

FCC PART 15C TEST REPORT FOR CERTIFICATION On Behalf of

VTECH ELECTRONICS LTD

Karaoke Light Party

Model Number: 5817

Additional Model: 80-581700, 80-581703, 80-581704, 80-581705, 80-581707, 80-581722, 80-581723, 80-5817XX (XX=00~99)

FCC ID: G2R-5817

Applicant :	VTECH ELECTRONICS LTD				
Address:	ss: 23/F, TAI PING INDUSTRIAL CENTRE, BLOCK 1,				
	57 TING KOK ROAD, TAI PO, HONG KONG				
Prepared By:	EST Technology Co., Ltd.				
Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China					
	Tel: 86-769-83081888-808				

Report Number:	ESTE-R2505021
Date of Test:	Apr. 17, 2025 ~ May. 07, 2025
Date of Report:	May. 10, 2025

TABLE OF CONTENTS

Description	Page Page
Test Report Verification	3
1. GENERAL INFORMATION	5
1.1. Description of Device (EUT)	5
1.2. Antenna Information	
1.3. Information of RF Cable	5
2. SUMMARY OF TEST	6
2.1. Summary of test result	6
2.2. Test Facilities	7
2.3. Measurement uncertainty	8
2.4. Assistant equipment used for test	8
2.5. Block Diagram	
2.6. Test mode	9
2.7. Channel List	
2.8. Power Setting of Test Software	
2.9. Test Equipment	
3. MAXIMUM PEAK OUTPUT POWER	
3.1. Limit	
3.2. Test Setup	
3.3. Spectrum Analyzer Setting	
3.4. Test Procedure	
3.5. Test Result	
4. 20 DB BANDWIDTH	
4.1. Limit	
4.2. Test Setup	
4.3. Spectrum Analyzer Setting	
4.4. Test Procedure	
4.5. Test Result	
5. CARRIER FREQUENCY SEPARATION	
5.1. Limit	
5.2. Test Setup	
5.3. Spectrum Analyzer Setting	
5.4. Test Procedure	
5.5. Test Result	
6. NUMBER OF HOPPING CHANNEL	
6.1. Limit	
6.2. Test Setup	
6.3. Spectrum Analyzer Setting	
6.5. Test Result	
7. DWELL TIME	
7.1. Limit	
7.2. Test Setup	
7.3. Spectrum Analyzer Setting	1/

7.4. Test Procedure	17
7.5. Test Result	17
8. CONDUCTED BAND EDGE	18
8.1. Limit	18
8.2. Test Setup	18
8.3. Spectrum Analyzer Setting	18
8.4. Test Procedure	18
8.5. Test Result	18
9. CONDUCTED SPURIOUS EMISSIONS	19
9.1. Limit	19
9.2. Test Setup	19
9.3. Spectrum Analyzer Setting	19
9.4. Test Procedure	19
9.5. Test Result	19
10. RADIATED SPURIOUS EMISSIONS AND BAND EDGE	20
10.1. Limit	20
10.2. Test Setup	21
10.3. Spectrum Analyzer Setting	
10.4. Test Procedure	
10.5. Test Result	24
11. AC Power Line Conducted Emissions	36
11.1. Limit	36
11.2. Test Setup	36
11.3. Spectrum Analyzer Setting	
11.4. Test Procedure	
11.5. Test Result	38
12. Antenna Requirements	40
12.1. Limit	40
12.2. Test Result	40
13. Appendix	41
14. TEST SETUP PHOTO	42
15. EUT PHOTO	43

Applicant: Address:	VTECH ELECTRONICS LTD 23/F, TAI PING INDUSTRIAL CENTRE, BLOCK 1, 57 TING KOK ROAD, TAI PO, HONG KONG				
E.U.T:	Karaoke Light Party				
Model Number:	5817				
Additional Model:	80-581700, 80-581703, 80-581704, 80-581705, 80-581707, 80-581722, 80-581723, 80-5817XX (XX=00~99) Note: The model difference is the appearance, trademark and model number are different, and the others are the same.				
Power Supply:	DC 9V From Battery (6*1.5\ DC 12V From Adapter Input				
Trade Name:	VTech, LeapFrog	Serial No.:			
Date of Receipt:	Apr. 17, 2025	Date of Test:	Apr. 17, 2025 ~ May. 07, 2025		
Test Specification:	FCC Part 15 Subpart C (15: ANSI C63.10:2013 FCC KDB 558074 D01 15.2		e v05r02		
Test Result:	The device described above The measurement results we technology Co., Ltd. was accuracy and completeness report shows that the EUT FCC Rules and Regulations This report applies to above the technology of the te	ere contained in the assumed full see of these mead to be technically Part 15 Subpart (nis test report and EST responsibility for the surements. Also, this compliance with the compliance requirements.		
×	reproduced in part without to Ltd.				
		Date	e: May 10, 2025		
Prepared by: Zephyr Zhu	Reviewed by:		Approved by ?		
Zephyr Zhu / Assistan	t Seven Wang/ Engine	eer lo	eman Hu (Manager		
Other Aspects: N/A					

1.GENERAL INFORMATION

1.1.Description of Device (EUT)

Product Name	:	Karaoke Light Party
Model Number	:	5817
Software Version	:	N/A
Hardware Version	:	N/A
Operation frequency	:	2402MHz~2480MHz
Number of channel	:	79
Max Output Power (PEAK)	:	9.70dBm
Modulation Type	:	BT BDR(1Mbps): GFSK BT EDR(2Mbps): π/4-DQPSK
Sample Type	:	Prototype production

Note: For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

1.2.Antenna Information

Ant No.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	-	-	Internal	-	0

Note:

- 1. The antenna gain is declared by the customer and the laboratory is not responsible for the accuracy of the antenna gain.
- 2. The test results of this report only apply to the sample as received.

1.3.Information of RF Cable

Cable Loss(dB)	Provided by
1.0	VTECH ELECTRONICS LTD

Note:

- 1. The customer declared the loss value of the RF Cable. and the test results of this report only apply to the sample as received.
- 2. The laboratory is not responsible for the accuracy of the cable loss.

