Plot 45 UMTS Band V Top Edge Middle (Distance 10mm) Date: 2022/6/26 Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.953$ S/m; $\varepsilon_r = 39.762$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.30, 9.30, 9.30); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Top Edge Middle /Area Scan (4x8x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.368 W/kg Top Edge Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.08 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.399 W/kg SAR(1 g) = 0.362 W/kg; SAR(10 g) = 0.211 W/kg Maximum value of SAR (measured) = 0.370 W/kg #### Plot 46 LTE Band 2 50%RB Bottom Edge Middle (Distance 10mm) Date: 2022/6/22 Communication System: UID 0, LTE (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.42$ S/m; $\epsilon_r = 38.948$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.88, 7.88, 7.88); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Bottom Edge Middle/Area Scan (4x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.742 W/kg #### Bottom Edge Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.83 V/m; Power Drift = 0.022 dB Peak SAR (extrapolated) = 1.25 W/kg #### SAR(1 g) = 0.744 W/kg; SAR(10 g) = 0.402 W/kg Maximum value of SAR (measured) = 0.790 W/kg # Plot 47 LTE Band 4 1RB Top Edge High (Distance 10mm) Date: 2022/6/27 Communication System: UID 0, LTE (0); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.323$ S/m; $\epsilon_r = 39.378$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(8.22, 8.22, 8.22); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### **Top Edge High/Area Scan (4x8x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.961 W/kg #### Top Edge High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.09 V/m; Power Drift = 0.021 dB Peak SAR (extrapolated) = 1.64 W/kg #### SAR(1 g) = 0.944 W/kg; SAR(10 g) = 0.482 W/kg Maximum value of SAR (measured) = 1.04 W/kg # Plot 48 LTE Band 5 1RB Front Side High (Distance 10mm) Date: 2022/6/26 Communication System: UID 0, LTE (0); Frequency: 844 MHz; Duty Cycle: 1:1 Medium parameters used: f = 844 MHz; $\sigma = 0.958$ S/m; $\epsilon_r = 39.728$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.30, 9.30, 9.30); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Front Side High/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.615 W/kg #### Front Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.25 V/m; Power Drift =0.041 dB Peak SAR (extrapolated) = 0.969 W/kg #### SAR(1 g) = 0.495 W/kg; SAR(10 g) = 0.265 W/kg Maximum value of SAR (measured) = 0.631 W/kg # Plot 49 LTE Band 7 1RB Front Side High (Distance 10mm) Date: 2022/7/2 Communication System: UID 0, LTE (0); Frequency: 2560 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2560 MHz; $\sigma = 1.971$ S/m; $\epsilon_r = 37.231$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.25, 7.25, 7.25); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Front Side High/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.926 W/kg #### Front Side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.67 V/m; Power Drift =-0.09 dB Peak SAR (extrapolated) = 1.43 W/kg #### SAR(1 g) = 0.895 W/kg; SAR(10 g) = 0.439 W/kg Maximum value of SAR (measured) = 0.980 W/kg # Plot 50 LTE Band 38 1RB Top Edge High (Distance 10mm) Date: 2022/7/2 Communication System: UID 0, LTE (0); Frequency: 2610 MHz; Duty Cycle: 1:1.58 Medium parameters used: f = 2610 MHz; $\sigma = 2.027$ S/m; $\epsilon_r = 37.056$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.25, 7.25, 7.25); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Top Edge High/Area Scan (5x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.821 W/kg #### Top Edge High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.660 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 1.86 W/kg #### SAR(1 g) = 0.814 W/kg; SAR(10 g) = 0.339 W/kg Maximum value of SAR (measured) = 0.839 W/kg # Plot 51 LTE Band 41 50%RB Top Edge Middle (Distance 10mm) Date: 2022/7/3 Communication System: UID 0, LTE (0); Frequency: 2593 MHz; Duty Cycle: 1:1.58 Medium parameters used: f = 2593 MHz; $\sigma = 1.984$ S/m; $\epsilon_r = 37.196$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.25, 7.25, 7.25); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Top Edge Middle/Area Scan (5x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.854 W/kg #### Top Edge Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.247 V/m; Power Drift = 0.087 dB Peak SAR (extrapolated) = 1.91 W/kg #### SAR(1 g) = 0.878 W/kg; SAR(10 g) = 0.386 W/kg Maximum value of SAR (measured) = 0.965 W/kg ### Plot 52 802.11b Back Side Low (Distance 10mm) Date: 2022/7/20 Communication System: UID 0, 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1.020 Medium parameters used: f = 2412 MHz; $\sigma = 1.801$ S/m; $\epsilon_r = 37.737$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.50, 7.50, 7.50); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Back Side Low/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.295 W/kg #### Back Side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.714 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.614 W/kg #### SAR(1 g) = 0.278 W/kg; SAR(10 g) = 0.139 W/kg Maximum value of SAR (measured) = 0.292 W/kg # Plot 53 Bluetooth Back Side Low (Distance 10mm) Date: 2022/7/20 Communication System: UID 0, BT (0); Frequency: 2402 MHz; Duty Cycle: 1:1.315 Medium parameters used: f = 2402 MHz; $\sigma = 1.789$ S/m; $\epsilon_r = 37.77$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.50, 7.50, 7.50); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Back Side Low/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.015 W/kg #### Back Side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.414 V/m; Power Drift = -0.160 dB Peak SAR (extrapolated) = 0.045 W/kg #### SAR(1 g) = 0.011 W/kg; SAR(10 g) = 0.005 W/kg Maximum value of SAR (measured) = 0.013 W/kg # Plot 54 UMTS Band II Bottom Edge Low (Distance 0mm) Date: 2022/6/22 Communication System: UID 0, WCDMA (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.4 \text{ S/m}$; $\epsilon_r = 39.04$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.88, 7.88, 7.88); Calibrated: 2021/8/12 Electronics:
DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Bottom Edge Low/Area Scan (4x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 7.99 W/kg #### Bottom Edge Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 48.04 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 15.0 W/kg #### SAR(1 g) = 4.01 W/kg; SAR(10 g) = 1.88 W/kg Maximum value of SAR (measured) = 7.76 W/kg # Plot 55 UMTS Band IV Bottom Edge Middle (Distance 0mm) Date: 2022/6/24 Communication System: UID 0, WCDMA (0); Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.6 MHz; $\sigma = 1.312$ S/m; $\epsilon_r = 39.365$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(8.22, 8.22, 8.22); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Bottom Edge Middle/Area Scan (4x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 9.75 W/kg #### Bottom Edge Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.77 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 18.3 W/kg #### SAR(1 g) = 4.45 W/kg; SAR(10 g) = 2.02 W/kg Maximum value of SAR (measured) = 9.75 W/kg # Plot 56 LTE Band 2 1RB Bottom Edge Low (Distance 0mm) Date: 2022/6/22 Communication System: UID 0, LTE (0); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1860 MHz; $\sigma = 1.407$ S/m; $\epsilon_r = 39.071$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.88, 7.88, 7.88); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Bottom Edge Low/Area Scan (4x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 6.28 W/kg #### Bottom Edge Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 61.57 V/m; Power Drift = 0.047 dB Peak SAR (extrapolated) = 13.7 W/kg #### SAR(1 g) = 3.98 W/kg; SAR(10 g) = 1.84 W/kg Maximum value of SAR (measured) = 7.19 W/kg # Plot 57 LTE Band 4 1RB Bottom Edge Middle (Distance 0mm) Date: 2022/6/24 Communication System: UID 0, LTE (0); Frequency: 1720 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1720 MHz; $\sigma = 1.313 \text{ S/m}$; $\varepsilon_r = 39.384$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(8.22, 8.22, 8.22); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Bottom Edge Middle/Area Scan (4x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 8.64 W/kg #### Bottom Edge Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 69.43 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 17.9 W/kg #### SAR(1 g) = 3.86 W/kg; SAR(10 g) = 1.76 W/kg Maximum value of SAR (measured) = 9.72 W/kg # Plot 58 LTE Band 7 1RB Top Edge High (Distance 0mm) Date: 2022/7/4 Communication System: UID 0, LTE (0); Frequency: 2560 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2560 MHz; $\sigma = 1.971$ S/m; $\epsilon_r = 37.231$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.25, 7.25, 7.25); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Top Edge High/Area Scan (5x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 3.73 W/kg #### Top Edge High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.58 V/m; Power Drift = 0.027 dB Peak SAR (extrapolated) = 9.26 W/kg #### SAR(1 g) = 3.09 W/kg; SAR(10 g) = 1.26 W/kg Maximum value of SAR (measured) = 4.12 W/kg # Plot 59 LTE Band 38 1RB Top Edge High (Distance 0mm) Date: 2022/7/4 Communication System: UID 0, LTE (0); Frequency: 2610 MHz; Duty Cycle: 1:1.58 Medium parameters used: f = 2610 MHz; $\sigma = 2.027$ S/m; $\epsilon_r = 37.056$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.25, 7.25, 7.25); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Top Edge High/Area Scan (5x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 3.25 W/kg #### Top Edge High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.30 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 9.85 W/kg #### SAR(1 g) = 3.5 W/kg; SAR(10 g) = 1.2 W/kg Maximum value of SAR (measured) = 4.24 W/kg # Plot 60 LTE Band 41 1RB Top Edge Middle (Distance 0mm) Date: 2022/7/3 Communication System: UID 0, LTE (0); Frequency: 2593 MHz;Duty Cycle: 1:1.58 Medium parameters used: f = 2593 MHz; $\sigma = 2.063$ S/m; $\epsilon_r = 36.918$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.25, 7.25, 7.25); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Top Edge Middle/Area Scan (5x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 3.82 W/kg #### Top Edge Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.57 V/m; Power Drift = 0.193 dB Peak SAR (extrapolated) = 9.49 W/kg #### SAR(1 g) = 3.72 W/kg; SAR(10 g) = 1.25 W/kg Maximum value of SAR (measured) = 3.83 W/kg ### Plot 61 UMTS Band II Front Side Middle (Distance 10mm) Date: 2022/6/30 Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.42$ S/m; $\epsilon_r = 38.948$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.88, 7.88, 7.88); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Front Side Middle/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.486 W/kg #### Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.596 V/m; Power Drift = 0.043 dB Peak SAR (extrapolated) = 0.711 W/kg #### SAR(1 g) = 0.476 W/kg; SAR(10 g) = 0.279 W/kg Maximum value of SAR (measured) = 0.510 W/kg # Plot 62 UMTS Band IV Front Side Middle (Distance 10mm) Date: 2022/6/29 Communication System: UID 0, WCDMA (0); Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.6 MHz; $\sigma = 1.312$ S/m; $\epsilon_r = 39.365$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(8.22, 8.22, 8.22); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Front Side Middle/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.717 W/kg #### Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.48 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 1.12 W/kg #### SAR(1 g) = 0.684 W/kg; SAR(10 g) = 0.359 W/kg Maximum value of SAR (measured) = 0.790 W/kg # Plot 63 UMTS Band V Front Side Middle (Distance 10mm) Date: 2022/6/25 Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.953$ S/m; $\epsilon_r = 39.762$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.30, 9.30, 9.30); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Front Side Middle/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.201 W/kg #### Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.884 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.326 W/kg #### SAR(1
