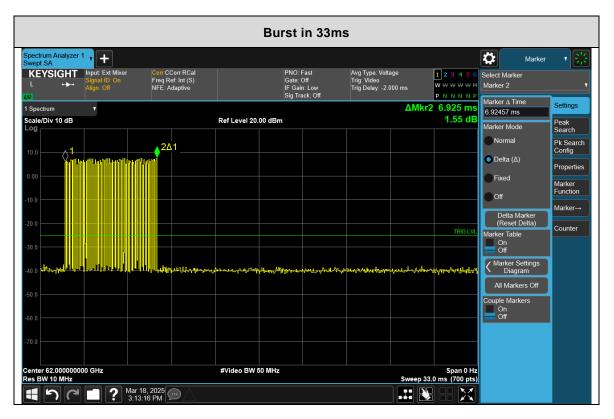
3.3.2 Test Procedure

The duty cycle was tested with the spectrum analyzer set to zero-span.

3.3.3 Test setup

See section 2.5 of this report.

Test Report	No.:	FCCSZ2025-0019-RF
restreport		


Page 27 of 37

3.3.4 Test results

Chirp number in Burst 33ms

TX ON	TX OFF Time	TX OFF Time Limit	Verdict
Time (ms)	(ms)	(ms)	verdict
6.925	26.075	25.5	PASS

OFF Time(ms) = 33ms - ON Time (ms)

Test Report No.: FCCSZ2025-0019-RF

Page 28 of 37

Test Report No.: FCCSZ2025-0019-RF

Page 29 of 37

3.4 BANDWIDTH MEASUREMENT

3.4.1 Limits

According to § 15.215(c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through § 15.257 and in subpart E of this part, must be designed to ensure that the **20 dB bandwidth** of the emission, **or** whatever bandwidth may otherwise be specified in the **specific rule section** under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

According to KDB 364244 D01 Meas 15.255 Radars v01

For pulsed transmitters, the fundamental emission bandwidth is defined at the -10 dB points specified in § 15.255(c)(3)

For other than pulsed radar transmitters, the fundamental emission bandwidth is presumed to be "the width of a frequency band such that, below the lower and above the upper-frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean power of a given emission. Unless otherwise specified in an ITU – R Recommendation for the appropriate class of emission, the value of $\beta/2$ should be taken as 0.5%," as defined in § 2.1(c) of the FCC rules. This is also known as the 99% occupied bandwidth (OBW).

According to § 15.255(c)(2)(iii)

57.0-64.0 GHz: The peak EIRP shall not exceed 14 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 25.5 milliseconds within any contiguous interval of 33 milliseconds, except as specific in paragraph (c)(2)(iii)(B) of this section;

99% OCCUPIED BANDWIDTH MEASUREMENT PARAMETER				
Detector: Peak				
Resolution bandwidth: 8 MHz (The analyzer limits maximum RBW at 8 MHz.)				
Video bandwidth: 50 MHz				
Trace-Mode:	Max Hold			
Sweep	Auto couple.			

3.4.2 Measurement procedure

Measurement procedures:Bandwidth: ANSI C63.10-2020 6.9 / 9.3 Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower)

3.4.3 Test setup

See section 2.5 of this report.

Test Report No.: FCCSZ2025-0019-RF

Page 30 of 37

3.4.4 Test results

Center Frequency (GHz)	99% Occupied Bandwidth Lower(GHz)	99% Occupied Bandwidth Upper(GHz)	99% Occupied Bandwidth (GHz)	Lower limit (GHz)	Upper limit (GHz)	Verdict
62	60.0087	63.7567	3.7481	57	64	Pass
		99% Occu	pied Bandwidth			
Spectrum Analyzer 1 Cocupied Bay KEYSIGHT Nu I Graph Scale/Div 10.0 dB Cog 100 200 30.0 50.0 50.0 50.0 50.0 50.0 50.0 50	Pn Freq Ref. Int (S) NFE: Adaptive	Ref LvI Offset 10.00 dB Ref Value 20.00 dBm Video BW 50.000 MHz Video BW 50.000 MHz	g: Free Run Center Free te: Off Avg Hold: 1 Radio Std: 1	er Rel Power m -26 6 dBc	Ref Value 20 00 dBm Scale/Div 10.0 dB Y Axis Unit dBm Ref Level Offset 10.00 dB Off Ref Position Top	plitude V Scale Attenuation Signal Path
	Mar 18, 2025 3:04:32 PM					

Test Report No.: FCCSZ2025-0019-RF

Page 31 of 37

3.5 EIRP POWER MEASUREMENT

3.5.1 Limits

According to § 15.255(c)(2)(iii)

57.0-64.0 GHz: The peak EIRP shall not exceed 14 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 25.5 milliseconds within any contiguous interval of 33 milliseconds, except as specific in paragraph (c)(2)(iii)(B) of this section;

3.5.2 Measurement procedure

Test Settings

1. Radiated power measurements are performed using the signal analyzer's swept mode measurement capability for signals with continuous operation.