2.SUMMARY OF TEST

2.1.Summary of test result

No.	Description of Test Item	FCC Standard Section	Results
1	Maximum Peak Output Power	15.247(a)(1)	PASS
2	20dB Bandwidth	15.247(a)(1)	PASS
3	Carrier Frequency Separation	15.247(a)(1)	PASS
4	Number Of Hopping Channel	15.247(a)(1)(iii)	PASS
5	Dwell Time	15.247(a)(1)(iii)	PASS
6	Conducted Band Edge	15.247(d)	PASS
7	Conducted Spurious Emissions	15.247(d)	PASS
8	Radiated Spurious Emissions and Band Edge	15.205 15.209 15.247(d)	PASS
9	AC Power Line Conducted Emissions	15.207	PASS
10	Antenna Requirement	15.203	PASS

Note: "N/A" denotes test is not applicable in this test report.

2.2.Test Facilities

EMC Lab : Accredited by CNAS, CHINA

Registration No.: L5288

This Accreditation is valid until: November 12, 2029

Recognized by FCC, USA Designation Number: CN1215

This Recognition is valid until: January 31, 2026

Accredited by A2LA, USA Registration No.: 4366.01

This Accreditation is valid until: January 31, 2026

Recognized by Industry Canada CAB identifier No.: CN0035

This Recognition is valid until: January 31, 2026

Recognized by VCCI, Japan

Registration No.:C-14103; T-20073; R-13663;

R-20103; G-20097

Date of registration: Apr. 20, 2020

This Recognition is valid until: Apr. 19, 2026

Recognized by TUV Rheinland, Germany Registration No.: UA 50413872 0001 Date of registration: July 31, 2018

Recognized by Intertek

Registration No.: 2011-RTL-L2-64

Date of registration: November 08, 2018

Name of Firm : EST Technology Co., Ltd.

Site Location : Chilingxiang, Qishantou, Santun, Houjie, Dongguan,

Guangdong, China

2.3. Measurement uncertainty

Test Item	Uncertainty
Uncertainty for Conduction emission test	±3.48dB
Uncertainty for spurious emissions test (Below 30MHz)	±1.62 dB
Uncertainty for spurious emissions test	±4.60 dB(Polarize: H)
(30MHz-1GHz)	±4.68 dB(Polarize: V)
Uncertainty for spurious emissions test (1GHz to 25GHz)	±4.96dB
Uncertainty for radio frequency	7×10 ⁻⁸
Uncertainty for conducted RF Power	1.08dB
Uncertainty for Power density test	0.26dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately The 95% confidence level using a coverage factor of k=2.

2.4. Assistant equipment used for test

Item	Equipment	Brand	Model Name/Type No.	FCC ID	Series No.
-	-	-	-	-	-

Item	Shielded Type	Ferrite Core	Length	Note
-	-	-	-	-

2.5.Block Diagram

For radiated emissions test: EUT was placed on a turn table, which is 0.8 (or 1.5) meter high above ground. EUT was beset into Bluetooth test mode by software before test.

EUT

DC 9V

(EUT: Karaoke Light Party)

2.6.Test mode

Combining all the rates, modulations, and packet types, the Pre-scans had been carried out. The worst case test mode was selected for the final test as listed below.

Test Item	Modulation Type	Operating Mode	Packet Type	Test Channel
Maximum Peak Output Power	GFSK&π/4-DQ PSK	Non Hopping	DH5	Low/Middle/High
20dB Bandwidth	GFSK&π/4-DQ PSK	Non Hopping	DH5	Low/Middle/High
Carrier Frequency Separation	GFSK&π/4-DQ PSK	Hopping	DH5	Low/Middle/High
Number Of Hopping Channel	GFSK&π/4-DQ PSK	Hopping	DH5	All Channel Hopping
Dwell Time	GFSK&π/4-DQ PSK	Hopping	DH1/DH 3/DH5	Middle(All Channel Hopping)
Conducted Band Edge	GFSK&π/4-DQ PSK	Non Hopping&Hopping	DH5	Low/ High& All Channel Hopping
Conducted Spurious Emissions	GFSK&π/4-DQ PSK	Non Hopping	DH5	Low/Middle/High
Radiated Spurious Emissions(Below 1GHz)	GFSK&π/4-DQ PSK	Non Hopping	DH5	Low/Middle/High
Radiated Spurious Emissions(Above 1GHz)	GFSK&π/4-DQ PSK	Non Hopping	DH5	Low/Middle/High
Radiated Band Edge	GFSK&π/4-DQ PSK	Non Hopping	DH5	Low/High
AC Power Line Conducted Emissions	GFSK&π/4-DQ PSK K	Non Hopping	DH5	Low/Middle/High

Note: In radiated measurement, the EUT had been pre-scan on the positioned of each 3 axis(X,Y,Z), the worst case was found when positioned on **X-plane**.

2.7.Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

2.8. Power Setting of Test Software

Software Name	Button				
Frequency(MHz)	2402	2441	2480		
GFSK(1Mbps) Setting	7	7	7		
π/4-DQPSK(2Mbps)	7	7	7		

Note: This information is provided by the applicant.

2.9.Test Equipment

For conducted emission test						
Equipment	Manufacturer	Model No.	Serial No.	Calibration Body	Last Cal.	Next Cal.
EMI Test Receiver	Rohde & Schwarz	ESRP3	EST-E070	LISAI	June 11,24	June 10,25
Artificial Mains Network	Rohde & Schwarz	ENV216	EST-E048	LISAI	June 11,24	June 10,25
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	EST-E078	LISAI	June 11,24	June 10,25
Test Software	Audix	e3-6.111221a	N/A	N/A	N/A	N/A

For radiated emission test(9kHz-30MHz)						
Equipment	Manufacturer	Model No.	Serial No.	Calibration Body	Last Cal.	Next Cal.
EMI Test Receiver	Rohde & Schwarz	ESR7	EST-E047	LISAI	June 11,24	June 10,25
Active Loop Antenna	SCHWAREBE CK	FMZB 1519B	EST-E054	LISAI	June 11,24	June 10,25
Test Software	Audix	e3-6.111221a	N/A	N/A	N/A	N/A
9kHz-30MHz Cable	N/A	EST-001	N/A	N/A	N/A	N/A

For radiated emissions test (30MHz-1000MHz)						
Equipment	Manufacturer	Model No.	Serial No.	Calibration Body	Last Cal.	Next Cal.
EMI Test Receiver	Rohde & Schwarz	ESR7	EST-E047	LISAI	June 11,24	June 10,25
Bilog Antenna	Teseq	CBL 6111D	EST-E034	LISAI	June 11,24	June 10,25
Test Software	Audix	e3-6.111221a	N/A	N/A	N/A	N/A
30-1000MHz Cable	N/A	EST-002	N/A	N/A	N/A	N/A