g) = 0.198 W/kg; SAR(10 g) = 0.130 W/kg Maximum value of SAR (measured) = 0.256 W/kg # Plot 64 LTE Band 2 1RB Front Side High (Distance 10mm) Date: 2022/6/21 Communication System: UID 0, LTE (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.434$ S/m; $\epsilon_r = 38.861$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.88, 7.88, 7.88); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Front Side High/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.51 W/kg #### Front Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.04 V/m; Power Drift = 0.012 dB Peak SAR (extrapolated) = 0.798 W/kg #### SAR(1 g) = 0.509 W/kg; SAR(10 g) = 0.299 W/kg Maximum value of SAR (measured) = 0.51W/kg # Plot 65 LTE Band 5 1RB Front Side High (Distance 10mm) Date: 2022/6/25 Communication System: UID 0, LTE (0); Frequency: 844 MHz; Duty Cycle: 1:1 Medium parameters used: f = 844 MHz; $\sigma = 0.958$ S/m; $\epsilon_r = 39.728$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.30, 9.30, 9.30); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Front Side High/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.615 W/kg #### Front Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.25 V/m; Power Drift = -0.101 dB Peak SAR (extrapolated) = 0.969 W/kg #### SAR(1 g) = 0.471 W/kg; SAR(10 g) = 0.245 W/kg Maximum value of SAR (measured) = 0.631 W/kg #### Plot 66 LTE Band 38 1RB Front Side High (Distance 10mm) Date: 2022/7/1 Communication System: UID 0, LTE (0); Frequency: 2610 MHz; Duty Cycle: 1:1.58 Medium parameters used: f = 2610 MHz; $\sigma = 2.027$ S/m; $\epsilon_r = 37.056$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.25, 7.25, 7.25); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Front Side High/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.493 W/kg #### Front Side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.045 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 1.12 W/kg # SAR(1 g) = 0.490 W/kg; SAR(10 g) = 0.243 W/kg Maximum value of SAR (measured) = 0.661 W/kg #### Plot 67 LTE Band 41 1RB Front Side Middle (Distance 10mm) Date: 2022/7/1 Communication System: UID 0, LTE (0); Frequency: 2593MHz; Duty Cycle: 1:1.58 Medium parameters used: f = 2593MHz; $\sigma = 2.063 \text{ S/m}$; $\epsilon_r = 36.918$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.25, 7.25, 7.25); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Front Side Middle/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.505 W/kg #### Front Side Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.360 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.46 W/kg #### SAR(1 g) = 0.497 W/kg; SAR(10 g) = 0.245 W/kg Maximum value of SAR (measured) = 0.510 W/kg # ANNEX D: Probe Calibration Certificate (SN: 3677) Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client TA(Shanghai) Report No.: R2207A0659-S1 Certificate No: Z21-60285 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN: 3677 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: August 12, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |--------------------------------------|------|-------------|--|-----------------------| | Power Meter NRP2 | | 101919 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Power sensor NRP-Z | 91 | 101547 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Power sensor NRP-Z91 101548 | | | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Reference 10dBAttenuator 18N50W-10dB | | | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | Reference 20dBAttenuator 18N50W-20d | | 18N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | Reference Probe EX3DV4 SN 3617 | | | 27-Jan-21(SPEAG, No.EX3-3617_Jan2 | 1) Jan-22 | | DAE4 | | SN 1556 | 15-Jan-21(SPEAG, No.DAE4-1556_Jan | 21) Jan-22 | | Secondary Standards ID# | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG3 | 700A | 6201052605 | 16-Jun-21(CTTL, No.J21X04467) | Jun-22 | | Network Analyzer E50 | 71C | MY46110673 | 21-Jan-21(CTTL, No.J20X00515) | Jan-22 | | | Nar | ne | Function | Signature | | Calibrated by: | Yu | Zongying | SAR Test Engineer | 1 | | Reviewed by: | Lin | Нао | SAR Test Engineer | 林治 | | Approved by: | Qi | Dianyuan | SAR Project Leader | 20/ | | | | | | J | Issued: August 14, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60285 Page 1 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx, y, z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)*, July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. -
Spherical isotropy (3D deviation from isotropy); in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z21-60285 Page 2 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cm # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3677 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |----------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²)A | 0.41 | 0.46 | 0.40 | ±10.0% | | DCP(mV) ^B | 99.3 | 101.9 | 101.5 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(k=2) | |------|------------------------------|---|---------|-----------|-----|---------|----------|---------------------------| | 0 CW | cw | Х | 0.0 | 0.0 | 1.0 | 0.00 | 158.2 | ±2.0% | | | | Υ | 0.0 | 0.0 | 1.0 | | 170.4 | - | | | | Z | 0.0 | 0.0 | 1.0 | | 156.9 | 7 | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z21-60285 Page 3 of 9 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3677 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct. | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------| | 750 | | - | 0.04 | 0.04 | 9.64 | 0.40 | 0.80 | (k=2) | | 750 | 41.9 | 0.89 | 9.64 | 9.64 | | | | ±12.1% | | 835 | 41.5 | 0.90 | 9.30 | 9.30 | 9.30 | 0.16 | 1.29 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.22 | 8.22 | 8.22 | 0.24 | 1.00 | ±12.1% | | 1900 | 40.0 | 1.40 | 7.88 | 7.88 | 7.88 | 0.24 | 1.10 | ±12.1% | | 2000 | 40.0 | 1.40 | 7.96 | 7.96 | 7.96 | 0.21 | 1.17 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.67 | 7.67 | 7.67 | 0.66 | 0.68 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.50 | 7.50 | 7.50 | 0.66 | 0.70 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.25 | 7.25 | 7.25 | 0.62 | 0.73 | ±12.1% | | 3300 | 38.2 | 2.71 | 7.00 | 7.00 | 7.00 | 0.45 | 0.94 | ±13.3% | | 3500 | 37.9 | 2.91 | 6.92 | 6.92 | 6.92 | 0.45 | 0.98 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.71 | 6.71 | 6.71 | 0.45 | 1.04 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.62 | 6.62 | 6.62 | 0.40 | 1.25 | ±13.3% | | 4100 | 37.2 | 3.53 | 6.66 | 6.66 | 6.66 | 0.30 | 1.38 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.43 | 6.43 | 6.43 | 0.35 | 1.35 | ±13.3% | | 4600 | 36.7 | 4.04 | 6.35 | 6.35 | 6.35 | 0.50 | 1.13 | ±13.3% | | 4800 | 36.4 | 4.25 | 6.30 | 6.30 | 6.30 | 0.45 | 1.25 | ±13.3% | | 4950 | 36.3 | 4.40 | 6.13 | 6.13 | 6.13 | 0.45 | 1.25 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.45 | 5.45 | 5.45 | 0.50 | 1.30 | ±13.3% | | 5600 | 35.5 | 5.07 | 5.00 | 5.00 | 5.00 | 0.60 | 1.15 | ±13.3% | | 5750 | 35.4 | 5.22 | 5.04 | 5.04 | 5.04 | 0.55 | 1.26 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z21-60285 Page 4 of 9 