FCC TEST REPORT			
	FCC ID: 2A9Q9-M1136Q		
Report No.	: <u>SSP24090092-1E</u>		
Prepared For	: Shenzhen Zhongyi Technology Co., Ltd		
Product Name	: Qi2 15W Magnetic Wireless Charger		
Model Name	: <u>M1136Q</u>		
FCC Rule	: FCC Part 15 Subpart C		
Date of Issue	: 2024-09-20		
Prepared By	: Shenzhen CCUT Quality Technology Co., Ltd.		
Shenzhen CCUT Quality Technology Co., Ltd.			
	echnology Industrial Park, Yutang Street, Guangming District, Shenzhen, a; (Tel.:+86-755-23406590 website: www.ccuttest.com)		
-	above client company and the product model only. It may not be duplicated permitted by Shenzhen CCUT Quality Technology Co., Ltd.		

Г

Test Report Basic Information

Applicant	Shenzhen Zhongyi Technology Co., Ltd			
	Room 401, building 4, Shangxue Science and Technology city road,Xinxue			
Address of Applicant	community, Bantian Street, Longgang District, Shenzhen, China			
Manufacturer	Shenzhen Zhongyi Technology Co., Ltd			
	Room 401, building 4, Shangxue Science and Technology city road, Xinxue			
Address of Manufacturer:	community, Bantian Street, Longgang District, Shenzhen, China			
Product Name	Qi2 15W Magnetic Wireless Charger			
Brand Name				
	-			
Main Model	M1136Q			
Series Models	M1138Q			
	FCC Part 15 Subpart C			
Test Standard	ANSI C63.10-2013			
Date of Test	2024-09-10 to 2024-09-13			
Date of Test	2024-09-10 (0 2024-09-13			
Test Result	PASSED			
	Calin Chan			
Tested Engineer	Colin Chen (Colin Chen) Lieber Quality Technology (Lieber Ouyang)			
	A Que ect			
	Gieker Buyane			
Project Manager	(Lieber Ouyang) G APPROVED			
	Lahm Peng (Lahm Peng)			
Authorized Signatory	(Lahm Peng)			
-	to the above client company and the product model only. It may not be			
	ted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in			
this test report is only applicabl	e to presented test sample.			

CONTENTS

. General Information	.5
1.1 Product Information	.5
1.2 Test Setup Information	.6
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	.9
3. Antenna Requirement	0
3.1 Standard and Limit	10
3.2 Test Result	0
- Conducted Emissions	11
4.1 Standard and Limit	11
4.2 Test Procedure	11
4.3 Test Data and Results	12
. Radiated Emissions	15
5.1 Standard and Limit	15
5.2 Test Procedure	15
5.3 Test Data and Results	
. Occupied Bandwidth	22
6.1 Standard and Limit	22
6.2 Test Procedure	
6.3 Test Data and Results	22

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-09-20	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	Qi2 15W Magnetic Wireless Charger		
Trade Name:	-		
Main Model:	M1136Q		
Series Models:	M1138Q		
Dated Valtage	Input USB-C: 5V=3A, 9V=2A, 12V=1.67A		
Rated Voltage:	Wireless Output:5W, 7.5W, 10W, 15W(Max)		
Hardware Version:	V1.0		
Software Version:	V1.0		
Note 1: The test data is gatl	hered from a production sample, provided by the manufacturer.		
Note 2: The color of appearance and model name of series models listed are different from the main model,			
but the circuit and the electronic construction are the same, declared by the manufacturer.			

Wireless Specification	
Wireless Standard:	Wireless charging
Operating Frequency:	110.5KHz-205kHz,
Modulation:	ASK
Antenna Gain:	0dBi
Type of Antenna:	Coil Antenna
Type of Device:	Portable Device Mobile Device Modular Device

1.2 Test Setup Information

List of Test Mo	odes					
Test Mode	Description			Remark		
TM1		Adapter+Wireless charg	ing 15W	-		
TM2		Adapter+Wireless chargi	ng 10W	-		
TM3		Adapter+Wireless chargi	ng 7.5W	-		
TM4		Adapter+Wireless charg	ing 5W	-		
represented in	Note: All modes have been tested and only the worst mode Adapter+Wireless charging 15W data is represented in the report. List and Details of Auxiliary Cable					
	Description Length (cm) Shielded/Unshielded With/Without Ferrite					
-	L	-	-	-		
-		-				
List and Detai	List and Details of Auxiliary Equipment					
Descri	ption	Manufacturer	Model	Serial Number		
Dummy	y load	YBZ	YBZ-001	N/A		
Adap	oter	UGREEN	CD289	90324		