For radiated emission test(Above 1000MHz)						
Equipment	Manufacturer	Model No.	Serial No.	Calibration Body	Last Cal.	Next Cal.
Horn Antenna	SCHWARZBE CK	BBHA9120D	EST-E144	LISAI	June 11,24	June 10,25
Horn Antenna	Com-Power	AHA-840	EST-E133	LISAI	June 11,24	June 10,25
Low Noise Amplifier	RF	TRLA-010180 G45N	EST-E142	LISAI	June 11,24	June 10,25
Spectrum Analyzer	Rohde &Schwarz	FSV40	EST-E069	LISAI	June 11,24	June 10,25
Test Software	Audix	e3-6.111221a	N/A	N/A	N/A	N/A
Above 1GHz Cable	N/A	EST-003	N/A	N/A	N/A	N/A

	For connect EUT antenna terminal test					
Equipment	Manufacturer	Model No.	Serial No.	Calibration Body	Last Cal.	Next Cal.
TS 1120	Tonscend	/	/	/	/	/
Test Software	Tonscend	JS1120-3	3.5.39	/	/	/
RF Control Unit	Tonscend	JS0806-2	EST-E134	LISAI	June 11,24	June 10,25
Signal and Spectrum Analyzer	Keysight	N9010B	EST-E141	LISAI	June 11,24	June 10,25

3. MAXIMUM PEAK OUTPUT POWER

3.1.Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

3.2.Test Setup

3.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	3MHz
VBW	3MHz
Span	7.5MHz
Sweep Time	Auto
Detector	Peak
Trace Mode	Max Hold

3.4.Test Procedure

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 3.3.
- c. Set the EUT transmit continuously with maximum output power over fixed single hopping channel.
- d. Allow trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission.
- e. Repeat above procedures until all channels and test modes were measured.
- f. Record the results in the test report.

3.5.Test Result

Refer to Appendix B of Appendix FCC ID BT (the test data).

4.20 DB BANDWIDTH

4.1.Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

4.2.Test Setup

4.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	30KHz
VBW	100KHz
Span	3MHz
Sweep Time	Auto
Detector	Peak
Trace Mode	Max Hold

4.4.Test Procedure

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 4.3.
- c. Set the EUT transmit continuously with maximum output power over fixed single hopping channel.
- d. Allow trace to stabilize, use the ndB down function to measure 20dB Bandwidth.
- e. Repeat above procedures until all channels and test modes were measured.
- f. Record the results in the test report.

4.5.Test Result

Refer to Appendix A of Appendix FCC ID BT (the test data).

5. CARRIER FREQUENCY SEPARATION

5.1.Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.2.Test Setup

5.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	30KHz
VBW	100KHz
Span	3MHz
Sweep Time	Auto
Detector	Peak
Trace Mode	Max Hold

5.4.Test Procedure

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 5.3.
- c. Set the EUT transmit continuously with maximum output power in all channel hopping mode.
- d. Allow trace to stabilize, use the marker-delta function to measure channel separation between two adjacent channels.
- e. Repeat above procedures until all channels and test modes were measured.
- f. Record the results in the test report.

5.5.Test Result

Refer to Appendix C of Appendix FCC ID BT (the test data).

6. NUMBER OF HOPPING CHANNEL

6.1.Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels

6.2.Test Setup

6.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	300KHz
VBW	300KHz
Start frequency	2400MHz
Stop frequency	2483.5MHz
Sweep Time	Auto
Detector	Peak
Trace Mode	Max Hold

6.4.Test Procedure

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 6.3.
- c. Set the EUT transmit continuously with maximum output power in all channel hopping mode.
- d. Allow trace to stabilize, use the marker-peak function to mark the first and last frequency hopping channel.
- e. Repeat above procedures until all test modes were measured.
- f. Record the results in the test report.

6.5.Test Result

Refer to Appendix E of Appendix FCC ID BT (the test data).

7.DWELL TIME

7.1.Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

7.2.Test Setup

7.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	1MHz
VBW	1MHz
Span	Zero
Detector	Peak
Sweep Time	2.5ms(DH1)/10ms(DH3)/20ms(DH5)
Sweep Mode	Single Sweep

7.4.Test Procedure

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 7.3.
- c. Set the EUT transmit continuously with maximum output power in all channel hopping mode.
- d. Allow trace to stabilize, use the marker-delta function to measure single pulse duration.
- e. Repeat above procedures until all test modes were measured.
- f. Record the results in the test report.

7.5.Test Result

Refer to Appendix D of Appendix FCC ID BT (the test data).

8.CONDUCTED BAND EDGE

8.1.Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

8.2.Test Setup

8.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	100KHz
VBW	300KHz
Span	100MHz
Sweep Time	Auto
Detector	Peak
Trace Mode	Max Hold

8.4.Test Procedure

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 8.3.
- c. Set the EUT transmit continuously with maximum output power over fixed single hopping channel.
- d. Allow trace to stabilize, use the marker function to mark the highest emission level outside the authorized band.
- e. Repeat above procedures until all channels and test modes were measured(including frequency hopping off and frequency hopping on).
- f. Record the results in the test report.

8.5.Test Result

Refer to Appendix H & F of Appendix FCC ID BT (the test data).

9. CONDUCTED SPURIOUS EMISSIONS

9.1.Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the ntentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

9.2.Test Setup

9.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	100KHz
VBW	300KHz
Start frequency	30MHz
Stop frequency	26.5GHz
Sweep Time	Auto
Detector	Peak
Trace Mode	Max Hold

9.4.Test Procedure

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 9.3.
- c. Set the EUT transmit continuously with maximum output power over fixed single hopping channel.
- d. Allow trace to stabilize, use the marker function to mark the highest emission level outside the authorized band.
- e. Repeat above procedures until all channels and test modes were measured.
- f. Record the results in the test report.

9.5.Test Result

Refer to Appendix H & G of Appendix FCC ID BT (the test data).