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Report No.: R2207A0659-S1 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z21-60285 Page 5 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM # f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z21-60285 Page 6 of 9 Report No.: R2207A0659-S1 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) SAR[mW/cm³] Certificate No:Z21-60285 Page 7 of 9 - - not compensated Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # **Conversion Factor Assessment** ### f=750 MHz,WGLS R9(H_convF) # f=1750 MHz,WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z21-60285 Page 8 of 9 In Collaboration with Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn CALIBRATION LABORATORY # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3677 #### Other Probe Parameters | Sensor Arrangement | Triangular | | | |---|------------|--|--| | Connector Angle (°) | 117.4 | | | | Mechanical Surface Detection Mode | enable | | | | Optical Surface Detection Mode | disable | | | | Probe Overall Length | 337mm | | | | Probe Body Diameter | 10mm | | | | Tip Length | 9mm | | | | Tip Diameter | 2.5mm | | | | Probe Tip to Sensor X Calibration Point | 1mm | | | | Probe Tip to Sensor Y Calibration Point | 1mm | | | | Probe Tip to Sensor Z Calibration Point | 1mm | | | | Recommended Measurement Distance from Surface | 1.4mm | | | Certificate No:Z21-60285 Page 9 of 9 # ANNEX E: Probe Calibration Certificate (SN: 7543) Tel. +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl a chinattl.com Http: www.chinattl.cn Certificate No: Z21-60417 Report No.: R2207A0659-S1 # CALIBRATION CERTIFICATE Object EX3DV4 - SN: 7543 TA(Shanghai) Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: Client December 28, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | 1 | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
--|-------------------------|--|---|--| | Power Meter NRP2 Power sensor NRP- Power sensor NRP- Reference 10dBAtte Reference 20dBAtte Reference Probe EX DAE4 | Z91
nuator
nuator | 101919
101547
101548
18N50W-10dB
18N50W-20dB
SN 3617
SN 1555 | 15-Jun-21(CTTL, No.J21X04466)
15-Jun-21(CTTL, No.J21X04466)
15-Jun-21(CTTL, No.J21X04466)
10-Feb-20(CTTL, No.J20X00525)
10-Feb-20(CTTL, No.J20X00526)
27-Jan-21(SPEAG, No.EX3-3617_Jan2
20-Aug-21(SPEAG, No.DAE4-1555_Aug | Jun-22
Jun-22
Jun-22
Feb-22
Feb-22
Jan-22 | | Secondary Standards | 14 | ID# | Cal Date(Calibrated by, Certificate No.) | 0.1.1.1.2.2.1 | | A second contract of the t | 3700A
5071C | 6201052605
MY46110673 | 16-Jun-21(CTTL, No.J21X04467)
21-Jan-21(CTTL, No.J20X00515) | Scheduled Calibration Jun-22 | | Calibrated by: | Yu | me
Zongying | Function SAR Test Engineer | Signature | | Reviewed by: | Lir | n Hao | SAR Test Engineer | 献光 | | Approved by: | Qi | Dianyuan | SAR Project Leader | So | | | Y | | | | Issued: December 30, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60417 Page 1 of 9 Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center). θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices Measurement Techniques", June 2013 b) IEC 62209-1, *Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)*. July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010. d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z21-60417 Page 2 of 9 Tel. +86-10-62304633-2512 I-mail cttl a chinattl com Add No 52 Hua Yuan Bei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn # DASY/EASY – Parameters of Probe: EX3DV4 – SN:7543 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.62 | 0.69 | 0.55 | ±10.0% | | DCP(mV) ⁸ | 100.4 | 104.2 | 102.3 | | ### **Modulation Calibration Parameters** | UID | Communication
System Name | 1 | A
dB | B
dBõV | C | D
dB | VR
mV | Unc ^E
(k=2) | |------|------------------------------|---|---------|-----------|-----|---------|----------|---------------------------| | 0 CW | cw | X | 0.0 | 0.0 | 1.0 | 0.00 | 197.2 | ±2.7% | | | 124 | Y | 0.0 | 0.0 | 1.0 | | 206.6 | | | | | Z | 0.0 | 0.0 | 1.0 | | 180.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z21-60417 Page 3 of 9 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7543 # Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^c | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10,27 | 10.27 | 10.27 | 0.17 | 1.26 | ±12.1% | | 835 | 41.5 | 0.90 | 9.89 | 9.89 | 9.89 | 0.14 | 1.62 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.42 | 8.42 | 8.42 | 0.28 | 0.95 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.20 | 8.20 | 8.20 | 0.28 | 1.03 | ±12.1% | | 2000 | 40.0 | 1.40 | 8.23 | 8.23 | 8.23 | 0.26 | 1.08 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.68 | 7.68 | 7.68 | 0.62 | 0.70 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.49 | 7.49 | 7.49 | 0.68 | 0.69 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.24 | 7.24 | 7.24 | 0.50 | 0.81 | ±12.1% | | 3300 | 38.2 | 2.71 | 6.94 | 6.94 | 6.94 | 0.41 | 1.05 | ±13.3% | | 3500 | 37.9 | 2.91 | 6.79 | 6.79 | 6.79 | 0.43 | 1.03 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.51 | 6.51 | 6.51 | 0.44 | 1.01 |
±13.3% | | 3900 | 37.5 | 3.32 | 6.40 | 6.40 | 6.40 | 0.35 | 1.35 | ±13.3% | | 4100 | 37.2 | 3.53 | 6.49 | 6.49 | 6.49 | 0.40 | 1.15 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.32 | 6.32 | 6.32 | 0.35 | 1.35 | ±13.3% | | 4600 | 36.7 | 4.04 | 6.22 | 6.22 | 6.22 | 0.45 | 1.20 | ±13.3% | | 4800 | 36.4 | 4.25 | 6.16 | 6.16 | 6.16 | 0.45 | 1.20 | ±13.3% | | 4950 | 36.3 | 4.40 | 5.95 | 5.95 | 5.95 | 0.45 | 1.25 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.44 | 5.44 | 5.44 | 0.45 | 1.25 | ±13.3% | | 5600 | 35.5 | 5.07 | 4.81 | 4.81 | 4.81 | 0.55 | 1.20 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.94 | 4.94 | 4.94 | 0.55 | 1.25 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z21-60417 Page 4 of 9 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. General Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary AR Test Report No.: R2207A0659-S1 Add No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Iel. +86-10-62304633-2512 Fax. +86-10-62304633-2504 E-mail: cttl a chinattl com Hitp. www.chinattl.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z21-60417 Page 5 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn # Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM # f=1800 MHz, R22 Report No.: R2207A0659-S1 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z21-60417 Page 6 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No:Z21-60417 Page 7 of 9 R Test Report No.: R2207A0659-S1 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # **Conversion Factor Assessment** # f=750 MHz,WGLS R9(H_convF) # f=1750 MHz,WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z21-60417 Page 8 of 9 E-mail: cttl@chinattl.com Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7543 ### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 50.