- 2. RBW = 1MHz
- 3. VBW ≥ 3 x RBW
- 4. Span as required, enough to observe the fundamental spike around 61.5 GHz
- 5. No. of sweep points \geq 2 x span / RBW

6. Detector and Trace mode = Suitable for peak and average measurements respectively over 100 sweeps

7. The trace was allowed to stabilize

Method of measurement:

Refer as TCBC Workshop(2023.10.25) Part 15.255 Rules Amendment

FMCW desensitization factor:

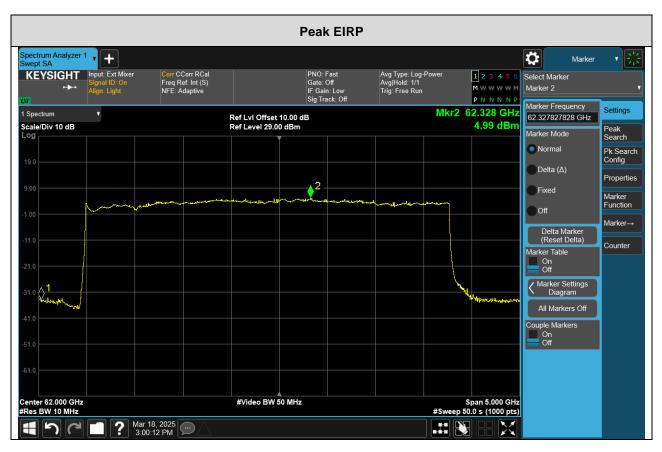
Desensitization factor and sweep time considerations for measurements of FMCW signals in ANSI C63.10-2020 Annex L

The derivation of the FMCW desensitization factor is given in Keysight Application Note 5952-1039 Appendix B.

3.5.3 Test setup

See section 2.5 of this report.

Test Report No.: FCCSZ2025-0019-RF


Page 32 of 37

1

3.5.4 Test results

ITEM	Level (dBm)	Desensitization factor (dB)	Peak EIRP (dBm)	Peak EIRP Limit(dBm)	Verdict
Peak EIRP	4.99	4.98	9.97	14.00	PASS

Peak EIRP(dBm) = desensitization factor (dB) + Level(dBm)

FMCW desensitization factor =-20 * Log(α) =4.98dB

$$\alpha = \frac{1}{\sqrt[4]{1 + \left(\frac{2\ln(2)}{\pi}\right)^2 \left(\frac{F_s}{T_s B^2}\right)^2}}$$

 F_s = Sweep width = 3748.1MHz

 $T_s = Sweep time = 5.539us$

B = 3 dB IF bandwidth = 10MHz

Test Report No.: FCCSZ2025-0019-RF

Page 33 of 37

3.6 FREQUENCY STABILITY

3.6.1 Description of Frequency Stability Measurement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency range, 57GHz - 64GHz.

3.6.2 Measurement Procedure

Method of measurement: Refer as ANSI C63.10-2020 clause 9.5

3.6.3 Test setup

See section 2.5 of this report.

3.6.4 Test results

FREQUENCY STABILITY						
Temperature	Voltage	FL	FH	Limit	Result	
(°C)	(Volt)	(GHz)	(GHz)	(GHz)		
50		60.0028	63.7546			
40	Normal Voltage	60.0039	63.7544			
30		60.0048	63.7556			
20		60.0043	63.7543			
10		60.0046	63.7552			
0		60.0044	63.7532	57-64GHz	PASS	
-10		60.0016	63.7532			
-20		60.0030	63.7563			
-30		60.0018	63.7555			
20	115%	60.0021	63.7549			
20	85%	60.0039	63.7544			

Test Report No.: FCCSZ2025-0019-RF

Page 34 of 37

3.7 ANTENNA REQUIREMENT

3.7.1 LIMITS

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

3.7.2 ANTENNA ANTI-REPLACEMENT CONSTRUCTION

The antenna used for this product is Array patch antenna and that no antenna other than that furnished by the responsible party shall be used with the device

,

Test Report No.: FCCSZ2025-0019-RF

Page 35 of 37

4 PHOTOGRAPHS OF TEST SETUP

Please refer to the attached file (Test Setup Photo).

Test Report No.: FCCSZ2025-0019-RF

Page 36 of 37

5 PHOTOGRAPHS OF THE EUT

Please refer to the attached file (External Photos report and Internal Photos).

----- End of the Report -----

Test Report No.: FCCSZ2025-0019-RF

Page 37 of 37

Important

(1) The test report is invalid without the official stamp of CVC;

(2) Any part photocopies of the test report are forbidden without the written permission from CVC;

(3) The test report is invalid without the signatures of Approval and Reviewer;

(4) The test report is invalid if altered;

- (5) Objections to the test report must be submitted to CVC within 15 days.
- (6) Generally, commission test is responsible for the tested samples only.

(7) As for the test result "-" or "N" means "not applicable", "/" means "not test","P" means "pass" and "F" means "fail"

Address: No. 1301-14&16, Guanguang Road, Xinlan Community, Guanlan Subdistrict, Longhua District, Shenzhen, Guangdong, China Post Code: 518110 Tel: 0755-23763060-8805 Fax: 0755-23763060 E-mail: sz-kf@cvc.org.cn http://www.cvc.org.cn