10. RADIATED SPURIOUS EMISSIONS AND BAND EDGE

10.1. Limit

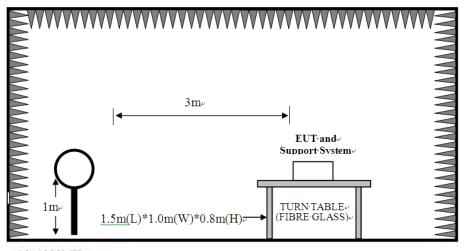
All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

15.205 Restricted frequency band

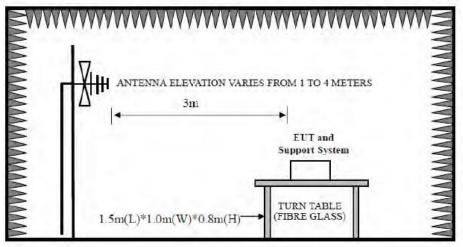
MHz	MHz MHz		GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

15.209 Limit

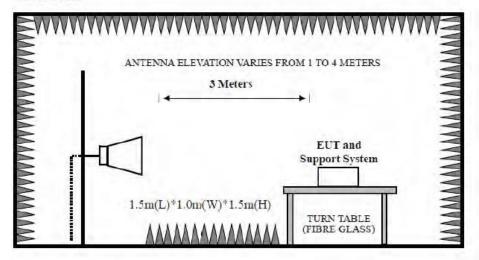
10:200 2:11110							
Frequency (MHz)	Field Strength(µV/m)	Distance(m)					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30	30	30					
30-88	100	3					
88-216	150	3					
216-960	200	3					
Above 960	500	3					


Note:

- (1) Emission level $dB\mu V = 20 \log Emission level \mu V/m$.
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.



10.2. Test Setup


9kHz~30MHz4

30~1000MHz

Above 1GHz

10.3. Spectrum Analyzer Setting

For 9KHz-150KHz

Spectrum Parameters	Setting
RBW	300Hz(for Peak&AVG)/CISPR 200Hz(for QP)
VBW	300Hz(for Peak&AVG)/CISPR 200Hz(for QP)
Start frequency	9KHz
Stop frequency	150KHz
Sweep Time	Auto
Detector	PEAK/QP/AVG
Trace Mode	Max Hold

For 150KHz-30MHz

Spectrum Parameters	Setting
RBW	9KHz
VBW	9KHz
Start frequency	150KHz
Stop frequency	30MHz
Sweep Time	Auto
Detector	QP
Trace Mode	Max Hold

For 30MHz-1GHz

Spectrum Parameters	Setting
RBW	120KHz
VBW	300KHz
Start frequency	30MHz
Stop frequency	1GHz
Sweep Time	Auto
Detector	QP
Trace Mode	Max Hold

For Above 1GHz

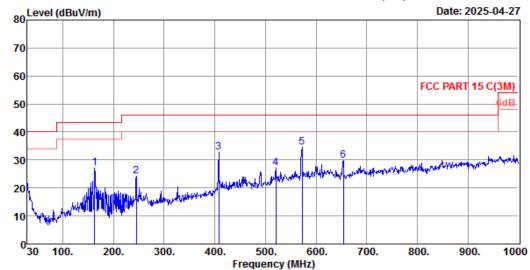
Spectrum Parameters	Setting					
RBW	1	MHz				
	PEAK Measurement	AVG Measurement				
VBW	2001-	Duty cycle≥98%,VBW=10Hz				
	3MHz	Duty cycle<98%,VBW≥1/T				
Start frequency	1GHz					
Stop frequency	25	5GHz				
Sweep Time	Auto					
Detector	PEAK					
Trace Mode	Ma	x Hold				

10.4. Test Procedure

- a. EUT was placed on a turn table, which is 0.8 meter high above ground for below 1GHz test, and which is 1.5 meter high above ground for above 1GHz test.
- b. EUT is set 3 meters away from the receiving antenna, which is mounted on a antenna tower.
- c. Set the EUT transmit continuously with maximum output power.
- d. The turn table can rotate 360 degrees to determine the position of the maximum emission level.
- e. The antenna can be moved up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.
- f. Spectrum analyzer setting parameters in accordance with section 10.3.
- g. Repeat above procedures until all channels and test modes were measured.
- h. Record the results in the test report.

Note:

- 1. For emissions above 1GHz, if peak level comply with average limit, then the average level is deemed to comply with average limit.
- 2. The frequency 2402MHz ,2441MHz and 2480MHz is fundamental frequency which no limit, the limit on plots is automatically generated by the software, it's not fundamental limit, we can't remove it.
- 3. GFSK, $\pi/4$ -DQPSK mode all have been tested, only worse case GFSK mode is reported.


10.5. Test Result

Radiated Emissions Below 1GHz

EST Technology

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

Data: 170 File: \\EMC-966-5\\Test Data2\\2025\\RF\\V\VTECH\\5817.EM6 (324)

Site no. : 5# 966 Chamber Data no. : 170
Dis. / Ant. : 3m 54681 Ant. pol. : VERTICAL

Limit : FCC PART 15 C(3M)

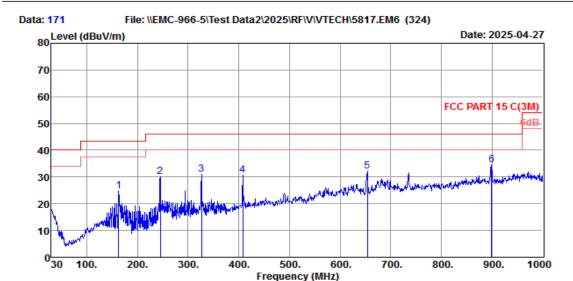
Env. / Ins. : Temp:23.8°C; Humi:54%; Press:101.1kPa

Engineer : Wind Li

EUT : Karaoke Light Party
Power : DC 9V From Battery

M/N : 5817 Test Mode : TX Mode

	Freq. (MHz)	ANT Factor (dB/m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	162.89	10.30	1.98	14.82	27.10	43.50	16.40	QP
2	245.34	12.30	2.71	9.19	24.20	46.00	21.80	QP
3	408.30	16.22	3.57	13.01	32.80	46.00	13.20	QP
4	520.82	18.18	4.07	4.79	27.04	46.00	18.96	QP
5	572.23	20.10	4.28	10.30	34.68	46.00	11.32	QP
6	653.71	20.50	4.60	4.70	29.80	46.00	16.20	QP


Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

2. Margin= Limit - Emission Level.

3. The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 171
Dis. / Ant. : 3m 54681 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 C(3M)