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z21-60417 Page 9 of 9 AR Test Report No.: R2207A0659-S1 # **ANNEX F: D835V2 Dipole Calibration Certificate** Client TA(Shanghai) Certificate No: Z20-60296 #### CALIBRATION CERTIFICATE Object D835V2 - SN: 4d020 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 28, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Reference Probe EX3DV4 | SN 3617 | 30-Jan-20(SPEAG,No.EX3-3617_Jan20) | Jan-21 | | DAE4 | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzer E5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | Calibrated | by: | | |------------|-----|--| | | | | Name Zhao Jing Function Signature Reviewed by: SAR Test Engineer Approved by: Lin Hao Qi Dianyuan SAR Test Engineer SAR Project Leader A THE Issued: September 3, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60296 Page 1 of 8 In Collaboration with CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cut@chinattl.com http://www.chinattl.cn Glossary: tissue simulating liquid TSL ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60296 Page 2 of 8 Add: No.51 Xueyuan Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.2 ± 6 % | 0.88 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | - | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.65 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250
mW input power | 1.57 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.37 W/kg ± 18.7 % (k=2) | # Body TSL parameters The following parameters a | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.0 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | 440 | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.42 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.76 W /kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.59 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.40 W/kg ± 18.7 % (k=2) | Page 3 of 8 Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.8Ω+ 1.73jΩ | |--------------------------------------|---------------| | Return Loss | - 26.2dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.0Ω- 2.47jΩ | |--------------------------------------|---------------| | Return Loss | - 26,2dB | #### General Antenna Parameters and Design | 258 ns | |--------| | 1.2 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | mandiactared by | 7.60 | Certificate No: Z20-60296 Page 4 of 8 Date: 08.28.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cu #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.877$ S/m; $\epsilon_r = 41.23$; $\rho = 1000$ kg/m³ Phantom section: Center Section **DASY5** Configuration: - Probe: EX3DV4 SN3617; ConvF(9.66, 9.66, 9.66) @ 835 MHz; Calibrated: 2020-01-30 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.09 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.46 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.57 W/kg Smallest distance from peaks to all points 3 dB below = 16.6 mm Ratio of SAR at M2 to SAR at M1 = 68.1% Maximum value of SAR (measured) = 3.12 W/kg 0 dB = 3.12 W/kg = 4.94 dBW/kg Page 5 of 8 Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Page 6 of 8 Date: 08.28.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.958$ S/m; $\epsilon_r = 55.02$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.53, 9.53, 9.53) @ 835 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.88 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.65 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.59 W/kg Smallest distance from peaks to all points 3 dB below = 15.8 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 3.24 W/kg 0 dB = 3.24 W/kg = 5.11 dBW/kg Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Body TSL Certificate No: Z20-60296 Page 8 of 8 # **ANNEX G: D1750V2 Dipole Calibration Certificate** TA(Shanghai) Certificate No: Z20-60079 Client #### CALIBRATION CERTIFICATE Object D1750V2 - SN: 1033 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: Feburary 25, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Power sensor NRP6A | 101369 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Reference Probe EX3DV4 | SN 3846 | 25-Mar-19(CTTL-SPEAG,No.Z19-60064) | Mar-20 | | DAE4 | SN 1555 | 22-Aug-19(CTTL-SPEAG,No.Z19-60295) | Aug-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 10-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzer E5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|--| | Calibrated by: | Zhao Jing | SAR Test Engineer | | | Reviewed by: | Lin Hao | SAR Test Engineer | 三 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | The state of s | | | | Iss | sued: Feburary 29, 2020 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60079 Page 1 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com Glossary: tissue simulating liquid TSL sensitivity in TSL / NORMx,y,z ConvF not applicable or not measured N/A #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended
Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60079 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **Measurement Conditions** | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.1 ± 6 % | 1.35 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | _ | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 8.93 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 35.9 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.71 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 18.9 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.4 ± 6 % | 1.48 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.24 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 36.9 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 4.95 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.8 W/kg ± 18.7 % (k=2) | Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.8Ω- 0.06 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 38.3 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 44.5Ω- 0.85 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 24.5 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.085 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: Z20-60079 Page 4 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Date: 02.25.2020 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.349$ S/m; $\varepsilon_r = 39.06$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(8.2, 8.2, 8.2) @ 1750 MHz; Calibrated: 2019-03-25 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 2019-08-22 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.26 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.9 W/kg #### SAR(1 g) = 8.93 W/kg; SAR(10 g) = 4.71 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.5% Maximum value of SAR (measured) = 13.9 W/kg 0 dB = 13.9 W/kg = 11.43 dBW/kg Certificate No: Z20-60079 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Page 6 of 8 Date: 02.25.