1.3 Compliance Standards

Compliance Standards		
ECC Dout 15 Submout C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,	
FCC Part 15 Subpart C	Intentional Radiators	
All measurements contained in this	report were conducted with all above standards	
According to standards for test	nethodology	
ECC Dout 15 Subport C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,	
FCC Part 15 Subpart C	Intentional Radiators	
	American National Standard for Methods of Measurement of Radio-Noise Emissions	
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40	
	GHz.	
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed	
ANSI C63.10-2013	Wireless Devices	
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which		
result is lowering the emission, sho	uld be checked to ensure compliance has been maintained.	

1.4 Test Facilities

Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,		
	Guangming District, Shenzhen, Guangdong, China		
CNAS Laboratory No.:	L18863		
A2LA Certificate No.:	6893.01		
FCC Registration No:	583813		
ISED Registration No.:	CN0164		
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing			
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.			

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date	
Conducted Emissions						
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06	
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06	
		Radiated Emissio	ons			
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06	
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06	
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06	
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06	
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06	
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06	
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02	
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02	
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02	
Conducted RF Testing						
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06	
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06	

1.5 List of Measurement Instruments

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
Radiated Emissions	9kHz ~ 30MHz	±2.88 dB
	30MHz ~ 1GHz	±3.32 dB
	1GHz ~ 18GHz	±3.50 dB
	18 GHz ~ 40 GHz	±3.66 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %

2. Summary of Test Results

FCC Rule	Description of Test Item	Result		
FCC Part 15.203	Antenna Requirement	Passed		
FCC Part 15.207	Conducted Emissions	Passed		
FCC Part 15.209	Radiated Emissions	Passed		
FCC Part 15.215(c)	Occupied Bandwidth	Passed		
Passed: The EUT complies with the essential requirements in the standard Failed: The EUT does not comply with the essential requirements in the standard N/A: Not applicable				

3. Antenna Requirement

3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an Coil antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)				
(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56	56 to 46			
0.5-5	56	46			
5-30	60 50				
Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz					
Note 2: The lower limit applies at the band edges					

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

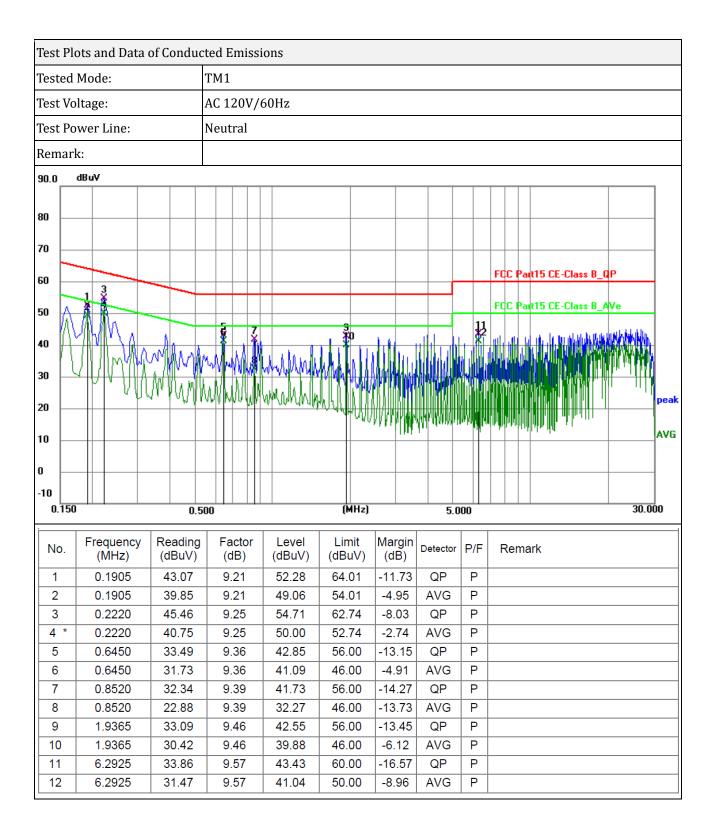
a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