Env. / Ins. : Temp:23.8°C; Humi:54%; Press:101.1kPa

Engineer : Wind Li

EUT : Karaoke Light Party
Power : DC 9V From Battery

M/N : 5817 Test Mode : TX Mode

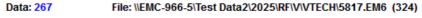
	Freq.	ANT Factor (dB/m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	162.89	10.30	1.98	12.41	24.69	43.50	18.81	QP
2	245.34	12.30	2.71	15.17	30.18	46.00	15.82	QP
3	326.82	13.74	3.16	14.08	30.98	46.00	15.02	QP
4	408.30	16.22	3.57	10.93	30.72	46.00	15.28	QP
5	653.71	20.50	4.60	7.17	32.27	46.00	13.73	QP
6	899.12	22.74	5.48	6.22	34.44	46.00	11.56	QP

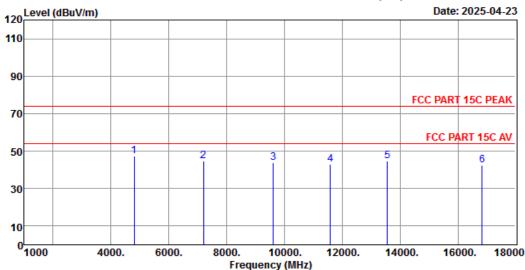
Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

2. Margin= Limit - Emission Level.

3. The emission levels that are 20dB below the official limit are not reported.

Note:


- 1. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 2. All test mode had been pre-test, only the worst case was reported.



Radiated Emissions Above 1G

EST Technology

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 267
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

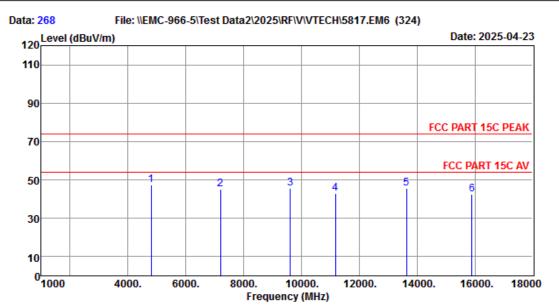
Env. / Ins. : Temp:19.5°C; Humi:51%; Press:101.55kPa

Engineer : Aron Zhang

EUT : Karaoke Light Party
Power : DC 9V From Battery

M/N : 5817

Test Mode : GFSK TX 2402MHz


	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	4804.00	33.10	6.80	43.17	50.61	47.34	74.00	26.66	Peak
2	7206.00	37.80	8.41	42.90	41.23	44.54	74.00	29.46	Peak
3	9608.00	38.40	9.55	41.94	37.80	43.81	74.00	30.19	Peak
4	11591.00	39.97	10.87	40.92	33.02	42.94	74.00	31.06	Peak
5	13563.00	40.97	11.29	39.90	32.49	44.85	74.00	29.15	Peak
6	16844.00	39.10	13.42	42.63	32.73	42.62	74.00	31.38	Peak

- 2. Margin= Limit Emission Level.
- The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888

Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 268

Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

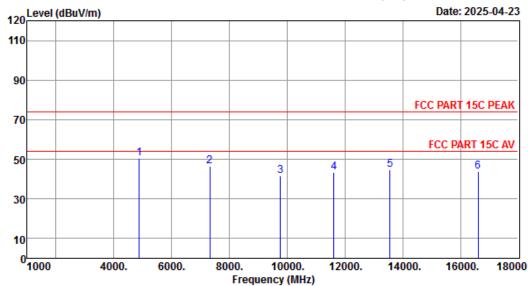
Env. / Ins. : Temp:19.5°C; Humi:51%; Press:101.55kPa

Engineer : Aron Zhang

EUT : Karaoke Light Party
Power : DC 9V From Battery

M/N : 5817

Test Mode : GFSK TX 2402MHz


	Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	4804.00	33.10	6.80	43.17	50.45	47.18	74.00	26.82	Peak
2	7206.00	37.80	8.41	42.90	41.81	45.12	74.00	28.88	Peak
3	9608.00	38.40	9.55	41.94	39.62	45.63	74.00	28.37	Peak
4	11183.00	39.30	10.67	41.04	33.88	42.81	74.00	31.19	Peak
5	13631.00	40.70	11.29	39.96	33.63	45.66	74.00	28.34	Peak
6	15892.00	36.50	12.17	42.76	36.81	42.72	74.00	31.28	Peak

- 2. Margin= Limit Emission Level.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 269
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:19.5°C;Humi:51%;Press:101.55kPa

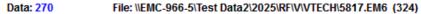
Engineer : Aron Zhang

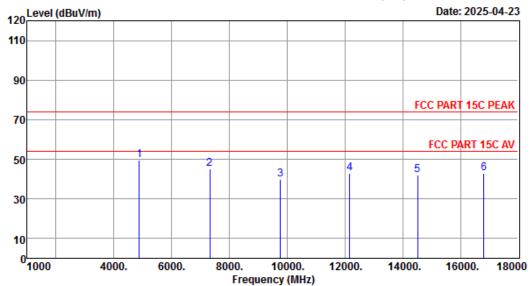
EUT : Karaoke Light Party
Power : DC 9V From Battery