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.482$ S/m; $\epsilon_r = 52.35$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(7.8, 7.8, 7.8) @ 1750 MHz; Calibrated: 2019-03-25 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 2019-08-22 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.32 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.24 W/kg; SAR(10 g) = 4.95 W/kg Smallest distance from peaks to all points 3 dB below = 9.2 mm Ratio of SAR at M2 to SAR at M1 = 56% Maximum value of SAR (measured) = 14.1 W/kg 0 dB = 14.1 W/kg = 11.49 dBW/kg Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Impedance Measurement Plot for Body TSL Certificate No: Z20-60079 Page 8 of 8 ANNEX H: D1900V2 Dipole Calibration Certificate Client TA(Shanghai) Certificate No: Z20-60297 Report No.: R2207A0659-S1 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d060 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 27, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment
temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Reference Probe EX3DV4 | SN 3617 | 30-Jan-20(SPEAG,No.EX3-3617_Jan20) | Jan-21 | | DAE4 | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzer E5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | | | | Calibrated by: Name Zhao Jing Function Signature Reviewed by: Lin Hao Qi Dianyuan SAR Test Engineer SAR Project Leader Approved by: SAR Test Engineer Sura Issued: September 3, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60297 Page 1 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60297 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn # **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | V52,10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | - | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.5 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.2 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.5 ± 6 % | 1.51 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | - | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.89 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.13 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.6 W/kg ± 18.7 % (k=2) | Page 3 of 8 Add: No.51 Xueyuan Rood, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: enl@chinattl.eno http://www.chinattl.en In Collaboration with # Appendix (Additional assessments outside the scope of CNAS L0570) ALIERATION LABORATORY # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.5Q+ 6.58jQ | |--------------------------------------|---------------| | Return Loss | - 23 3dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.0Ω+ 6,72jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.9dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.061 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z20-60297 Page 4 of 8 Date: 08.27.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.404 \text{ S/m}$; $\varepsilon_r = 41.12$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.3 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 9.82 W/kg; SAR(10 g) = 5.04 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 51.9% Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg Certificate No: Z20-60297 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Page 6 of 8 Add: No.51 Xueyaan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com littp://www.chinattl.com DASY5 Validation Report for Body TSL Date: 08.27.2020 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.508 S/m; ε_r = 53.5; ρ = 1000 kg/m3 Phantom section:
Right Section **DASY5 Configuration:** - Probe: EX3DV4 SN3617; ConvF(7.94, 7.94, 7.94) @ 1900 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - · Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.34 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.89 W/kg; SAR(10 g) = 5.13 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 55.4% Maximum value of SAR (measured) = 15.3 W/kg 0 dB = 15.3 W/kg = 11.85 dBW/kg Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en # Impedance Measurement Plot for Body TSL Page 8 of 8 # **ANNEX I: D2450V2 Dipole Calibration Certificate** Z20-60298 Certificate No: TA(Shanghai) Client #### CALIBRATION CERTIFICATE Object D2450V2 - SN: 786 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 27, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Reference Probe EX3DV4 | SN 3617 | 30-Jan-20(SPEAG,No.EX3-3617_Jan20) | Jan-21 | | DAE4 | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzer E5071C | MY46107873 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | | | | | | Function | Signature | |-------------|--------------------|---------------------------| | Zhao Jing | SAR Test Engineer | Market III de | | Lin Hao | SAR Test Engineer | 横路 | | Qi Dianyuan | SAR Project Leader | 122 | | | Lin Hao | Lin Hao SAR Test Engineer | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60298 Page 1 of 8 In Collaboration with p е CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx, v, z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", September 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60298 Page 2 of 8 **SAR Test Report** In Collaboration with #### s p e CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **Measurement Conditions** | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.5 ± 6 % | 1.79 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | eine : | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13,0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.3 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.99 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6 % | 1.94 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | - | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 52.4 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.08 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.3 W/kg ± 18.7 % (k=2) | Certificate No: Z20-60298 Page 3 of 8 In Collaboration with e CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.5Ω+ 1.44 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 26.9dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.9Ω+ 5.09 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 25.8dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.018 ns |