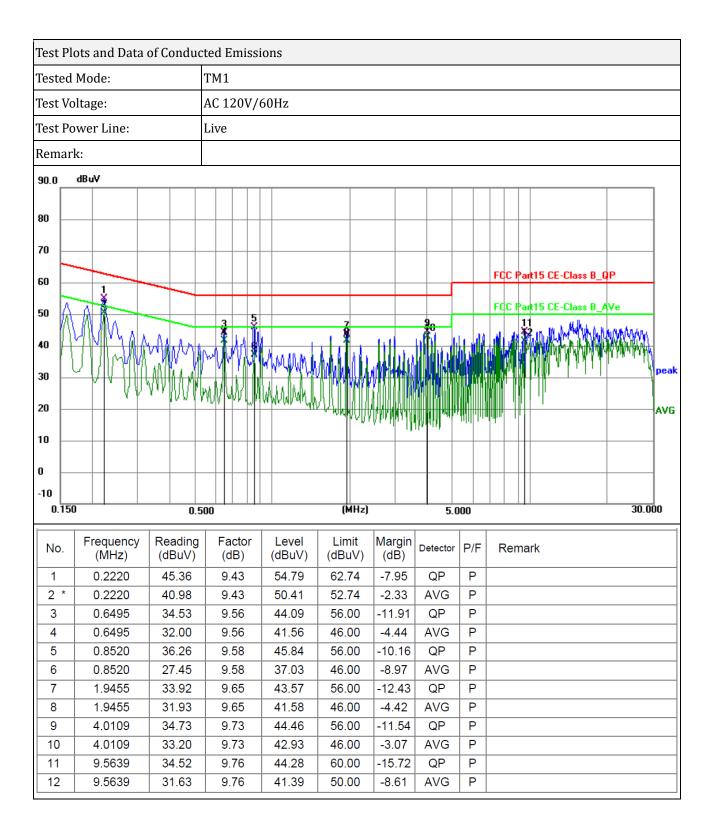
b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.


f) LISN is at least 80 cm from nearest part of EUT chassis.


g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

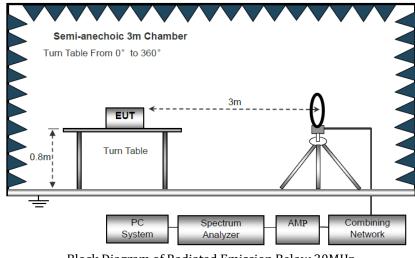
4.3 Test Data and Results

Based on all tested mode data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case TM1 as below:

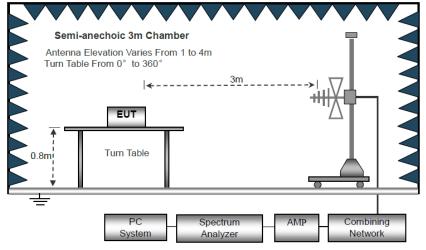
Remark: Level = Reading + Factor, Margin = Level - Limit

5. Radiated Emissions

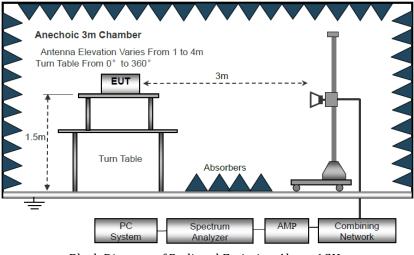
5.1 Standard and Limit


According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

Frequency of Emission	Field Strength	Measurement Distance			
(MHz)	(micorvolts/meter)	(meters)			
0.009~0.490	2400/F(kHz)	300			
0.490~1.705	24000/F(kHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			
Note: The more stringent limit applies at transition frequencies.					