M/N : 5817

Test Mode : GFSK TX 2441MHz

Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
4882.00	33.47	6.86	43.15	53.23	50.41	74.00	23.59	Peak
7323.00	36.83	8.44	42.90	43.97	46.34	74.00	27.66	Peak
9764.00	38.57	9.66	41.83	35.04	41.44	74.00	32.56	Peak
11625.00	39.78	10.89	40.91	33.57	43.33	74.00	30.67	Peak
13563.00	40.97	11.29	39.90	32.25	44.61	74.00	29.39	Peak
16606.00	39.90	13.10	42.68	33.56	43.88	74.00	30.12	Peak
	(MHz) 4882.00 7323.00 9764.00 11625.00 13563.00	Freq. Factor (MHz) (dB/m) 4882.00 33.47 7323.00 36.83 9764.00 38.57 11625.00 39.78 13563.00 40.97	Freq. Factor Loss (MHz) (dB/m) (dB) 4882.00 33.47 6.86 7323.00 36.83 8.44 9764.00 38.57 9.66 11625.00 39.78 10.89 13563.00 40.97 11.29	Freq. Factor Loss Factor (MHz) (dB/m) (dB) (dB) 4882.00 33.47 6.86 43.15 7323.00 36.83 8.44 42.90 9764.00 38.57 9.66 41.83 11625.00 39.78 10.89 40.91 13563.00 40.97 11.29 39.90	Freq. Factor Loss Factor Reading (MHz) (dB/m) (dB) (dB) (dB) (dBuV) 4882.00 33.47 6.86 43.15 53.23 7323.00 36.83 8.44 42.90 43.97 9764.00 38.57 9.66 41.83 35.04 11625.00 39.78 10.89 40.91 33.57 13563.00 40.97 11.29 39.90 32.25	Freq. Factor Loss Factor Reading Level (MHz) (dB/m) (dB) (dB) (dBuV) (dBuV/m) 4882.00 33.47 6.86 43.15 53.23 50.41 7323.00 36.83 8.44 42.90 43.97 46.34 9764.00 38.57 9.66 41.83 35.04 41.44 11625.00 39.78 10.89 40.91 33.57 43.33 13563.00 40.97 11.29 39.90 32.25 44.61	Freq. Factor Loss Factor Reading Level Limits (MHz) (dB/m) (dB) (dB) (dBuV) (dBuV/m) (dBuV/m) 4882.00 33.47 6.86 43.15 53.23 50.41 74.00 7323.00 36.83 8.44 42.90 43.97 46.34 74.00 9764.00 38.57 9.66 41.83 35.04 41.44 74.00 11625.00 39.78 10.89 40.91 33.57 43.33 74.00 13563.00 40.97 11.29 39.90 32.25 44.61 74.00	Freq. Factor Loss Factor Reading Level Limits Margin (MHz) (dB/m) (dB) (dB) (dBuV) (dBuV/m) (dBuV/m) (dB) 4882.00 33.47 6.86 43.15 53.23 50.41 74.00 23.59 7323.00 36.83 8.44 42.90 43.97 46.34 74.00 27.66 9764.00 38.57 9.66 41.83 35.04 41.44 74.00 32.56 11625.00 39.78 10.89 40.91 33.57 43.33 74.00 30.67 13563.00 40.97 11.29 39.90 32.25 44.61 74.00 29.39


Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.


2. Margin= Limit - Emission Level.

The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 270
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:19.5°C;Humi:51%;Press:101.55kPa

Engineer : Aron Zhang

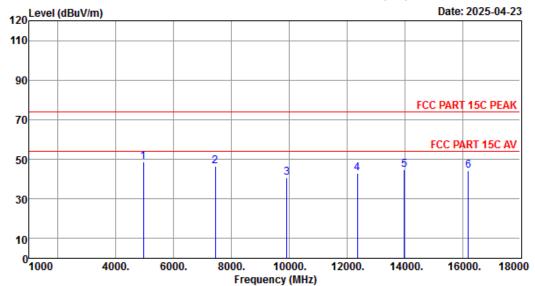
EUT : Karaoke Light Party
Power : DC 9V From Battery

M/N : 5817

Test Mode : GFSK TX 2441MHz

	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	4882.00	33.47	6.86	43.15	52.35	49.53	74.00	24.47	Peak
2	7323.00	36.83	8.44	42.90	42.79	45.16	74.00	28.84	Peak
3	9764.00	38.57	9.66	41.83	33.45	39.85	74.00	34.15	Peak
4	12169.00	39.37	11.11	40.56	33.21	43.13	74.00	30.87	Peak
5	14515.00	39.25	11.20	41.37	32.78	41.86	74.00	32.14	Peak
6	16810.00	39.10	13.37	42.64	33.05	42.88	74.00	31.12	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.


2. Margin= Limit - Emission Level.

The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

Data: 271 File: \\EMC-966-5\\Test Data2\\2025\\RF\V\VTECH\\5817.EM6 (324)

Site no. : 5# 966 Chamber Data no. : 271
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:19.5°C;Humi:51%;Press:101.55kPa

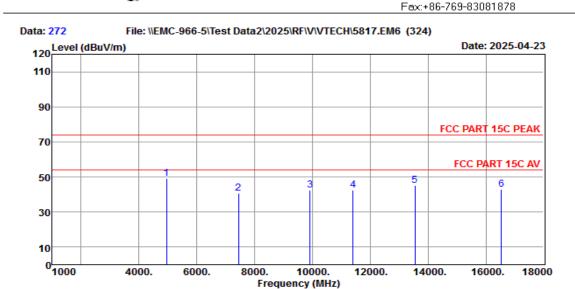
Engineer : Aron Zhang

EUT : Karaoke Light Party
Power : DC 9V From Battery

M/N : 5817

Test Mode : GFSK TX 2480MHz

	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	4960.00	33.57	6.92	43.11	51.50	48.88	74.00	25.12	Peak
2	7440.00	36.30	8.48	42.90	44.42	46.30	74.00	27.70	Peak
3	9920.00	38.40	9.75	41.74	34.16	40.57	74.00	33.43	Peak
4	12356.00	39.45	11.16	40.30	32.84	43.15	74.00	30.85	Peak
5	13988.00	40.33	11.26	40.28	33.23	44.54	74.00	29.46	Peak
6	16198.00	38.70	12.56	42.76	35.65	44.15	74.00	29.85	Peak


Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

2. Margin= Limit - Emission Level.

The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888

Site no. : 5# 966 Chamber Dis. / Ant.

Data no. : 272 Ant. pol. : HORIZONTAL : 3m BBHA9120D-2667

: FCC PART 15C PEAK Limit

Env. / Ins. : Temp:19.5°C; Humi:51%; Press:101.55kPa

: Aron Zhang Engineer

: Karaoke Light Party : DC 9V From Battery Power

M/N : 5817

: GFSK TX 2480MHz Test Mode

	Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	4960.00	33.57	6.92	43.11	51.58	48.96	74.00	25.04	Peak
2	7440.00	36.30	8.48	42.90	38.86	40.74	74.00	33.26	Peak
3	9920.00	38.40	9.75	41.74	35.96	42.37	74.00	31.63	Peak
4	11404.00	40.30	10.78	40.98	32.32	42.42	74.00	31.58	Peak
5	13546.00	41.00	11.29	39.89	32.73	45.13	74.00	28.87	Peak
6	16538.00	39.70	13.01	42.69	33.14	43.16	74.00	30.84	Peak

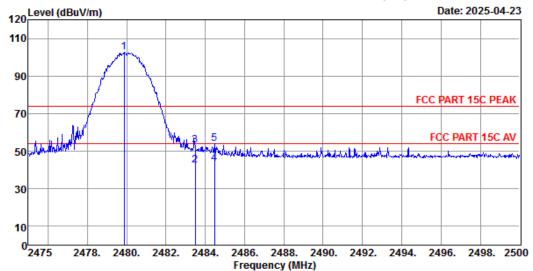
Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

2. Margin= Limit - Emission Level.

3. The emission levels that are 20dB below the official limit are not reported.

Note:

- 1. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 2. All test mode had been pre-test, only Low/Middle/High Channel of the worst case modulation mode was reported.