--|----------| | the state of s | 1.010113 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z20-60298 Page 4 of 8 Date: 08.27.2020 In Collaboration with S P e a g Add: No.51 Xueyuan Road, Haldlan District, Heijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.787$ S/m; $\varepsilon_f = 39.53$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.65, 7.65, 7.65) @ 2450 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.7 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 5.99 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 47% Maximum value of SAR (measured) = 22.0 W/kg 0 dB = 22.0 W/kg = 13.42 dBW/kg Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Page 6 of 8 In Collaboration with S P e a g CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; α = 1.938 S/m; ε_t = 52.06; ρ = 1000 kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.76, 7.76, 7.76) @ 2450 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.9 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.08 W/kg Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 49.9% Maximum value of SAR (measured) = 21.8 W/kg 0 dB = 21.8 W/kg = 13.38 dBW/kg Certificate No: Z20-60298 Page 7 of 8 Report No.: R2207A0659-S1 Date: 08.27.2020 Add; No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en # Impedance Measurement Plot for Body TSL Certificate No: Z20-60298 Page 8 of 8 AR Test Report Report No.: R2207A0659-S1 # **ANNEX J: D2600V2 Dipole Calibration Certificate** TA(Shanghai) Certificate No: Z21-60156 CALIBRATION CERTIFICATE Object D2600V2 - SN: 1025 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: April 23, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22±3)% and humidity<70% Calibration Equipment used (M&TE critical for calibration) Primary Standards ID) # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRP2 106276 12-May-20 (CTTL, No.J20X02965) May-21 Power sensor NRP6A 101369 12-May-20 (CTTL, No.J20X02965) May-21 SN 3617 Reference Probe EX3DV4 27-Jan-21(SPEAG, No. EX3-3617 Jan21) Jan-22 DAE4 SN 777 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Jan-22 Secondary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C 01-Feb-21 (CTTL, No.J21X00593) MY49071430 Jan-22 Network Analyzer E5071C MY46110673 14-Jan-21 (CTTL, No.J21X00232) Jan-22 Name Function Calibrated by: SAR Test Engineer Zhao Jing Reviewed by: Lin Hao SAR Test Engineer Approved by Qi Dianyuan SAR Project Leader Issued: April 29, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z21-60156 Page 1 of 6 Add: No.52 HuaYuanBei Road, Haidian Distriet, Beijing, 100101, China lel: *86-10-62304633-2079 Fax: *86-10-62304633-2504 http://www.chinartl.co Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013. "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices. Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1; Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported
uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60156 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cm Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com Measurement Conditions DASY system configuration, as far as not given on page 1. DASY Version DASY52 V52 10.4 Extrapolation Advanced Extrapolation Phantom Triple Flat Phantom 5 1C Distance Dipole Center - TSL 10 mm with Spacer Zoom Scan Resolution dx, dy, dz = 5 mm Frequency 2600 MHz ± 1 MHz #### Head TSL parameters The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.9 ± 6 % | 1.94 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | _ | #### SAR result with Head TSL | SAR averaged over 1 cm (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.1 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60156 Page 3 of 6 Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com ### Appendix(Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.1Ω- 7.19)Ω | | |--------------------------------------|---------------|--| | Return Loss | - 22 9dB | | #### General Antenna Parameters and Design | - Control of the Cont | | _ | |--|----------|---| | Electrical Delay (one direction) | 1.055 ns | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manus Control of the | | |----------------------|--------| | Manufactured by | SPEAG | | | SI LAG | | | | Certificate No: Z21-60156 Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fux: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com http://www.chinattl.cn DASY5 Validation Report for Head TSL Date: 04.23.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1025 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.944 \text{ S/m}$; $\varepsilon_i = 39.94$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.55, 7.55, 7.55) @ 2600 MHz; Calibrated: 2021-01-27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2021-01-08 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4): SEMCAD X Version 14.6.14 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.1 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 44% Maximum value of SAR (measured) = 24.4 W/kg 0 dB = 24.4 W/kg = 13.87 dBW/kg Certificate No: Z21-60156 Page 5 of 6 #### Impedance Measurement Plot for Head TSL Certificate No: Z21-60156 Page 6 of 6 # **ANNEX K: DAE4 Calibration Certificate (SN: 1692)** Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Report No.: R2207A0659-S1 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TA-SH (Auden) Accreditation No.: SCS 0108 Certificate No: DAE4-1692 Oct21 | CALIBRATION | CERTIFICATE | | | |-----------------------------------|--|---|---| | Object | DAE4 - SD 000 D | 04 BO - SN: 1692 | | | Calibration procedure(s) | QA CAL-06.v30
Calibration proces | dure for the data acquisition elec | ctronics (DAE) | | Calibration date: | October 04, 2021 | | | | All calibrations have been conduc | cted in the closed laboratory | nal standards, which realize the physical unbability are given on the following pages and tacility: environment temperature (22 \pm 3)° | nd are part of the certificate. | | Calibration Equipment used (M&) | 4.5 | derrica a ser | | | Ceithley Multimeter Type 2001 | ID #
SN: 0810278 | Cal Date (Certificate No.)