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure


Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

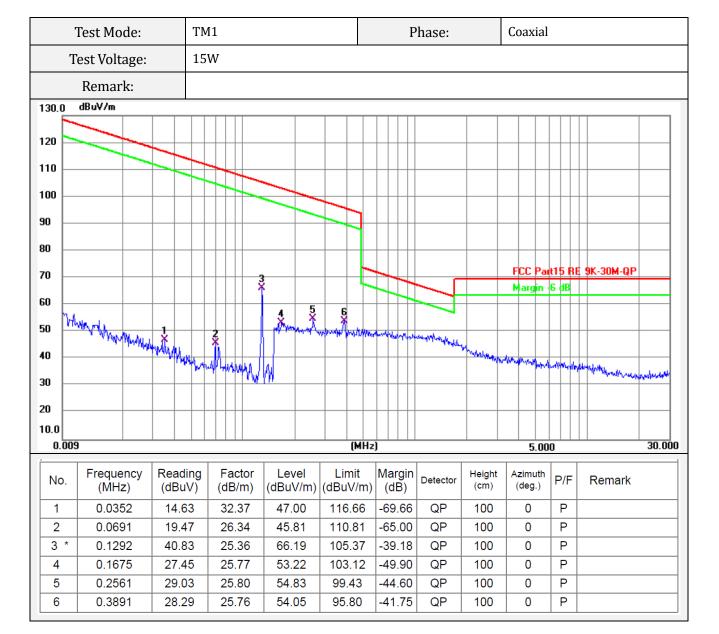
Block Diagram of Radiated Emission Above 1GHz

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range below 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

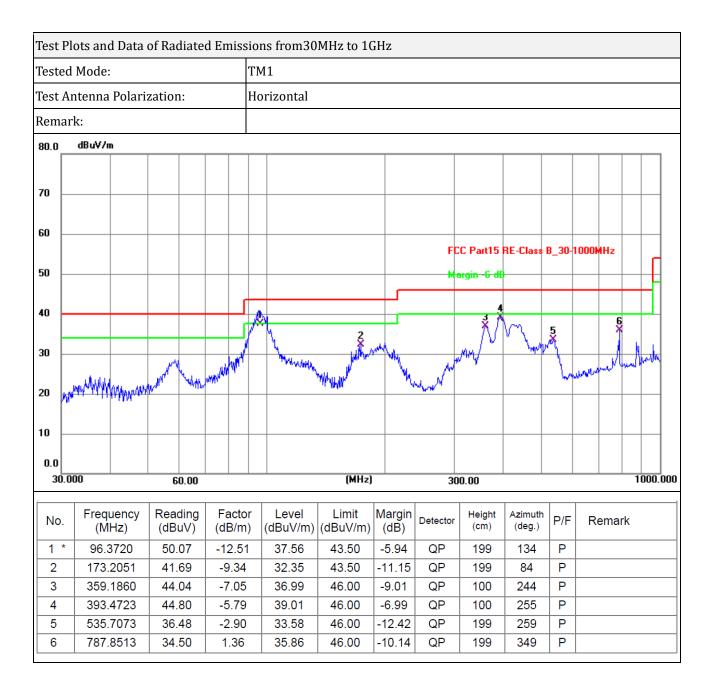
d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

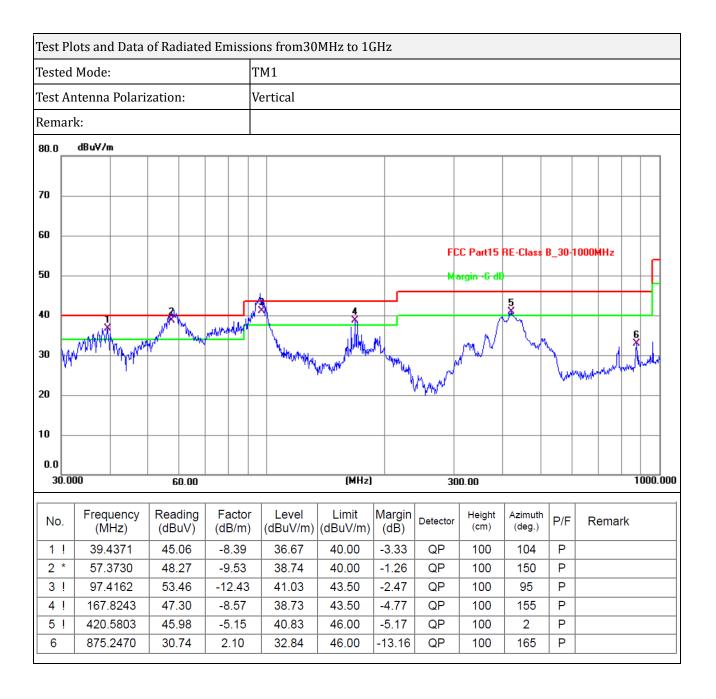

e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.

f) For the actual test configuration, please refer to the related item - EUT test photos.