Radiated Band Edge

EST Technology

Chilingxiang, Qishantou, Santun, Houjie, Dongguan,Guangdong,China

Tel:+86-769-83081888 Fax:+86-769-83081878

Data: 273 File: \\EMC-966-5\Test Data2\\2025\\RF\\V\VTECH\\5817.EM6 (324)

Site no. : 5# 966 Chamber Data no. : 273

Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : HORIZONTAL

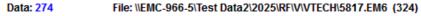
Limit : FCC PART 15C PEAK

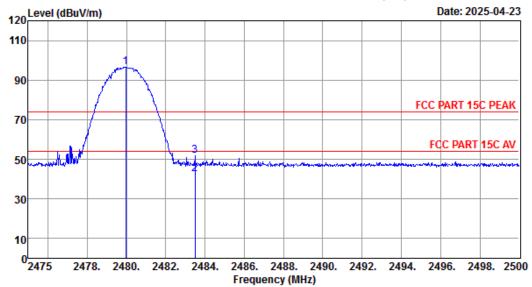
Env. / Ins. : Temp:19.5°C;Humi:51%;Press:101.55kPa

Engineer : Aron Zhang

EUT : Karaoke Light Party
Power : DC 9V From Battery

M/N : 5817


Test Mode : GFSK TX 2480MHz


	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	2479.88	28.20	4.99	44.04	113.38	102.53	74.00	-28.53	Peak
2	2483.50	28.20	4.99	44.04	53.43	42.58	54.00	11.42	Average
3	2483.50	28.20	4.99	44.04	63.96	53.11	74.00	20.89	Peak
4	2484.48	28.20	4.99	44.04	54.30	43.45	54.00	10.55	Average
5	2484.48	28.20	4.99	44.04	64.97	54.12	74.00	19.88	Peak

- Margin= Limit Emission Level.
 - The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 274
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

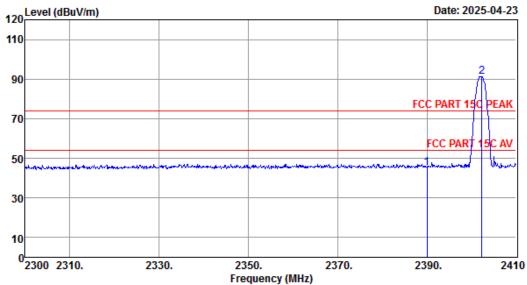
Env. / Ins. : Temp:19.5°C;Humi:51%;Press:101.55kPa

Engineer : Aron Zhang

EUT : Karaoke Light Party
Power : DC 9V From Battery

M/N : 5817

Test Mode : GFSK TX 2480MHz


	Freq.		Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	2479.98	28.20	4.99	44.04	107.49	96.64	74.00	-22.64	Peak
2	2483.50	28.20	4.99	44.04	53.43	42.58	54.00	11.42	Average
3	2483.50	28.20	4.99	44.04	62.47	51.62	74.00	22.38	Peak

- 2. Margin= Limit Emission Level.
- 3. The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 275
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:19.5°C;Humi:51%;Press:101.55kPa

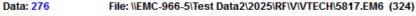
Engineer : Aron Zhang

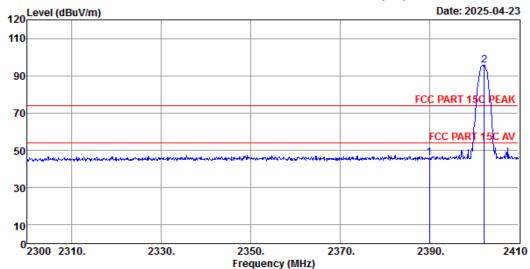
EUT : Karaoke Light Party
Power : DC 9V From Battery

M/N : 5817

Test Mode : GFSK TX 2402MHz

	Freq. (MHz)		-	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2	2390.00 2402.30	 		56.82 102.99	45.15 91.32	74.00 74.00	28.85 -17.32	Peak Peak


- 2. Margin= Limit Emission Level.



Chilingxiang, Qishantou, Santun, Houjie, Dongquan, Guangdong, China

Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber
Dis. / Ant. : 3m BBHA9120D-2667 Data no. : 276 Ant. pol. : HORIZONTAL

: FCC PART 15C PEAK Limit

Env. / Ins. : Temp:19.5°C;Humi:51%;Press:101.55kPa

Engineer : Aron Zhang

: Karaoke Light Party EUT : DC 9V From Battery Power

M/N : 5817

Test Mode : GFSK TX 2402MHz

	Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	-	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2	2390.00 2402.30				57.72 107.30	46.05 95.63	74.00 74.00	27.95 -21.63	Peak Peak

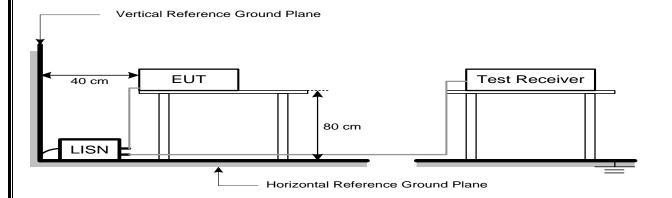
Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

2. Margin= Limit - Emission Level.

3. The emission levels that are 20dB below the official limit are not reported.

Note: All test mode had been pre-test, only Low/High Channel of the worst case modulation mode was reported.

11. AC POWER LINE CONDUCTED EMISSIONS


11.1. Limit

			Maximum R	F Line Voltage
Fred	que	ency	Quasi-Peak Level	Average Level
			dB(μV)	dB(μV)
150kHz	~	500kHz	66 ~ 56*	56 ~ 46*
500kHz	~	5MHz	56	46
5MHz	~	30MHz	60	50

Note:

- 1. * Decreasing linearly with logarithm of frequency.
- 2. The lower limit shall apply at the transition frequencies.