31-Aug-21 (No:31368) | Scheduled Calibration | | econdary Standards | has a | 27 (10.01000) | Aug-22 | | auto DAE Calibration Unit | ID #
SE UWS 053 AA 1001
SE UMS 006 AA 1002 | Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check) | Scheduled Check In house check: Jan-22 In house check: Jan-22 | | | Name | Function | Signature | | calibrated by: | Adrian Gehring | Laboratory Technician | | | | Sven Kühn | Deputy Manager | i.V. Blume | | pproved by: | | | | | pproved by: | | ull without written approval of the laboratory | Secured: October 4, 2024 | Certificate No: DAE4-1692_Oct21 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Report No.: R2207A0659-S1 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 #### Glossary DAE data acquisition electronics information used in DASY system to align probe sensor X to the robot Connector angle coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in
this - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1692_Oct21 Page 2 of 5 # DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = full range = -100...+300 mV full range = -1......+3mV 6.1μV , Low Range: 1LSB = 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.451 ± 0.02% (k=2) | 404.531 ± 0.02% (k=2) | 404.388 ± 0.02% (k=2) | | | | 4.00333 ± 1.50% (k=2) | | #### **Connector Angle** | | Connector Angle to be used in DASY system | 334.5°±1° | |--|---|-----------| |--|---|-----------| Certificate No: DAE4-1692_Oct21 Page 3 of 5 SAR Test Report Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199998.31 | 2.10 | 0.00 | | Channel X + Input | 20004.35 | 2.07 | 0.01 | | Channel X - Input | -19997,45 | 4.22 | -0.02 | | Channel Y + Input | 199996.63 | 0.87 | 0.00 | | Channel Y + Input | 20001.14 | -1.08 | -0.01 | | Channel Y - Input | -20002.28 | -0.47 | 0.00 | | Channel Z + Input | 199998.12 | 1.98 | 0.00 | | Channel Z + Input | 20002.54 | 0.26 | 0.00 | | Channel Z - Input | -20001.19 | 0.53 | -0.00 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.64 | 0.32 | 0.02 | | Channel X + Input | 202.20 | 0.58 | 0.29 | | Channel X - Input | -197.54 | 0.78 | -0.39 | | Channel Y + Input | 1999.35 | -1.87 | -0.09 | | Channel Y + Input | 200.36 | -1.25 | -0.62 | | Channel Y - Input | -199.29 | -0.98 | 0.49 | | Channel Z + Input | 2000.89 | -0.32 | -0.02 | | Channel Z + Input | 200.91 | -0.59 | -0.29 | | Channel Z - Input | -199.57 | -1.16 | 0.58 | #### 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 15.85 | 13.56 | | | - 200 | -12.16 | -14.19 | | Channel Y | 200 | 21.51 | 20.97 | | | - 200 | -24.04 | -24.35 | | Channel Z | 200 | -6.87 | -7.13 | | | - 200 | 6.28 | 5.75 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (µV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | -0.88 | -2.39 | | Channel Y | 200 | 6.27 | | 2.31 | | Channel Z | 200 | 8.86 | 3.02 | | Certificate No: DAE4-1692_Oct21 Page 4 of 5 R Test Report No.: R2207A0659-S1 # 4. AD-Converter Values with Inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15949 | 15587 | | Channel Y | 15899 | 16465 | | Channel Z | 15625 | 15999 | # 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 1.24 | -0.39 | 2.50 | 0.44 | | Channel Y | -0.70 | -1.86 | 0.77 | 0.48 | | Channel Z | -0.23 | -1.42 | 0.54 | 0.37 | ### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-1692_Oct21 Page 5 of 5 # ANNEX L: DAE4 Calibration Certificate (SN: 1291) Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 Http://www.chinattl.cn Certificate No: Z22-60098 #### TA(Shanghai) Client : CALIBRATION CERTIFICATE Object DAE4 - SN: 1291 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics Calibration date: March 24, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 15-Jun-21 (CTTL, No.J21X04465) Jun-22 Name Function Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Certificate No: Z22-60098 Page 1 of 3 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Issued: March 28, 2022 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z22-60098 Page 2 of 3 In Collaboration with S. D. E. a. g. CALIBRATION LABORATORY Report No.: R2207A0659-S1 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### DC Voltage Measurement A/D - Converter Resolution nominal $\begin{array}{lll} \mbox{High Range:} & 1 \mbox{LSB} = & 6.1 \mu\mbox{V} \,, & \mbox{full range} = & -100...+300 \mbox{ mV} \\ \mbox{Low Range:} & 1 \mbox{LSB} = & 61 \mbox{nV} \,, & \mbox{full range} = & -1......+3 \mbox{mV} \\ \mbox{DASY measurement parameters:} & \mbox{Auto Zero Time: 3 sec;} & \mbox{Measuring time: 3 sec} \end{array}$ | Calibration Factors | x | Y | z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 402.577 ± 0.15% (k=2) | 403.249 ± 0.15% (k=2) | 403.164 ± 0.15% (k=2) | | Low Range | 3.97371 ± 0.7% (k=2) | 3.97778 ± 0.7% (k=2) | 3.97281 ± 0.7% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 167° ± 1 ° | |---|------------| | | | Certificate No: Z22-60098 Page 3 of 3 # **ANNEX M: The EUT Appearance** The EUT Appearance are submitted separately. # **ANNEX N: Test Setup Photos** The Test Setup Photos are submitted separately. # **ANNEX O: Product Change Description** The Product Change Description are submitted separately.