5.3 Test Data and Results

Based on all mode tested data, the EUT complied with the FCC Part 15.209 standard limit for a wireless device, and with the worst case TM1 as below:


Test I	Data of Radiat	ed Emissic	ons from9k	Hz to 30M	IHz							
	Test Mode:	TM	11			Ph	ase:	C	oplaner			
	Test Voltage:	15	W									
	Remark:											
130.0	dBu¥/m											_
120												
110												
100												
90												
80												
70 -									FCC Parl	15 RE	9K-30M-QP	
			3	:			\sim		Margin (6 dB		
60 -	Material way			purthy the the	5 6							
50	way all when we are	llow at a	2	month	rown warman	for the state of t	yent month					
40 -		" MARANA	WW marry h	+				Min when the stands		when	Multi	
30 -				MM							Murtukan	Window
20												
10.0												
0.0	09				(MHz)			5.000)		30.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark	
1	0.0128	19.07	35.66	54.73	125.44	-70.71	QP	100	360	Ρ		
2	0.0721	18.63	26.21	44.84	110.44	-65.60	QP	100	360	P		
3	0.1274	39.02 27.99	25.39 25.79	64.41 53.78	105.49 99.52	-41.08 -45.74	QP QP	100 100	360 360	P P		
5	0.3850	27.33	25.76	53.49	95.89	-42.40	QP	100	360	P		
6 *	_	24.98	25.63	50.61	73.50	-22.89	QP	100	360	Р		



Note:

Pre-scan in the all of mode, the worst case in of was recorded. Limit dBuV/m @3m = Limit dBuV/m @300m+ 80 Limit dBuV/m @3m = Limit dBuV/m @30m + 40 Margin = Reading - Limit.

Page 19 of 23

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: For 9kHz-30MHz, Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

Note 4: Level = Reading + Factor, Margin = Level – Limit.

6. Occupied Bandwidth

6.1 Standard and Limit

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

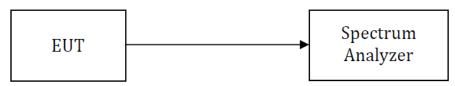
6.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

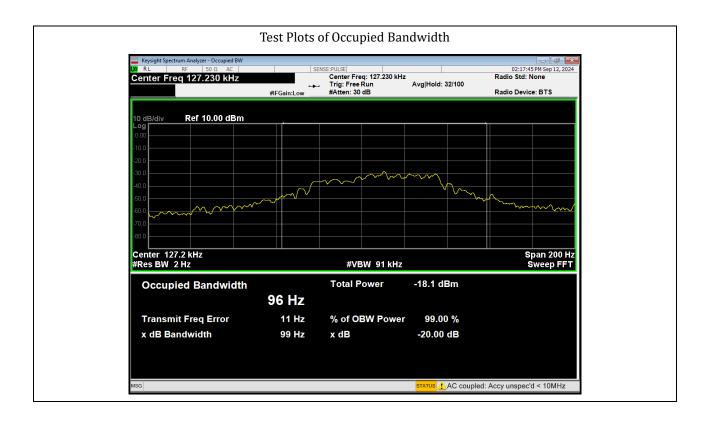
3) Set RBW = 1% of the 20 dB bandwidth, VBW = RBW.


4) Set Sweep = Auto, Detector function = peak, Trace = max hold.

5) Set a reference level on the measuring instrument equal to the highest peak value.

6) Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level.

Record the frequency difference as the emission bandwidth.


All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down and 99% bandwidth of the emission.

Test Setup Block Diagram

6.3 Test Data and Results

Test Frequency	20dB Bandwidth	99% Bandwidth
127.2kHz	99Hz	96Hz

***** END OF REPORT *****