11.2. Test Setup

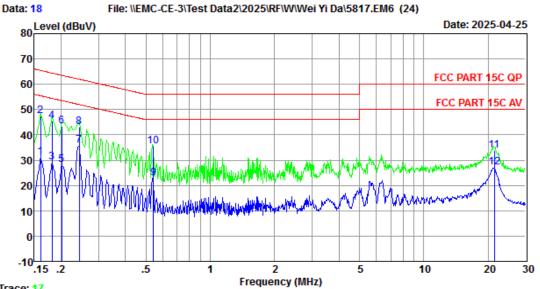
11.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	9KHz
VBW	9KHz
Start frequency	150KHz
Stop frequency	30MHz
Sweep Time	Auto
Detector	QP/AVG
Trace Mode	Max Hold

11.4. Test Procedure

- a. The EUT was placed on a non-metallic table, 80cm above the ground plane.
- b. The EUT Power connected to the power mains through a line impedance stabilization network.
- c. Provides a 50 ohm coupling impedance for the EUT (Please refer the block diagram of the test setup and photographs).
- d. Set the EUT transmit continuously with maximum output power.

E31	Page 37 of 43	Report No. ESTE-R2505021
f.	Spectrum analyzer setting parameters in accordance with section 17. The AC line are checked to find out the maximum conducted emissi maximum emission levels, the relative positions of equipment and a cables shall be changed according to ANSI C63.10: 2013 on Condu Record the results in the test report.	on. In order to find the Ill of the interface



11.5. Test Result

EST Technology

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China

Tel:+86-769-83081888 Fax:+86-769-83081878

Site no

: 3#CE Shield Room

Data no. : 18 : Temp:25.2℃;Humi:52%;Press:101.1kPa LINE Phase : LINE

Env. / Ins. Limit : FCC PART 15C QP

: Wind Li Engineer

EUT : Karaoke Light Party

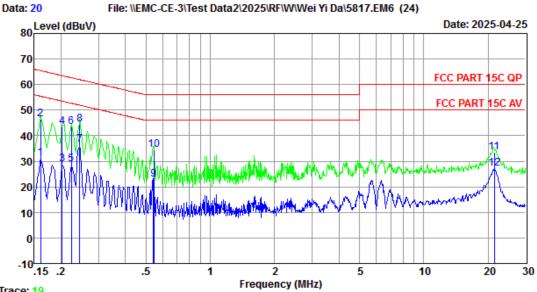
Power : DC 12V From Adapter Input AC 120V/60Hz

M/N : 5817 Test Mode : TX Mode

	Freq.	LISN Factor (db)	Cable Loss (db)	Reading dBuV)	Emission Level (dBuv)	Limits (dBuv)	Margin (dB)	Remark
1	0.16	10.19	9.82	11.23	31.24	55.43	24.19	Average
2	0.16	10.19	9.82	27.56	47.57	65.43	17.86	QP
3	0.18	10.00	9.82	9.51	29.33	54.42	25.09	Average
4	0.18	10.00	9.82	25.54	45.36	64.42	19.06	QP
5	0.20	10.00	9.82	8.48	28.30	53.54	25.24	Average
6	0.20	10.00	9.82	23.58	43.40	63.54	20.14	QP
7	0.24	10.01	9.82	16.14	35.97	52.00	16.03	Average
8	0.24	10.01	9.82	23.45	43.28	62.00	18.72	QP
9	0.54	10.17	9.83	3.03	23.03	46.00	22.97	Average
10	0.54	10.17	9.83	15.55	35.55	56.00	20.45	QP
11	21.37	10.08	10.09	13.52	33.69	60.00	26.31	QP
12	21.37	10.08	10.09	7.06	27.23	50.00	22.77	Average

Remarks: 1. Emission Level= LISN Factor + Cable Loss + Reading.

Margin= Limit - Emission Level.


^{3.} If the average limit is met when useing a quasi-peak detector, the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888

Fax:+86-769-83081878

Trace: 19

Site no : 3#CE Shield Room Data no.

Env. / Ins. : Temp:25.2°C; Humi:52%; Press:101.1kPa LINE Phase : NEUTRAL

: FCC PART 15C QP Limit

Engineer : Wind Li

EUT : Karaoke Light Party

: DC 12V From Adapter Input AC 120V/60Hz Power

M/N : 5817 : TX Mode Test Mode

	Freq.	LISN Factor (db)	Cable Loss (db)	Reading dBuV)	Emission Level (dBuv)	Limits (dBuv)	Margin (dB)	Remark
1	0.16	9.99	9.82	11.46	31.27	55.43	24.16	Average
2	0.16	9.99	9.82	26.56	46.37	65.43	19.06	QP
3	0.20	10.22	9.82	8.73	28.77	53.49	24.72	Average
4	0.20	10.22	9.82	23.49	43.53	63.49	19.96	QP
5	0.22	10.22	9.82	8.68	28.72	52.70	23.98	Average
6	0.22	10.22	9.82	23.55	43.59	62.70	19.11	QP
7	0.24	10.23	9.82	16.36	36.41	51.95	15.54	Average
8	0.24	10.23	9.82	24.56	44.61	61.95	17.34	QP
9	0.54	10.14	9.83	3.07	23.04	46.00	22.96	Average
10	0.54	10.14	9.83	14.63	34.60	56.00	21.40	QP
11	21.37	10.10	10.09	13.46	33.65	60.00	26.35	QP
12	21.37	10.10	10.09	6.94	27.13	50.00	22.87	Average

Remarks: 1. Emission Level= LISN Factor + Cable Loss + Reading.

2. Margin= Limit - Emission Level.

3. If the average limit is met when useing a quasi-peak detector, the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

12. ANTENNA REQUIREMENTS

12.1. Limit

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

12.2. Test Result

The antennas used for this product is internal antenna, so compliance with antenna requirements. (Please refer to the EUT photo for details)

13.Appendix				
Refer to Appendix A & H of Appendix FCC ID BT (the test data).				

14. TEST SETUP PHOTO				
	efer to report no. ESTE-R2505037			

15. EUT PHOTO					
Refer to report no. ESTE-R2505	5038				
End of Test Report					